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The skeletal rearrangements involving 1,2-carbon-to-carbon Table 1. Catalytic Asymmetric Rearrangement of
. . - -0~ -3a
migration are fundamental yet powerful methods for the structural ¢ Dialkyl-a-siloxy Aldehydes 1 with (S,5)-3

reorganization of organic molecules through the consecutive or [¢)

: R2.S0. R (8,5)-3 (5-10 mol%) J\/R1
concurrent cleavage and formation of carbearbon bond$often 3519 R17N
making it feasible to construct otherwise inaccessible molecular R CHO toluene OSiR?,
frameworks. However, precise control of the stereochemical 1 —20°C, 12h 2

outcome together with the migratory aptitude is not a trivial task

mainly because of the proneness to generate an intermediary ™. R Rs Yoyield” % ee product
carbocation under the conventional conditions. Thus, research for 1 PhCH (1a) Mes 96 7 2a
the elaboration of stereoselective variants had long been circum- g Engg 83 EguMez gg gg gg
vented. The delivery of effective Lewis acids to this field resulted 4 ppch (19) Ets 96 87 2a
in an important progress, enabling titereospecificeaction using 5  p-MeO—CgH4CH; (1b) Ets 98 85 2b
chiral substrates, which generally establishes complete chirality 6  p-F~CeHsCH; (10) Ets 97 90 2c
transfer with either stoichiometric or catalytic amount of an ; g—ﬁl—%egaﬂl"z 1d) E’G gg gg gd
appropriate promotérNevertheless, such endeavors are still very g tr;mzf)PhCHH(:Ce)ch (1 Eg 81 83 Zfe
limited, and in turn, examples of success in gr@antioselectie 10  (CH):C=CHCH; (19) Ets 84 80 29
1,2-rearrangement of achiral substrates by the use of chiral activator, 11 (CH).CHCH, (1h) Ets 94 74 2h
especially in a catalytic quantity, have been extremely rare despite 12 c-Hex(li) Ets o7 42

its conceptqal and practical significgn?:tn conjunction Withlour aThe reaction was carried out with either 10 mol % (entrie8)Lor 5
recent studies on the organoaluminum-promoted selective rear-mq| o4 (entries 412) of (59-3 in toluene at-20 °C for 12 h.b Isolated

rangement of aminocarbonyl compourfdge here report our own yield. ¢ Enantiopurity was determined by HPLC analysis. The absolute
approach toward this subject, that is, the development of skeletal configuration of2a was determined to b8 by comparison of the optical
rearrangement af,o-dialkyl-o-siloxy aldehyded, which can be rotation with a literature value ater desilylation.

efficiently catalyzed by newly designed chiral organoaluminum scheme 1

Lewis acid3 with high enantioselectivity, thereby offering a facile I R
. . . . 2 o 1
access to various optlcally active acy]oms (Scheme 1). . RLSO, R 3(E10ma%) R ﬁ'&&}H . %J\:,m . R‘j\!w
On the basis of our preliminary studies on the search for suitable R "CHO  toluene Oﬂ) psl 08, OsiR?
chiral Lewis acid catalysts withx,a-dibenzyla-trimethylsiloxy 1 e ar TR e i

aldehyde {a, R?2 = Me) as a representative substravee designed

a new axially chiral organoaluminum Lewis a@ddhat possesses
the chiral environment created by the 2-[3,5-bis(trifluoromethyl)-
phenyl]-substituted naphthyl moiety being extended over the
coordination site of the aluminum, possibly enabling rigorous
stereocontrol.

The requisite ligand can be synthesized fron®¢BINOL in a
seven-step sequenténterestingly, the molecular structure 4f (S.Sp3[Ar=35{CPalzCet]  (5.5)4[Ar=35-(CF3)-CeHal
visualized by the single-crystal X-ray diffraction analysis adopted Xy smictins of {8,581
homochiral §9) configuration (Scheme 1, cylinder modéBand Coroon Ofed N B
refluxing a solution of4 in toluene for 24 h showed no conforma- ) . o .
tional interconversion betweer58) and GR) isomers. Thus, be optimal, Iead!ng to the quantltatlvg p.roductlon.(.)f the rearranged
treatment of $9-4 (1.1 equiv) with MeAl in toluene at room 2a (R? = Et) with 87% ee under similar conditions (entry 2).
temperature for 30 min generated in situ the stereochemically Notably, the catalyst loading can be reduced to 5 mol % without

defined methylaluminum catalys§6)-3 (10 mol %)? and subse-  Significant loss of reactivity and selectivity (entry 4).
quent reaction witila (R2 = Me) at —20 °C for 12 h resulted in With the optimized conditions in hand, we conducted the
clean formation of the desired-siloxy ketone2a (R2 = Me) in experiments to probe the scope of this new catalytic asymmetric

96% yield with 77% ee (entry 1 in Table 1). This promising result 1,2-rearrangement, and the selected examples are included in Table
prompted us to evaluate the effect of the trialkylsilyl group on the 1.1° Generally, the reaction proceeded smoothly-20 °C under
stereoselectivity, and-triethylsiloxy linkage inla was found to the influence of 5 mol % 0f%9)-3. A series ofo-siloxy aldehydes

T Current address: Department of Applied Chemistry, Graduate School of bearinga-benzylic S_UbStltuemS of different elefztronlc PrOpertleS
Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan. were tolerated (entries-38). The substrates having allylic-sub-
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Table 2. Kinetic Resolution of Differently a,a-Disubstituted lective 1,2-rearrangement af-alkoxycarbonyl compounds and
- a . . . . .
a-Siloxy Aldehydes 5 provides a unique tool for the synthesis of various acyloins and
5a (R! = PhCH,, RZ: Ph) tertiary o-hydroxy aldehydes of high enantiomeric purities. Further
ez b (R' = PhOH o S93Emoe) g . ) . o .
EISS|O ( 2 R -P of1a) — - R2 intensive studies on the application of this approach are currently
CHO 5¢c (H = PhCH,, R® = p-Me-CgHy,) toluene, —20 °C (:)S_E .
5d (R" = trans-PhCH=CHCH,, RE = Ph) iEty underway in our laboratory.
5 5e (R! = PhCH,, R? = c-Hex) 6
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product through the migration of?Rvas >20:1.¢ Determined by HPLC

analysisd The absolute configuration was determined by comparison of

the optical rotation with a reported value after desilylatibn® For References

assignment of the absolute configuration, see Scheme 2.
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