Exceptionally Active Catalysts for the Formation of Carbamates from Alcohols and Isocyanates: Molybdenum(VI) Dichloride Dioxide and Its DMF Complex

Christian Stock, Reinhard Brückner*

Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albert-Str. 21, 79104 Freiburg, Germany Fax +49(761)2036100; E-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de *Received 21 June 2010*

Abstract: Small amounts of MoO_2Cl_2 or $MoO_2Cl_2(DMF)_2$ catalyze carbamate formation from an alcohol and isocyanates: 0.1 mol% of the respective additive allow primary, secondary or tertiary alcohols to add to aliphatic or aromatic isocyanates of varied steric hindrance within 20 minutes at room temperature. Typically the corresponding carbamate resulted in 100% yield. Only particularly hindered substrates required 1.0 mol% of the catalyst while as little as 0.01% sufficed for the phenylcarbamoylation of menthol. Catalytic amounts of DMAP accelerate carbamate formation from certain alcohols and isocyanates, too.

Key words: addition, carbamoylation, DMAP, heterocumulene, urethane formation

Carbamates are of pivotal importance because of their occurrence in polyurethanes and polyurethane foams.¹ Scattered usage of carbamates is made in insecticides² or pharmaceuticals.³ In the laboratory, carbamates are intermediates of the Curtius degradation route to amines. They abound as nitrogen or oxygen protecting groups, directing agents for aromatic⁴ or aliphatic lithiations,⁵ and in asymmetric synthesis as a constituent of oxazolidinone auxiliaries.⁶

Arguably, the most frequently employed synthesis of carbamates is the addition of alcohols to isocyanates.⁷ In principle this addition works fine as such. For non-hindered alcohols and aromatic isocyanates it is so reliable that in qualitative functional group analysis it was recognized as a proof for the presence of such an alcohol. Sterically hindered alcohols and/or isocyanates are known to provide carbamates upon sheer heating,⁸ possibly in the respective alcohol as the solvent, or by accelerating their reaction by an additive. Depending on whether the latter is used in stoichiometric or overstoichiometric amounts or whether substoichiometric amounts suffice, such additives may be classified as 'promotors' or genuine 'catalysts'. Promotors of carbamate formation from alcohols and isocyanates are lithium⁹ or potassium¹⁰ alkoxides, DBU,¹¹ DMAP (Scheme 1^{12-14}), Me₃SiCl,¹⁵ CuCl,^{16,13} CuCl–Bu₄NCl,¹⁷ and CuBr·SMe₂.¹⁸ Catalysts for carbamate formation from alcohols and isocyanates are lithium,¹⁹ MeLi,¹⁹ lithium alkoxide,²⁰ K₂CO₃/H₂O/EtOH,²¹ Ti(O*i*-Pr)₄,²² concentrated HCl,²³ Me₃SiCl,²⁴ tin carboxylates²⁵

SYNLETT 2010, No. 16, pp 2429–2434 Advanced online publication: 03.09.2010 DOI: 10.1055/s-0030-1258552; Art ID: G18610ST © Georg Thieme Verlag Stuttgart · New York [e.g. dibutyltin(IV) dilaurate^{25a} or Sn(II) di(2-ethylhexanoate)^{25b}], SnCl₂·H₂O,²⁶ SmI₂ in the presence of HMPA,²⁷ SnCl₄,²⁸ and unspecified amounts of CuCl₂.²⁹ For measure, Table 1 compiles such methods for the particularly demanding case of *tert*-alkylcarbamoylations of tertiary alcohols.

In polyurethane syntheses catalysts beside the mentioned ones are encountered. This may in part reflect the need to co-catalyze the urea-forming addition of amine, which is the by-product of hydrolytic in situ CO_2 formation, to residual isocyanate.

During ongoing work in this laboratory we had to convert the alcohols 10 and (E,E)-13 into the corresponding Nphenyl carbamates 12 (Table 2) and (E,E)-15 (Table 3), respectively. The presence of CO₂Me groups in these substrates, the fact that these esters were α,β -unsaturated, i.e. Michael acceptors, and the tendency of the desired carbamates to decompose through heat- or base-induced βeliminations (\rightarrow respective $\alpha, \beta, \gamma, \delta$ -unsaturated ester) put some serious restraints on viable reaction conditions. To our delight DMAP catalyzes both N-phenyl carbamoylations efficiently, which might be a first-time observation relative to the literature precedence shown in Scheme 1. DMAP seemed to be a better catalyst for that purpose than Et_3N when the alcohol **10** was concerned (Table 2). DMAP was definitely a superior catalyst compared to Et₃N for the carbamovlation of alcohol (E,E)-13 (Table 3): in spite of employing only half as much DMAP (5 mol%) vs. Et₃N (10 mol%), of diluting the reactants threefold when DMAP rather than Et₃N was present, and of working at room temperature with DMAP but at 40 °C with Et₃N, the former reaction furnished almost as much carbamate (E,E)-15 after 2.7 hours (83%) as resulted from the latter reaction after 6.5 hours (87%).

We noticed a certain sensitivity of carbamate (E,E)-**15** towards the excess of 0.1 equivalent of phenyl isocyanate (**14**), which we used. This implied the necessity of a chromatographic separation at high conversions. In order to circumvent this complication we started to search for an even better catalyst. We considered a number of literature conditions (cf. Table 1) less promising for our polyfunctional substrate. Accordingly, we tried additives of our own choice and included MoO₂Cl₂ because of the increasing number of transformations brought about by this catalyst^{30-41a,42,43b,44} or its congeners MoO₂Cl₂(DMF)₂,^{41a,43b,44} or the spe-

Scheme 1 DMAP-assisted carbamate syntheses from the literature

cies MoO₂Cl₂L₂⁵⁰ or MoO₂Cl₂(β -ketophosphonate).⁵¹ Indeed, a suspension of MoO₂Cl₂ (5.0 mol%) in CH₂Cl₂ effected carbamate formation from alcohol (*E*,*E*)-**13** and phenyl isocyanate (**14**) at room temperature within barely over one hour. Carbamate (*E*,*E*)-**15** resulted in the hitherto highest yield (89%). Moreover, this specimen was easily purified because of the complete absence of the previously mentioned overreaction product.

Motivated by this success we optimized the novel carbamoylation towards another sterically hindered yet commercially available alcohol, namely towards (-)-menthol (16; Table 4). We lowered the MoO₂Cl₂ loading gradually from 5.0 mol% (entry 1) to 0.1% (entry 5) and always obtained an essentially quantitative yield of carbamate 17 after 20 minutes, aqueous workup, and purification by flash chromatography on silica gel.⁵² We could even do without chromatography and still obtained a carbamate, which was pure according to its ¹H NMR spectrum (300 MHz) and the correctness (±0.30%) of its elemental analysis. For decreasing the catalyst loading even further we would have preferred working with a stock solution of the catalyst. This would have facilitated accurate dosages of the catalyst at preset values. However, MoO₂Cl₂ was completely insoluble in CH₂Cl₂ no matter how much solvent was employed. In an effort to escape this nuisance we synthesized $MoO_2Cl_2(DMF)_2$ from potassium molybdate, concentrated HCl, and DMF.^{43a} We were surprised to find that MoO₂Cl₂(DMF)₂ was no more soluble in the concentration range of interest. It was nonetheless as good a catalyst as MoO_2Cl_2 for turning menthol (16) and phenyl isocyanate (14) into carbamate 17 at room temperature within 20 minutes (Table 4, entries 6 and 7). This included an experiment with just 100 ppm of $MoO_2Cl_2(DMF)_2$ (entry 7; quantitative yield). As far as we can tell both MoO_2Cl_2 and $MoO_2Cl_2(DMF)_2$ did not remain insoluble throughout the reaction but seemed to dissolve upon the addition of the isocyanate.

Since our MoO₂Cl₂(DMF)₂ was crystalline but MoO₂Cl₂ a fluffy powder, the former species was more conveniently weighed. For this reason all subsequent carbamoylations were performed exploiting MoO₂Cl₂(DMF)₂ rather than MoO₂Cl₂ catalysis. With the single exception of the sterically hindered carbamate depicted in Scheme 2, where we used 1.0 mol% MoO₂Cl₂(DMF)₂, we were satisfied to observe that as little as 0.1 mol% of the catalyst was enough to achieve uniform yields of \geq 90%. In fact, most yields were quantitative.

Carbamate formations within 20 minutes at room temperature from a variety of alcohols and phenyl isocyanate (14) as the reference derivatizing agent are summarized in Table 5. Primary alcohols, benzyl alcohol, geraniol, and propargyl alcohol, as well as secondary alcohols, cyclohexanol and (–)-menthol, gave the respective carbamates 24–27 and 17 in 95% to quantitative yields. Tertiary alcohols, *tert*-butyl alcohol or 2-methyl-3-butyn-2-ol (23), did not react completely under the identical conditions yet they did so in the presence of 1.0 mol% rather than 0.1 mol% MoO₂Cl₂(DMF)₂: the respective carbamates 28 and 29 resulted in yields of 98% and more. However, alcohol 23 called for increased initial concentrations, perhaps due to inductively lowered nucleophilicity.

Table 1	Literature Syntheses	of N,O-Di-tert-alkyl Carba	amates from Tertiary Alcol	hols and Tertiary Isocyanates
---------	----------------------	----------------------------	----------------------------	-------------------------------

$R^{O}-OH + O \longrightarrow N-R^{N} \longrightarrow R^{O} \longrightarrow R^{N} H$						
Entry	R ^o	R ^N	Additive	Temp	Time	Yield
1 ⁸	¹Bu−ξ	NHCbz	-	(jointly with C	urtius rearrangeme	ent) >45%
2 ¹⁰	′Bu−{	€O₂′Bu ₹	<i>t</i> -BuOK (1.7 equiv)	0–23 °C	ca 1 h	>71%
39		ξ—′Bu	<i>n</i> -BuLi (1.0 equiv)	r.t.	uncertain	92%
4 ²²	⁴Bu—ξ	and the second sec	Ti(Ot-Bu) ₄ (10 mol%)	120 °C	96 h	56%
5 ¹⁷	łBu−ξ	€O₂′Bu	CuCl, Bu_4NCl (2 + 2 equiv)	r.t.	-	38%
6 ²⁸	′Bu−ξ	€O₂Et	SnCl ₄ (6 mol%)	reflux; r.t.	1 + 17 h	>71%
7 ¹⁵	⁴Bu—ş́	Mining SiPho/Bu	Me ₃ SiCl (1.4 equiv)	r.t.	5 h	78%
8 ²⁴	CbzHN	ξ—′Bu	Me ₃ SiCl (5 mol%)	r.t.	18 h	100%
9 ²³		ξ—'Bu	HCl (concd) (5 mol%)	r.t.	5 h	96%

 Table 2
 Carbamoylations of Alcohol 10 with Aryl Isocyanate 11: DMAP Effect

MeO ₂ C Ph 10	O N-a 11 additive (cc CH ₂ Cl ₂ , r.t.,	nisyl MeO ₂ C	o N H 12	nisyl		
Entry	Additive	mol% (amine)	[10] ₀	[11] ₀	Time	Yield
1	Et ₃ N	10	1.0 M	1.0 M	7 h	78%
2	DMAP	5	0.30 M	0.33 M	5 h	91%

Table 3 Carbamoylations of Alcohol (E,E)-13 with N-Phenyl Isocyanate (14): DMAP and MoO₂Cl₂ Effects

MeO ₂ C	$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{OH} \\ \text{OH} \\ \text{OH}_2\text{C} \\ \text{MeO}_2\text{C} \\ \text{MeO}_2\text{C} \\ \text{MeO}_2\text{C} \\ \text{OH} \\ \text{OH}_2\text{Cl}_2, \text{ temp, time} \\ \text{MeO}_2\text{C} \\ M$								
(<i>E,E</i> [91:9 mixture]	E)- 13 with (<i>E,Z</i>)- 13]	[separat	(<i>E,E</i>)- 15 ed from (<i>E,Z</i>)- 15]						
Entry	Additive	mol% (amine)	[13] ₀	[14] ₀	Temp	Time	Yield		
1	Et ₃ N	10	1.0 M	1.1 M	40 °C	6.5 h	87%		
2	DMAP	5	0.30 M	0.33 M	r.t.	2.7 h	83%		
3	MoO ₂ Cl ₂	5	0.30 M	0.33 M	r.t.	70 min	89%		

Swapping partners we also combined (-)-menthol (16) with a variety of isocyanates to yield the corresponding carbamates 34-39 and 17 (Table 6). Primary alkyl isocyanates (Bu, Bn) or aromatic isocyanates (with electronically varied para-substituents: Ac, H, OMe) provided \geq 98% of their respective carbamate after 20 minutes. The sterically more hindered cyclohexyl isocyanate furnished carbamate 38 in slightly lower yield (90%). With the routine amount of 0.1 mol% MoO₂Cl₂(DMF)₂ tert-butyl isocyanate required 19 hours for converting (-)-menthol into carbamate 39 in 97% yield. A higher amount of the catalyst (1.0 mol%) lowered the time expenditure for attaining a quantitative yield to two hours.

Table 4 Carbamoylation of (-)-Menthol (16) with N-Phenyl Isocyanate (14) Catalyzed by Decreasing Amounts of MoO₂Cl₂ or MoO₂Cl₂(DMF)₂

Entry	Catalyst	mol% (catalyst)	Yield ^a
1	Α	5	quant.
2	Α	2	quant.
3	Α	1	quant.
4	Α	0.5	99%
5	Α	0.1	98% ^b
6	В	0.1	quant.
7	В	0.01 ^c	quant.

^a All reactions provided analytically pure carbamate 17 after aqueous workup and removal of the solvent.

^b After purification by flash chromatography.

 $^{\rm c}$ [16]₀ = 1.0 M.

The most sterically hindered substrate combination, which we studied comprised of tert-butanol (22) and tertbutyl isocyanate (33; Scheme 2). In the presence of 1.0 mol% MoO₂Cl₂(DMF)₂ and after two hours we isolated 92% of the N,O-di-tert-butyl carbamate (40), provided we increased the alcohol concentration from 1.0 M to 5.0 M. Otherwise the yield of 40 reached 90% after nine hours.

Scheme 2 Carbamoylation of tert-butanol (22) with tert-butyl isocyanate (33) catalyzed by MoO₂Cl₂(DMF)₂

Table 5	Carbamoylation of Representative Alcohols with N-Phenyl
Isocyana	te (14) Catalyzed by $MoO_2Cl_2(DMF)_2$
	O <u>─</u> Ph

R—OH - I 16, 18–23 ([alcohol] ₀ = 1.0 M)	14 (1.2 equiv), MoO ₂ Cl ₂ (DMF) ₂ (0.1 CH ₂ Cl ₂ , r.t., 20 min	n mol%), ► R-	-0 N Ph
R	Alcohol	Carbamate	Yield ^a
Bn	18	24	quant.
geranyl	19	25	quant.
propargyl	20	26	quant.
cyclohexyl	21	27	95%
(–)-menthyl	16	17	quant.
t-Bu ^b	22	28	98%
α,α-dimethylpropar	gyl ^c 23	29	quant.

^a All reactions provided analytically pure carbamate after aqueous workup and removal of the solvent.

^b The reaction was carried out with 1.0 mol% of the catalyst.

^c The reaction was carried out with 1.0 mol% of the catalyst and an initial alcohol concentration of 5.0 M.

In summary, we have developed an efficient method for the carbamoylation of alcohols with aliphatic and aromatic isocyanates.^{54,55} In the presence of as little as 0.1 mol% of the inexpensive catalyst MoO₂Cl₂(DMF)₂ most car

(-)-Menthyl—OH 16 ([16] ₀ = 1.0 M)	O==N- 8, 11, 14, 30 (1.2 equit MoO ₂ Cl ₂ (DMF) ₂ (CH ₂ Cl ₂ r.t., time	-R 0-33 v), 0.1 mol%), (,	–)-Menthyl—(20	0 N H O, 34–39
R	Isocyanate	Time (min)	Carbamate	Yield ^a
Bu	30	20	34	98%
Bn	31	20	35	quant.
4-acetylphenyl	32	20	36	quant.
Ph	14	20	17	quant.
4-methoxypheny	11	20	37	quant.
cyclohexyl	8	20	38	90%
t-Bu ^b	33	120	39	quant.

^a All reactions provided analytically pure carbamate after aqueous workup and removal of the solvent.

^b The reaction was carried out with 1.0 mol% of the catalyst.

bamoylation reactions proceeded to completion after 20 minutes at room temperature. Only tertiary substrates needed more time and/or higher catalyst loadings for reaching 90–100% yield like the less hindered substrates. The purity of our carbamates after aqueous workup but without chromatography was noteworthy. The mildness of our procedure suggests that it may be applied advantageously to many other polyfunctional substrates beside our Michael acceptors **10** and (*E*,*E*)-**13**.

References and Notes

- For polyurethane reviews, see: (a) Silva, A. L.; Bordado, J. C. *Catal. Rev.* 2004, 46, 31. (b) Moratti, S. C.; Charalambides, Y. C. 'Polymeric Carbanic Acids and Esters, and Their Sulfur Analogues', in 'Four Carbon– Heteroatom Bonds: X-C=X, X=C=X, X₂C=X, CX₄', Science of Synthesis, Houben-Weyl Methods of Organic Chemistry, Vol. 18; Knight, J. G., Ed.; Thieme: Stuttgart / New York, 2005, 649–664.
- (2) For example: Propamocarb and Carbaryl: Römpp Online, Version 3.1; Georg Thieme Verlag: Stuttgart, 2008.
- (3) (a) Rivastigmine: Winblad, B.; Grossberg, G.; Frölich, L.; Farlow, M.; Zechner, S.; Nagel, J.; Lane, R. *Neurology* 2007, 69, 14. (b) Retigabine: Blackburn-Munro, G.; Dalby-Brown, W.; Mirza, N. R.; Mikkelsen, J. D.; Blackburn-Munro, R. E. *CNS Drug Rev.* 2005, 11, 1. (c) Pardoprunox: Hauser, R. A.; Bronzova, J.; Sampaio, C.; Lang, A. E.; Rascol, O.; Theeuwes, A.; van de Witte, S. V. *Eur. Neurol.* 2009, 62, 40.
- (4) Snieckus, V. Chem. Rev. 1990, 90, 879.
- (5) (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282; Angew. Chem., 1997, 109, 2376. (b) Beak, P.; Johnson, T. A.; Kim, D. D.; Lim, S. H.Organolithiums in Enantioselective Synthesis In Top. Organomet. Chem., Vol. 5; Hodgson, D. M., Ed.; 2003, 139–176.

- (6) (a) Evans, D. A. Aldrichimica Acta 1982, 15, 23. (b) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
 (c) Sibi, M. P. Aldrichimica Acta 1999, 32, 93.
- (7) For carbamate reviews, see: (a) Rossi, L. in 'Four Carbon– Heteroatom Bonds: X-C=X, X=C=X, X₂C=X, CX₄', Science of Synthesis, Houben-Weyl Methods of Organic Chemistry, Vol. 18; Knight, J. G., Ed.; Thieme: Stuttgart / New York, 2005, 461–648. (b) Chaturvedi, D.; Mishra, N.; Mishra, V. Curr. Org. Synth. 2007, 4, 308.
- (8) Hutton, C. A.; Bartlett, P. A. J. Org. Chem. 2007, 72, 6865.
- (9) Nikiforov, A.; Jirovetz, L.; Buchbauer, G. *Liebigs Ann. Chem.* **1989**, 489.
- (10) Varie, D. L.; Beck, C.; Borders, S. K.; Brady, M. D.; Cronin, J. S.; Ditsworth, T. K.; Hay, D. A.; Hoard, D. W.; Hoying, R. C.; Linder, R. J.; Miller, R. D.; Moher, E. D.; Remacle, J. R.; Rieck, J. A. III.; Anderson, D. D.; Dodson, P. N.; Forst, M. B.; Pierson, D. A.; Turpin, J. A. Org. Process Res. Dev. 2007, 11, 546.
- (11) Tsuji, T.; Nishida, S.; Okuyama, M.; Osawa, E. J. Am. Chem. Soc. 1995, 117, 9804.
- (12) Elman, B.; Moberg, C. Tetrahedron 1986, 42, 223.
- (13) Keyes, R. F.; Carter, J. J.; Zhang, X.; Ma, Z. Org. Lett. 2005, 7, 847.
- (14) Cameron, J. F.; Willson, C. G.; Fréchet, J. M. J. J. Chem. Soc., Perkin Trans. 1 1997, 2429.
- (15) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7, 5733.
- (16) Duggan, M. I.; Imagire, J. S. Synthesis 1989, 131.
- (17) Nishikawa, T.; Urabe, D.; Tomita, M.; Tsujimoto, T.; Iwabuchi, T.; Isobe, M. Org. Lett. 2006, 8, 3263.
- (18) Paleo, M. R.; Calaza, M. I.; Sardina, F. J. J. Org. Chem. 1997, 62, 6862.
- (19) Cameron, J. F.; Fréchet, J. M. J. J. Org. Chem. 1990, 55, 5919.
- (20) Cate, A. T.; Dankers, P. Y. W.; Kooijman, H.; Spek, A. L. J. Am. Chem. Soc. 2003, 125, 6860.
- (21) Dillard, R. D.; Poore, G. A.; Easton, N. R.; Sweeney, M. J.; Gibson, W. R. J. Med. Chem. 1968, 11, 1155.
- (22) Spino, C.; Joly, M.-A.; Godbout, C.; Arbour, M. J. Org. Chem. 2005, 70, 6118.
- (23) Benalil, A.; Roby, P.; Carboni, B.; Vaultier, M. Synthesis 1991, 787.
- (24) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.; Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes, T. E. *J. Med. Chem.* **2003**, *46*, 2774.
- (25) (a) Britain, J. W.; Gemeinhardt, P. G. J. Appl. Polym. Sci. 1960, 4, 207. (b) Francis, T.; Thorne, M. P. Can. J. Chem. 1976, 54, 24.
- (26) White, D. K.; Greene, F. D. J. Org. Chem. 1978, 43, 4530.
- (27) Kim, Y. H.; Park, H. S. Synlett 1998, 261.
- (28) Hodgson, D. M.; Thompson, A. J.; Wadman, S.; Keats, C. J. *Tetrahedron* **1999**, *55*, 10815.
- (29) Finke, P. E.; Oates, B.; Mills, S. G.; MacCoss, M.; Malkowitz, L.; Springer, M. S.; Gould, S. L.; DeMartino, J. A.; Carella, A.; Carver, G.; Holmes, K.; Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.; Miller, M.; Schleif, W. A.; Emini, E. A. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2475.
- (30) Review: Jeyakumar, K.; Chand, D. K. J. Chem. Sci. 2009, 121, 111.
- (31) Jeyakumar, K.; Chand, D. K. Synthesis 2009, 306.
- (32) Jeyakumar, K.; Chand, D. K. Synthesis 2008, 807.
- (33) Jeyakumar, K.; Chand, D. K. Synthesis 2008, 1685.
- (34) Weng, S.-S.; Lin, Y.-D.; Chen, C.-T. *Org. Lett.* **2006**, *8*, 5633.
- (35) Goswami, S.; Maity, A. C. Tetrahedron Lett. 2008, 49, 3092.
- (36) Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188.

- (37) (a) Fernandes, A. C.; Fernandes, R.; Romão, C. C.; Royo, B. *Chem. Commun.* 2005, 213. (b) Reis, P. M.; Romão, C. C.; Royo, B. *Dalton Trans.* 2006, 1842.
- (38) Fernandes, A. C.; Romão, C. C. *Tetrahedron Lett.* 2005, 46, 8881.
- (39) Fernandes, A. C.; Romão, C. C. J. Mol. Catal. A: Chem. 2006, 253, 96.
- (40) Fernandes, A. C.; Romão, C. C. J. Mol. Catal. A: Chem. 2007, 272, 60.
- (41) (a) Fernandes, A. C.; Romão, C. C. *Tetrahedron* 2006, 62, 9650. (b) Sanz, R.; Escibano, J.; Fernández, Y.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. *Synlett* 2005, 1389.
- (42) Cf. ref. 41a.
- (43) (a) Sanz, R.; Escibano, J.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Synthesis 2004, 1629. (b) Fernandes, A. C.; Romão, C. C. Tetrahedron Lett. 2007, 48, 9176.
- (44) Jeyakumar, K.; Chand, D. K. *Tetrahedron Lett.* 2006, 47, 4573.
- (45) Sanz, R.; Escibano, J.; Pedrosa, M. R.; Aguado, R.; Arnáiz, F. J. Adv. Synth. Catal. 2007, 349, 713.
- (46) Note added in proof: During revision of our manuscript MoO₂Cl₂(DMF)₂ catalysis in reductive cyclizations of (*ortho*-nitroaryl)alkenes was reported by: Malakar, C. C.; Merisor, E.; Conrad, J.; Beifuss, U. Synlett **2010**, 1766.
- (47) Sanz, R.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Synthesis 2002, 856.
- (48) Arnáiz, F. J.; Aguado, R.; Martinez de Ilarduya, J. M. *Polyhedron* **1994**, *13*, 3257.
- (49) Jeyakumar, K.; Chand, D. K. Appl. Organomet. Chem. 2006, 20, 840.
- (50) (a) Bruno, S. M.; Balula, S. S.; Valente, A. A.; Almeida Paz, F. A.; Pillinger, M.; Sousa, C.; Klinowski, J.; Freire, C.; Ribeiro-Claro, P.; Gonçalves, I. S. *J. Mol. Catal. A: Chem.* **2007**, *270*, 185. (b) Bruno, S. M.; Pereira, C. C. L.; Balula, M. S.; Nolasco, M.; Valente, A. A.; Hazell, A.; Pillinger, M.; Ribeiro-Claro, P.; Gonçalves, I. S. *J. Mol. Catal. A: Chem.* **2007**, *261*, 79. (c) Bruno, S. M.; Fernandes, J. A.; Martins, L. S.; Gonçalves, I. S.; Pillinger, M.; Ribeiro-Claro, P.; Rocha, J.; Valente, A. A. *Catal. Today* **2006**, *114*, 263.

- (51) Salles, L.; Nixon, A. F.; Russell, N. C.; Clarke, R.; Pogorzelec, P.; Cole-Hamilton, D. J. *Tetrahedron: Asymmetry* **1999**, 1471.
- (52) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- (53) Typical Procedure for the Carbamoylation of Alcohols with Isocyanates: At 22 °C neat benzyl isocyanate (31; 0.52 mL, 0.56 g, 1.1 equiv) was added to $MoO_2Cl_2(DMF)_2$ (1.3 mg, 3.8 µmol, 0.1 mol%) and 1.0 M (–)-menthol (16; 594 mg, 3.80 mmol) in CH₂Cl₂ (3.8 mL). The mixture was stirred at r.t. for 20 min. CH₂Cl₂ (10 mL) and H₂O (7 mL) were added. The aqueous phase was extracted with CH₂Cl₂ (2 × 12 mL). The combined organic phases were dried over Na₂SO₄. Removal of the solvent under reduced pressure gave *N*-benzyl-*O*-[(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl] carbamate (35; 1.10 g, 100%) as a white solid (mp 92 °C). It was a pure compound as evidenced by ¹H NMR spectroscopy and combustion analysis.
- (54) (a) Carbamates **12**, **15**, **36**, and **37** are new compounds.⁵⁵ Other carbamates were described (inter alia) in the following references: (b) Carbamates 17 and 34: Gautschi, M. WO Patent, 2004/000023A1, 2003. (c) Carbamate 24: Leogane, O.; Lebel, H. Synthesis 2009, 1935. (d) Carbamate 25: Seemayer, R.; Liang, J. WO Patent, 2004/037827A1, 2004. (e) Carbamates 26 and 29: Newton, R.; Savage, G. P. Aust. J. Chem. 2008, 61, 432. (f) Carbamate 27: Wiberg, K. B.; Wang, Y.-G.; Miller, S. J.; Puchlopek, A. L. A. J. Org. Chem. 2009, 74, 3659. (g) Carbamate 28: Steinke, T.; Shaw, B. K.; Jong, H.; Patrick, B. O.; Fryzuk, M. D. Organometallics 2009, 28, 2830. (h) Carbamate 35: Martínez, R.; Ramón, D. J.; Yus, M. Adv. Synth. Catal. 2008, 350, 1235. (i) Carbamate 38: Kroetz, D. L.; Zeldin, D. C.; Hammock, B. D.; Morisseau, C. US Patent, 6531506B1, 2003. (j) Carbamate 39: Boghani, N.; Gebreselassie, P. WO Patent, 2006/127738A2, 2006. (k) Carbamate 40: Heydari, A.; Khaksar, S.; Tajbakhsh, M. Synthesis 2008, 3126.
- (55) All new compounds (12, 15, 36, and 37) gave satisfactory ¹H NMR and ¹³C NMR spectra and correct combustion analyses for C, H, and N (±0.30%). Analytical details will be published in a full paper in due course.