A New β -Carbolinone Synthesis Using a Rh(II)-Promoted [3 + 2]-Cycloaddition and Pd(0) Cross-Coupling/Heck Cyclization Chemistry

Joel M. Harris[†] and Albert Padwa*

Department of Chemistry, Emory University, Atlanta, Georgia 30322

chemap@emory.edu

Received August 27, 2003

ABSTRACT

A short and efficient synthesis of the β -carbolinone ring system was achieved using a rhodium(II)-catalyzed [3 + 2]-cycloaddition, a Pd(0)-catalyzed C–N amination reaction, and a subsequent intramolecular Heck reaction as the key synthetic steps.

The 1,2-dihydropyrido[3,4-*b*]indol-1-one (i.e., β -carbolinone) nucleus occurs in many natural products,¹ and several of these compounds show significant biological activity.² One of the metabolites isolated from the sponge genus *F. reticulata* was identified as secofascaplysin (1) and represents the first naturally occurring β -carbolinone.³ Many β -carbolinone derivatives have been found to exhibit affinity for the benzodiazepine receptor,⁴ show antileukemic properties,⁵ and function as useful central nervous system depressants.⁶ A

(4) (a) Braestrup, C.; Nielsen, H. M.; Petersen, E. N.; Jepsen, L. H. *Biochem. Pharmacol.* **1984**, *33*, 859. (b) Lippke, K. P.; Schunack, W. G.; Wenning, W.; Müller, W. E. *J. Med. Chem.* **1983**, *26*, 499.

(5) (a) Prinsep, M. R.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. **1991**, 54, 1068. (b) Kobayashi, J.; Cheng, J.; Ohta, T.; Nozol, S.; Ohizumi, Y.; Sasaki, T. J. Org. Chem. **1990**, 55, 3666. (c) Hagen, T. J.; Narayanan, K.; Names, J.; Cook, J. M. J. Org. Chem. **1989**, 54, 2170.

(6) Evanno, Y.; Sevrin, M.; Maloizel, C.; Legallondec, O.; George, P. (Synthelabo S. A. Patent No. WO 9815552, 1998; *Chem. Abstr.* **128**, 282832.

10.1021/ol0356338 CCC: \$25.00 © 2003 American Chemical Society Published on Web 10/02/2003

novel series of human leukocyte elastase (HLE) inhibitors containing the β -carbolinone ring system has also been reported, and these compounds have been used as potential therapy agents in disease states.⁷ The β -carbolinone ring can serve as a highly efficient peptidiomimetic and shows significant in vitro potency and selectivity for HLE.⁷

ORGANIC LETTERS

2003 Vol. 5, No. 22

4195-4197

Since the biological properties of these heterocycles have spurred considerable preparative efforts,⁸ the development of new synthetic methods for the construction of novel β -carbolinone ring systems remains an attractive research

[†] NIH Postdoctoral Fellow, Grant No. GM 64027-1.

^{(1) (}a) Larsen, L. K.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. **1994**, *57*, 419. (b) Roll, D. M.; Ireland, C. M.; Lu, H. S. M.; Clardy, J. J. Org. Chem. **1988**, *53*, 3276. (c) Beccalli, E. M.; Broggini, G.; Marchesini, A.; Rossi, E. Tetrahedron **2002**, *58*, 6673.

^{(2) (}a) Kardono, L. B.; Angerhofer, C. K.; Tsauri, S.; Padmawinata, K.; Pezzuto, J. M.; Kinghorn, A. D. *J. Nat. Prod.* **1991**, *54*, 1360. (b) Doyle, T. W.; Balitz, D. M.; Grulich, R. E.; Nettleton, D. E.; Gould, S. J.; Tann, C.; Moews, A. E. *Tetrahedron Lett.* **1981**, *22*, 4594.

⁽³⁾ Jimenez, C.; Quinoa, e.; Adamczereski, M.; Hunter, L. M.; Crews, P. J. Org. Chem. 1991, 56, 3403.

⁽⁷⁾ Veale, C. A.; Damewood, J. R.; Steelman, G. B.; Bryant, C.; Gomes, B.; Williams, J. J. Med. Chem. **1995**, *38*, 86.

area. Most of the described syntheses of β -carbolinones use a 2-carboxyindole-3-acetic acid as the starting material⁹ or are based on the Fischer indole reaction of 3-formyl-2pyrrolidinone derivatives with aryl hydrazines.¹⁰ We envisaged a conceptually new approach to these heterocycles based upon our recently reported synthesis of 2(1*H*)pyridones via the [3 + 2]-cycloaddition reactions of isomünchnones derived from the Rh(II)-catalyzed reaction of α -diazoimido sulfones.¹¹ Herein, we report the scope and generality of this methodology and document its usefulness in the preparation of variously substituted β -carbolinones.

Our laboratory has been involved in the utilization of the Rh(II)-catalyzed cyclization/cycloaddition cascade of diazosubstituted carbonyl compounds for the synthesis of complex azapolycyclic ring systems.¹² Among other examples, this procedure was employed in an efficient synthesis of (\pm) ipalbidine (**3**) and the angiotensin inhibitor (-)-A58365A (**4**) (Scheme 1).¹³ The versatility of this strategy lies in the fact that by appropriate selection of the diazo precursor and dipolarophile, various groups can be introduced into the N-1 and C-4, C-5, C-6 positions. The cornerstone of the cascade sequence involves the ready ring-opening reaction of the initially formed isomünchnone cycloadduct **5** to give a

4196

substituted 3-hydroxy-2(1*H*)-pyridone **6**. It was envisaged that the C₃-hydroxyl group present in **6** could be transformed to an amino group (i.e., **7**) by a palladium-catalyzed amination reaction of its corresponding triflate. Finally, a subsequent Pd(0)-promoted Heck reaction would furnish the desired β -carbolinone ring system **8** as outlined in Scheme 1.

To investigate the potential of this strategy, diazoimide 2 (R = H) was chosen as the starting substrate. Formation of the isomünchnone dipole was achieved by reaction of 2 with $Rh_2(OAc)_4$ to first give the rhodium carbenoid species that undergoes a subsequent intramolecular cyclization onto the neighboring carbonyl oxygen. Bimolecular trapping of the dipole with either methyl acrylate or phenyl vinyl sulfone gave pyridones 9 and 11 in 86% and 85% yield, respectively. Pyridone 9 was easily decarboxylated by heating with 48% HBr at 135 °C for 12 h to furnish the unsubstituted pyridone 10 in 90% yield. All three 2(1*H*)-pyridones (9–11) were readily converted to the corresponding triflates (12–14) using *N*-phenyl trifluoromethanesulfonamide and triethylamine in high yield (Scheme 2).^{13,14}

C–N cross-coupling of aryl halides and triflates with amines has been the subject of intense studies in recent years, primarily by the groups of Buchwald¹⁵ and Hartwig.¹⁶ Application of this methodology to various heteroaromatic compounds is still a relatively unexplored process. We initially investigated the cross-coupling of pyridone **13** and aniline. The amination reaction proceeded quite well using 5 mol % Pd(OAc)₂, 10 mol % Xantphos, and 1.5 equiv of Cs₂CO₃ in refluxing toluene for 6 h (method A) to give 6-phenylamino-2,3-dihydro-1*H*-indolizin-5-one (**15**) in 62% isolated yield. The use of Pd₂(dba)₃ (method B) gave a

^{(8) (}a) Misztal, S.; Beilecka, Z.; Mokkrosz, J. L. J. Chem. Soc., Perkin Trans. 1 1991, 1871. (b) Malnyk, P.; Ducrot, P.; Thal, C. Tetrahedron 1993, 49, 8589. (c) Rodriguez, J. G.; Gil-Lopetegui, P. J. Heterocycl. Chem. 1993, 30, 373. (d) Tietze, L. F.; Wichmann, J. Angew. Chem., Int. Ed. Engl. 1992, 31, 1079.

⁽⁹⁾ Mashelkar, U. C.; Thakur, P. A.; Walavalkar, K. V. Indian J. Heterocycl. Chem. 1992, 1, 201.

⁽¹⁰⁾ Tokmakov, G. P.; Grandberg, I. I. Khim. Geterotsik Soedin. 1980, 3, 331.

⁽¹¹⁾ Padwa, A.; Straub, C. S. Org. Lett. 1999, 1, 83.

^{(12) (}a) Sheehan, S. M.; Padwa, A. J. Org. Chem. **1997**, 62, 438. (b) Marino, J. P., Jr.; Osterhout, M. H.; Padwa, A. J. Org. Chem. **1995**, 60, 2704. (c) Padwa, A.; Hertzog, D. L.; Nadler, W. R. J. Org. Chem. **1994**, 59, 7072.

⁽¹³⁾ Padwa, A.; Sheehan, S. M.; Straub, C. S. J. Org. Chem. 1999, 64, 8648.

⁽¹⁴⁾ McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979.

^{(15) (}a) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653. (b) Yin, J.; Buchwald,
S. L. J. Am. Chem. Soc. 2002, 124, 6043. (c) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101. (d) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.;
Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (e) Wolfe, J. P.; Buchwald,
S. L. J. Org. Chem. 1997, 62, 1264. (f) Ahman, J.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6363.

^{(16) (}a) Hooper, M. W.; Masaru, U.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861. (b) Alcazar-Roman, L. M.; Hartwig, J. F. Organometallics 2002, 21, 491. (c) Alcazar-Roman, L. M.; Hartwig, J. F.; Rheingold, A. L.; Liable-Sands, L. M.; Guzei, I. A. J. Am. Chem. Soc. 2000, 122, 4618. (d) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (e) Louie, J.; Driver, M. S.; Hamannn, B. C.; Hartwig, J. F. J. Org. Chem. 1997, 62, 1268.

slightly higher yield of the coupled product and with a significant decrease in reaction time (65%, 1.5 h). Other ligands investigated included (\pm)-BINAP, tri-tert-butylphosphine, DPPF, and 2-(dicyclohexylphosphino)biphenyl. However, with these ligands a much lower yield of the coupled product was obtained or else no reaction occurred. The crosscoupling reaction was also carried out using a microwave reactor available from CEM at 25 W for 20 min which afforded a 60% yield of the coupled product (method C). Both electron-rich and electron-deficient anilines underwent efficient coupling. 2-Aminopyridine was the most efficient coupling partner giving rise to pyridone 20 in 88% yield. The use of Pd₂(dba)₃ facilitated the coupling of benzylamine, benzamide and benzyl carbamate in good yield. Similar cross-couplings were also carried out with both the 5-carbomethoxy- (12) and 5-phenylsulfonyl-substituted (14) pyridones in good yield with a variety of amines.

With an efficient method available for the synthesis of 3-anilino-substituted 2(1H)-pyridones in hand, we set out to prepare an *o*-bromo-substituted anilino derivative to use as a precursor for the Heck cyclization¹⁷ as proposed in Scheme 1. The cross-coupling reaction of 2-bromoaniline with triflate **13** proceeded smoothly affording an excellent yield of the required product **21** in 80% yield. Similar results were obtained with the carbomethoxy-substituted pyridone-triflate **12**. Construction of the β -carbolinone system was next investigated using these readily available pyridones. Indeed, it was found that treatment of both compounds **21** and **25** with 10 mol % Pd(PPh₃)₄ and 1.2 equiv of Cs₂CO₃ in dioxane

at 110 °C gave the desired β -carbolinones **26** and **27** in 65% unoptimized yield (Scheme 3).

In summary, we have shown that the β -carbolinone ring system can be rapidly assembled by (i) a Rh(II)-promoted [3 + 2]-cycloaddition of a phenylsulfonyl-stabilized isomünchnone intermediate, (ii) conversion of the resulting 3-hydroxy-2(1*H*)-pyridone into the corresponding triflate, (iii) a Pd(0)-catalyzed C–N amination reaction, and (iv) a Pd-(0)-catalyzed intramolecular Heck reaction. Further utilization of this methodology for the construction of β -carbolinone natural products and bicyclic peptide mimics is under current investigation and will be reported in due course.

Acknowledgment. We appreciate the financial support provided by the National Science Foundation (Grant No. CHE-0132651) and the National Institutes of Health (GM 059384).

Supporting Information Available: Spectroscopic data and experimental details for the preparation of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0356338

^{(17) (}a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989. (b) De Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379.
(c) Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265. Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H. Synthesis 1990, 215.