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ABSTRACT: A visible light-promoted difluoroalkylation reaction of arenes or heterocycles using 

triaryl phosphine as the catalyst and difluoroalkyl iodide as the alkylating agent is presented. 

The strategy is highlighted by photocatalyst-free, mild reaction conditions, and broad substrate 

scope. Mechanistic experiments indicate that this reaction involves a radical-chain process that 

is initiated by an EDA complex formed from difluoroalkyl iodide and phosphine.

INTRODUCTION

Fluoroalkanes are highly valuable compounds possessing wide applications in pharmaceuticals 

industry, medicinal chemistry, and materials science.1 More specifically, the gem-difluoromethyl 

group (CF2) is chemically unique with physicochemical properties distinct from other 

monofluoro or trifluoro-containing congeners, and is being more and more commonly used as 
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bioisosteres of alcohols, amines or ketones with potentials to improve liver microsome stability 

and cellular permeability.2 In the past decade, strategies for direct introduction of difluoroalkyl 

groups have received increasing attention.3 Their transition metal-catalyzed difluoroalkylation 

of aromatic rings or alkenes has been well-established through a nucleophilic,4 electrophilic,5 

radical,6 or metal−difluorocarbene pathway (Scheme 1a).7 Simultaneously, the visible-light-

promoted difluoroalkylation reactions were regarded as a powerful addition for synthesis of 

difluoroalkylated skeletons.8 Early in 2011, Stephenson’s group8a reported a radical addition 

reaction of ethyl bromodifluoroacetate with olefins using a metal-photoredox catalyst. Later, 

organic photocatalysts such as eosin Y,8f perylene8k and [Mes-Acr]ClO4
8l were employed in the 

difluoroalkylation reactions. Recently, light- or thermo-sensitive electron donor-acceptor (EDA) 

complexes have been widely applied in organic synthesis due to the simplicity.9 The formation 

of these EDA complexes generally depends on pseudo-electrostatic interactions between 

electron donor and acceptor substrates.9a Perfluoroalkyl iodides Rf–I, as a good electron acceptor, 

could form intermolecular electrostatic interactions between σ* antibonding orbital of the C–I 

bond and lone pairs of electron-rich atoms (carbanion, nitrogen or oxygen atoms).9f 

Accordingly, several applications have been reported for the visible light induced generation of 

perfluoroalkyl radicals through EDA complexes.10 The Yu’s10e and Chen’s10g groups respectively 

reported a halogen bond induced radical addition reaction of iodoperfluoroalkylene with 

isocyanide or alkenes, which halogen bonds were caused from nitrogen or phosphorus atoms. 

He et al.10l has recently reported substrate-promoted perfluoroalkylation of uracils and cytosines 

without catalyst in visible-light irradiation. Further, the Melchiorre’s group developed substrate-

induced perfluoroalkylation reactions, which perfluoroalkyl radical (Rf•) was generated from 

EDA complexes formed from perfluoroalkyl iodide and α-cyano arylacetates10a or cyclic β-

ketoester10d under blue light irradiation (Scheme 1b).

Scheme 1. Visible light-promoted fluoroalkylation
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Meanwhile, organophosphines are widely used as ligands due to their electron-donating ability 

in transition metal catalyzed reactions. Recently, several groups reported the use of triaryl 

phosphines as single-electronic transfer (SET) medium in visible light-promoted 

transformations.11 Sparkled by these pioneering works, we herein report on the application of 

triarylphosphine as electron donor of EDA complexes in a photocatalytic system to generate 

gem-difluoroalkyl radicals from the commonly used 2,2-difluoro-2-iodoacetate substrates. This 

protocol readily facilitated visible light-promoted gem-difluoroalkylation of inactivated arenes 

and heterocycles with broad substrate scope (Scheme 1c).

During the completion of our work, The Czekelius group10o reported a similar work for the 

photomediated radical addition reaction of alkenes with perfluoroalkyl iodides. Meanwhile, He’s 

group10n reported a Heck-type difluoroalkylation or bisfunctionalization of alkenes with 

iododifluoroacetate. In their work, they used a phosphine/base (DPPM/DMPU) system through 

thermal initiation or phosohine (tri-tert-butylphosphine) system via photo initiation to realize 

fluoroalkylation of alkenes, which is similar to ours (P(4-CF3Ph)3/K2CO3) via visible light 

irradiation to realize difluoroalkylation of arene or heteroarenes.

RESULTS AND DISCUSSION 

Table 1. Optimization of Conditionsa
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H
I

F F
OEt

O PAr3. (0.25 eq.)
base. (2.0 eq.)

solvent, r.t.,
Ar, 24 h.
Blue LEDs

2a, (1.0 eq.)

OMe

OMe

MeO

CF2CO2Et

OMe

OMe

MeO

1a, (2.0 eq.) 3

entry catalyst base solvent yield, %b

1 PPh3 KOAc DCM 48

2 PPh3 KOAc DMSO 54

3 PPh3 KOAc DMF 63

4 PPh3 KOAc MeCN 65

5 PPh3 KOAc MeOH 24

6 P(C6F5)3 KOAc MeCN –

7 P(4-OMePh)3 KOAc MeCN 52

8 P(4-CF3Ph)3 KOAc MeCN 85

9 P(4-CF3Ph)3 K3PO4 MeCN 76

10 P(4-CF3Ph)3 K2CO3 MeCN 90

11 P(4-CF3Ph)3 Cs2CO3 MeCN 65

12 P(4-CF3Ph)3 DABCO MeCN 71

13c P(4-CF3Ph)3 K2CO3 MeCN 88

14d P(4-CF3Ph)3 K2CO3 MeCN 97

15d – K2CO3 MeCN –

16d P(4-CF3Ph)3 – MeCN –

17d,e P(4-CF3Ph)3 K2CO3 MeCN –

18d,f P(4-CF3Ph)3 K2CO3 MeCN –

19d,g P(4-CF3Ph)3 K2CO3 MeCN 63
aReaction condition: 1a (0.2 mmol), 2a (0.1 mmol), base (0.2 mmol), 

catalyst (0.025 mmol), solvent (1.0 mL), 24 h, Ar, 16W Blue LED. bYields 

are determined by GC-MS using dodecane as internal standard. cN,N'-

Dimethyl-N,N'-trimethyleneurea (DMPU, 0.01 mmol) as additive. 
dsolvent (0.5 mL). edark.  fdark, 80 oC. gReaction carried out under air. 

To initiate the reaction, we chose 1,3,5-trimethoxybenzene (1a) and ethyl iododifluoroacetate 

(2a) to establish optimal conditions. As shown in Table 1, the reaction was performed using 25 

mol% of PPh3 as the catalyst and KOAc (2.0 equiv.) as the base in DCM under irradiation of 16W 

blue LED light strips, and the product 3a was obtained in 48% yield (Table 1, entry 1). Then, 

several solvents were screened. To our delight, the yield of 3a was increased to 65% by using 

acetonitrile as the solvent (Table 1, entry 4). The reaction was also conducted with different 

triarylphosphines (Table 1, entries 6-8), and the yield of 3a was improved to 85% when P(4-

CF3Ph)3 was used as the catalyst (entry 8). Subsequently, we screened several inorganic bases 

(entries 9-12), and found K2CO3 to be the optimal giving product 3a in 90% yield (entry 10). 
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Moreover, when N,N'-Dimethyl-N,N'-trimethyleneurea (DMPU) was used as the additive, the 

yield of 3a had no changed. Further, we surveyed the concentration of the reaction, and found 

that the yield of 3a was increased to 97% when 0.5 mL of MeCN (0.2 M) was used (Table 1, entry 

14). Product 3a was not detected in the absence of either phosphine (Table 1, entry 15), base 

(Table 1, entry 16) or light irradiation (Table 1, entry 17). In addition, the reaction did not proceed 

under traditional heating in oil bath (Table 1, entry 18), thus excluding the possibility of thermal 

initiation. Moreover, decreased yield was observed when the reaction was conducted in the air 

atmosphere (Table 1, entry 19). Collectively, the condition in entry 14 was selected as the optimal 

and standard reaction condition in this protocol.

Scheme 2. Substrate Scope of gem-Difluoromethylationa
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aReaction condition: 1 (0.4 mmol), 2a (0.2 mmol), P(4-CF3Ph)3 (0.05 mmol), K2CO3 (0.4 mmol), 

in degassed MeCN (1 mL), were irradiated with 16 W blue LED at r. t. for 24 h. Yields of isolated 

product are given. b36 h. c1 (0.2 mmol), 2a (0.4 mmol). d Yields in 1.0 mmol scale. eDMF instead 

of MeCN.

To explore the scope of the gem-difluoromythylation reaction, various arenes were applied as 

the substrate and the results are summarized in Scheme 2. Substrates 1,3,5-trimethoxybenzene 

and mesitylene, bearing electron-rich substituents reacted with 2a in a good to excellent yields. 

High positional selectivity was observed for naphthalene as the substrate delivering product 3c 

with difluoroalkylation preferentially occurring at the α-position (α/β=14/1, determined by 19F 

NMR). In addition, halogens, such as chloro and iodo, or borate substituted substrates were 

compatible as well, affording the corresponding products 3e-h in moderate yields with potential 

for further functional transformation. Interestingly, lactamization products 3i and 3j were 

obtained in 71% and 80% yields, respectively from aniline substrates, thus providing an easy 

access for 3,3-difluoroindolin-2-ones. To expand the utility of this strategy, we turned our 

attention to diverse heterocycles as substrates (Scheme 2). Under the standard reaction 

conditions, 3-substituted benzoheterocycles such as indole, benzothiophene and benzofuran 

were readily transformed to the corresponding products 3k-n in 55-76% yields. Meanwhile, 

pyridine, 4H-pyran-4-one, and pyrimidine-dione are also suitable substrates, leading to the 

corresponding products 3o-q in 74-81% yields. In addition, 6-phenylpyridazin-3(2H)-one, the 

anti-inflammatory xanthotoxin, and the essential amino acid tryptophan all participated in the 

reaction as well, providing corresponding products 3r-t in 47-75% yields with difluoroalkylation 

preferentially occurring at the electron-rich position. Appealingly, the more reactive 2-

deoxyuridines, derived from antiviral drug trifluridine (TFT)12 also well survived from the 

reaction conditions without additional protection, and the corresponding difluoroalkylated 

products 3u and 3v were generated in 53% and 59% yields, respectively. To test the synthetic 

scalability of our protocol, the reaction of 1,3-dimethyluracil 1q with 2a was conducted at 1 mmol 

scale, and the uracil difluoroacetate 3q was obtained in 72% isolated yield. Unfortunately,  

simple and monosubstituted benzenes or non-substituted heterocyclic are not suitable for this 

method leading to low yields and poor regioselectivity.
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Scheme 3. Reactions of Dimethyluracil with Diverse gem-Difluoroalkanes a

N

N

O

O

S

FF

OO
N

N

O

O

FF

O N

N

O

O

FF

O
S

N

N

O

O

FF

O

N

N

O

O

FF

O

N

N

O

O

FF

O
N

N

O

O

FF

O

NN N
H

N
H

O

N

N

O

O

FF

P
O

O
O

I

F F

P(4-CF3Ph)3 (0.25 eq.)
K2CO3 (2.0 eq.)

MeCN (0.2M), r.t.
Blue LEDs, Ar, 36 h

R

FF

R

1 42

4a, 75% 4b, 85% 4c, 80% 4db, 54%

4eb, 61% 4f, 72% 4g, 52% 4h, 77%

N

N OMeMeO

HN
N

O
F

P
F

O
O O

F F

O
S

F F

O O

4i, 77% 4j, 70% 4k, 64%

H

aReaction condition: 1q (0.4 mmol), 2 (0.2 mmol), P(4-CF3Ph)3 (0.05 mmol), K2CO3 (0.4 mmol), 

MeCN (1 mL), 24h, Ar, Blue LEDs. Yields of isolated product are given. b0.2 mmol K2CO3.

As shown in Scheme 3, with 1,3-dimethyluracil 1q as the substrate, a class of diverse 

iododifluoroalkanes were tested under the standard condition. Notably, 

difluoroiodomethylphosphonate and various difluoro-2-iodoacetamides reacted with 1q 

smoothly, providing corresponding products 4a-e in 54-85% yields. 

Iododifluorophenylethanone, 2-(2,2-diofluoro-2-idio acetyl)thiophenen, as well as 

(difluoroiodomethyl)sulfonylbenzene are also suitable difluoromethylation reagents, affording 

corresponding products 4f-h in 52-77% yields. In addition, we have also explored several 

iododifluoroalkanes reagents with other substrates, to our delight, three different heterocycles 

worked smoothly and gave the products 4i-k in 64–77% yields. In a control reaction, the 

difluoroalkylation of 1,3-dimethyluracil 1q in Scheme 3 did not occur without phosphine catalyst, 

indicating the necessity of P-catalyst in our protocol.

In the meantime, several mechanistic experiments were performed. First, two alkyl-radical 

trapping reagent (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and 1,1-diphenylethylene were 

used to catch electron-withdrawing gem-difluoroalkyl radical. The adduct TEMPO-CF2CO2Et 

was detected by gas chromatography-mass spectrometer (Scheme 4a). Meanwhile, 

difluoroacetate-trapped product of 1,1-diphenylethylene was separated and structurally 
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confirmed through NMR analysis (see SI Scheme S2). Further, in the UV/Vis absorption study, 

treatment of difluoroalkyl iodide 2a with the P(4-CF3Ph)3 induced new absorption bands in the 

visible region (Scheme 4b), suggesting the possible formation of an EDA complex. In addition, 

the 1:1 molar ratio between 2a and P(4-CF3Ph)3 in the EDA complex was established using Job’s 

method13a with 19F NMR spectroscopy, in which maximal chemical shift difference appeared at 

50% molar fraction of difluoroalkyl iodide 2a (Scheme 4c). Meanwhile, the equilibrium constant 

KEDA (KEDA = 9.22) was calculated using the Benesi−Hildebrand method (see SI Figure S4). 13b 

These results suggest the formation of EDA complex between 2a and P(4-CF3Ph)3. Finally, on 

the basis of Glorius’s method,13c we calculated the quantum yield of the reaction (Φ = 2.4), 

indicating a chain propagation mechanism. Meanwhile, the reaction was found to continue to 

proceed when light was turned off, but with a slower rate, confirming the necessity of constant 

irradiation for completion of this reaction (Scheme 4d).14

Scheme 4. Mechanistic Investigation

Page 8 of 25

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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(b) Optical absorption spectra of reaction components.

(c) Job's plot between 2a and P(4-CF3Ph)3.

(d) Light/dark experiments for the model reaction
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(a) Trapping experiment

Based on the results above, a conceivable mechanism is proposed in Scheme 5. First, an EDA 

complex A, is assembled from iododifluoroacetate 2 and phosphine, which then undergoes 

visible light irradiation to generate difluoroalkyl radical ( • CF2R) and the intermediate B. 

Subsequently, the difluoroalkyl radical is captured by arenes or heteroarenes to afford aryl 

radical species C. Aryl cation D is then formed through two possible paths: (a) via a SET 

oxidation by intermediate B to recover phosphine catalyst; (b) via a radical exchange with RCF2I 
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(2) to generate difluoromethyl radical, which then enters the radical chain process. The final 

products 3 or 4 are obtained by deprotonation with a base. 

CONCLUSIONS

In summary, we describe a mild and efficacious strategy for direct gem-difluoromethylation 

of unactivated arenes and heterocycles with iododifluoroalkanes by a radical-chain mechanism 

through visible light-promoted phosphine catalysis. A broad range of substrates and diverse 

iododifluoroalkanes are well tolerant, facilitating a series of high value gem-difluoroalkanes, 

including several pharmaceutical agents.

Scheme 5. Proposed Reaction Mechanism
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Experimental Section

 All reactions performed in flame-dried glassware, including sealed tubes or Schlenck tubes. 

Liquids and solutions were transferred with syringes. All solvents and chemical reagents were 

obtained from commercial sources and used without further purifications. 1H, and 13C NMR 

spectra were recorded with tetramethylsilane as an internal reference. Low and high-resolution 

mass spectra were recorded on EI-TOF (electrospray ionization-time of flight). Flash column 

chromatography on silica gel (200 - 300 mesh) or RP-C18. The column output was monitored by 

TLC on silica gel (100 - 200 mesh) precoated on glass plates (15 x 50 mm), and spots were 

visualized by UV light at 254 nM. Commercially available chemicals were obtained from Acros 
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Organics, Strem Chemicals, Alfa Aesar, Adamas-beta, J&K. UV-Vis spectrum was measured by 

Shimadzu UV-2600 with pure MeCN as blank sample. The difluoroalkylation reagents 215-19 were 

prepared according to corresponding literature procedures. All reactions were conducted under 

blue light bands (Blue sky lighting, 5050 types, 60 LEDs/m, 16W, wavelength range: 420 nm–500 

nm). Unless otherwise stated all difluoroalkylation reactions were conducted inside 4 ml screw 

neck glass vials with a septa screw cap.

General procedures for synthesis of compounds 3 and 4. To a dried 4 mL of colorless 

glass bottle equipped with magnetic stirring bar, aromatic substrate (0.4 mmol, 2.0 equiv.), 

P(4CF3-Ph)3 (0.05 mmol, 22.3 mg, 0.25 equiv.) and K2CO3 (0.4 mmol, 55.2 mg, 2.0 equiv.) were 

added. The rubber septum was capped, evacuated briefly under high vacuum and charged with 

Ar balloon (5 times). Degassed MeCN (1.0 mL) or DMF (1.0 mL) and iododifluoroacetate 

(0.2mmol, 30 μL, 1.0 equiv.) were added by syringe. The bottle was placed at a distance of 1 cm 

from the 16W blue LEDs. After 24 h or 36 h, the reaction mixture was filtered and the filtrate was 

concentrated. The residue was purified on a preparative TLC with petroleum ether/ethyl acetate 

as the eluent to afford products 3 or 4.

For scale-up synthesis of 3q at 1 mmol: To a dried 25 mL of Schlenk tube was charged 

with magnetic stirring bar, 1, 3-dimethyluracil (2.0 mmol, 280.0 mg, 2.0 equiv.), P(4CF3-Ph)3 

(0.25 mmol, 111.5 mg, 0.25 equiv.) and K2CO3 (2.0 mmol, 276.0 mg, 2.0 equiv.) were added. The 

rubber septum was capped, evacuated briefly under high vacuum and charged with Ar balloon 

(5 times). Then, degassed MeCN (5.0 mL) and ethyl iododifluoroacetate (1.0 mmol, 150 μL, 1.0 

equiv.) were added by syringe. The bottle was placed at a distance of 1 cm from the 16W blue 

LEDs. After 36 h, the reaction mixture was filtered and the filtrate was concentrated. The residue 

was purified by a flash silica gel column chromatography to give product 3q as a light yellow 

solid (189 mg, 72% yield).

Ethyl 2,2-difluoro-2-(2,4,6-trimethoxyphenyl)acetate (3a) The product (57.5 mg, 97% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 8:1) as 

colorless oil. Known compound.19 1H NMR (400 MHz, CDCl3) δ 6.12 (s, 2H), 4.32 (q, J = 7.2 Hz, 

2H), 3.82 (s, 3H), 3.79 (s, 6H), 1.33 (t, J = 7.1 Hz, 3H). 19F NMR (376 MHz, CDCl3) δ -96.3 (s). 
13C{1H} NMR (151 MHz, CDCl3) δ 164.8 (t, J = 33.4 Hz), 164.5, 163.2, 160.1 (t, J = 2.6 Hz), 113.3 (t, J = 
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248.0 Hz), 102.7 (t, J = 24.2 Hz), 91.3, 62.3, 56.1, 55.3, 14.0. EI-MS (m/z) 290 (M+); HRMS (EI): m/z 

[M+] calcd for C13H16F2O5, 290.0960. found, 290.0960.

Ethyl 2,2-difluoro-2-mesitylacetate (3b) The product (35.3 mg, 73% yield) was obtained 

through silica gel chromatography (Petroleum ether/Ethyl acetate = 30:1) as colorless liquid. 

Known compound.19 1H NMR (400 MHz, CDCl3) δ 6.87 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 2.43 (t, J = 

4.3 Hz, 6H), 2.28 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -98.6 (q, J = 4.4 

Hz). 13C{1H} NMR (151 MHz, CDCl3) δ 164.5 (t, J = 35.6 Hz), 139.9, 137.5 (t, J = 3.2 Hz), 131.0, 126.8 

(t, J = 22.5 Hz), 116.2 (t, J = 253.3 Hz), 62.9, 21.5 (t, J = 20.9 Hz), 20.7, 13.8. EI-MS (m/z) 242 (M+); 

HRMS (EI): m/z [M+] calcd for C13H16F2O2, 242.1112 found, 242.1113.

Ethyl 2,2-difluoro-2-(naphthalen-1-yl)acetate (3c)  The product (21.0 mg, 42% yield) was 

obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 30:1) as white 

solid. Known compound.19 mp 74-75 oC. 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.3 Hz, 1H), 

7.98 (d, J = 8.3 Hz, 1H), 7.93 – 7.86 (m, 2H), 7.60 – 7.51 (m, 3H), 4.29 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 

7.1 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -100.0 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 164.4 (t, J = 

34.9 Hz), 133.8, 131.9, 129.3 (t, J = 2.3 Hz), 128.8, 128.4 (t, J = 23.1 Hz), 127.3, 126.3, 124.9 (t, J = 9.5 

Hz), 124.5, 124.2 (t, J = 2.9 Hz), 114.3 (t, J = 251.2 Hz), 63.2, 13.8. EI-MS (m/z) 250 (M+); HRMS 

(EI): m/z [M+] calcd for C14H12F2O2, 250.0800. found, 250.0800.

Ethyl 2-(2,5-dimethoxyphenyl)-2,2-difluoroacetate (3d) The product (33.8 mg, 65% yield) was 

obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as colorless 

liquid. Known compound.19 1H NMR (400 MHz, CDCl3) δ 7.20 (d, J = 3.0 Hz, 1H), 6.98 (dd, J = 9.0 

Hz and 3.0 Hz, 1H), 6.87 (d, J = 9.0 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.76 (s, 3H), 1.30 

(t, J = 7.1 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -102.4 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 163.9 

(t, J = 33.8 Hz), 153.5, 150.7 (t, J = 5.0 Hz), 122.7 (t, J = 24.1 Hz), 117.4, 112.8, 112.0 (t, J = 7.7 Hz), 111.8 

(t, J = 249.4 Hz), 62.7, 56.3, 55.8, 13.9. EI-MS (m/z) 260 (M+); HRMS (EI): m/z [M+] calcd for 

C12H14F2O4, 260.0856. found, 260.0855.

Ethyl 2-(5-chloro-2-methoxyphenyl)-2,2-difluoroacetate (3e) The product (27.5 mg, 52% 

yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as 

colorless oil. Known compound.19 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 2.5 Hz, 1H), 7.41 (dd, J 

= 8.8 Hz and 2.5 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.30 (t, J = 

7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -103.1 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 163.4 (t, J = 

33.7 Hz), 155.3 (t, J = 4.8 Hz), 132.0, 126.6 (t, J = 7.9 Hz), 125.8, 123.4 (t, J = 24.3 Hz), 112.7, 111.4 (t, J 
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= 249.7 Hz), 62.8, 56.0, 13.9. EI-MS (m/z) 264 (M+); HRMS (EI): m/z [M+] calcd for C11H11ClF2O3, 

264.0363. found, 264.0359.

Ethyl 2,2-difluoro-2-(5-iodo-2-methoxyphenyl)acetate (3f) The product (30.5 mg, 43% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as 

colorless oily liquid. Known compound.19 1H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 2.1 Hz, 1H), 

7.74 (dd, J = 8.7, 1.8 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.30 (t, J = 

7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -103.1 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 163.5 (t, J = 

33.6 Hz), 156.6 (t, J = 4.8 Hz), 141.0, 135.0 (t, J = 6.5 Hz), 124.1 (t, J = 24.3 Hz), 113.6, 111.2 (t, J = 249.7 

Hz), 82.3, 62.8, 55.9, 13.9. EI-MS (m/z) 356 (M+); HRMS (EI): m/z [M+] calcd for C11H11F2IO3, 

355.9713. found, 355.9716.

Ethyl 2,2-difluoro-2-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate 

(3g) The product (27.0 mg, 38% yield) was obtained through silica gel chromatography 

(Petroleum ether/Ethyl acetate = 10:1) as colorless oily liquid. 1H NMR (400 MHz, CDCl3) δ 8.10 

(s, 1H), 7.91 (d, J = 8.2 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 1.34 (s, 

12H), 1.28 (t, J = 7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -102.7 (s). 13C{1H} NMR (151 MHz, 

CDCl3) δ 164.1 (t, J = 33.9 Hz), 159.1 (t, J = 4.8 Hz), 139.3, 132.9 (t, J = 7.0 Hz), 121.4 (t, J = 24.2 Hz), 

112.3 (t, J = 248.4 Hz), 110.5, 83.9, 62.6, 55.6, 24.8, 13.9. EI-MS (m/z) 356 (M+); HRMS (EI): m/z 

[M+] calcd for C17H23BF2O5, 356.1602. found, 356.1601.

Ethyl 2-(2-chloro-5-(methylthio)phenyl)-2,2-difluoroacetate (3h-1) The product (28.3 mg, 48% 

yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as 

colorless oily liquid. 1H NMR (400 MHz, CDCl3) δ 7.58 (s, 1H), 7.33 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 

10.0 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 2.51 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).  19F NMR (471 MHz, 

CDCl3) δ -102.6 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 162.9 (t, J = 33.7 Hz), 138.4, 131.5 (t, J = 24.2 

Hz), 130.8, 129.6, 128.1 (t, J = 4.1 Hz), 124.8 (t, J = 8.8 Hz), 112.0 (t, J = 251.5 Hz), 63.4, 15.7, 13.8. EI-

MS (m/z) 280 (M+); HRMS (EI): m/z [M+] calcd for C11H11ClF2O2S, 280.0131. found, 280.0131.

Ethyl 2-(5-chloro-2-(methylthio)phenyl)-2,2-difluoroacetate (3h-2) The product (9.0 mg, 16% 

yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as 

colorless oily liquid. 1H NMR (400 MHz, CDCl3) δ 7.69 – 7.65 (m, 1H), 7.46 – 7.37 (m, 2H), 4.35 

(q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -102.6 (s). 
13C{1H} NMR (151 MHz, CDCl3) δ 163.3 (t, J = 33.7 Hz), 135.2 (t, J = 3.7 Hz), 134.9 (t, J = 23.5 Hz), 

132.7, 132.3, 131.3, 126.6 (t, J = 9.3 Hz), 112.2 (t, J =251.5 Hz), 63.2, 18.6, 13.8. EI-MS (m/z) 280 (M+); 

HRMS (EI): m/z [M+] calcd for C11H11ClF2O2S, 280.0131. found, 280.0133.
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5-(tert-Butyl)-3,3-difluoroindolin-2-one (3i) The product (32.0 mg, 71% yield) was obtained 

through silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as light yellow solid. mp 

87-88 oC. 1H NMR (400 MHz, CDCl3) δ 9.06 (s, 1H), 7.57 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 6.98 – 

6.89 (m, 1H), 1.32 (s, 9H).  19F NMR (471 MHz, CDCl3) δ -111.6 (s). 13C{1H} NMR (126 MHz, CDCl3) 

δ 167.7 (t, J = 30.4 Hz), 147.5, 138.6 (t, J = 7.3 Hz), 130.5, 121.9, 119.9 (t, J = 22.9 Hz), 111.1, 34.6, 31.3. 

EI-MS (m/z) 225 (M+); HRMS (EI): m/z [M+] calcd for C12H13F2NO, 225.0965. found, 225.0971.

3,3-Difluoro-1,5-dimethylindolin-2-one (3j) The product (31.5 mg, 80% yield) was obtained 

through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as light yellow liquid. 

Known compound.20 1H NMR (400 MHz, CDCl3) δ 7.35(s, 1H), 7.31 – 7.27 (d, J = 7.6Hz, 1H), 6.78 

(d, J = 7.6Hz, 1H), 3.19 (s, 3H), 2.36 (s, 3H).  19F NMR (471 MHz, CDCl3) δ -112.2 (s). 13C{1H} NMR 

(126 MHz, CDCl3) δ 165.3 (t, J = 30.4 Hz), 141.5 (t, J = 7.0 Hz), 133.8, 133.7, 125.2, 120.0 (t, J = 22.9 

Hz), 111.1 (t, J = 249.8 Hz), 109.2, 26.3, 20.9. EI-MS (m/z) 197 (M+); HRMS (EI): m/z [M+] calcd for 

C10H9F2NO, 197.0645. found, 197.0647.

Ethyl 2,2-difluoro-2-(3-methyl-1H-indol-2-yl)acetate (3k) The product (34.4 mg, 68% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 30:1) as yellow 

oil. Known compound.21 1H NMR (400 MHz, CDCl3) δ 8.50 – 8.32 (m, 1H), 7.63 (d, J = 8.0 Hz, 1H), 

7.38 (dt, J = 8.3, 1.0 Hz, 1H), 7.30 (m, 1H), 7.18 (m, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.44 (t, J = 2.3 Hz, 

3H), 1.35 (t, J = 7.2 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -101.46 (s). 13C{1H} NMR (126 MHz, 

CDCl3) 163.45 (t, J =35.9 Hz), 135.51, 128.50, 124.21, 123.32 (t, J = 29.7 Hz), 120.03, 119.72, 113.81 (t, J = 

3.6 Hz), 111.45, 111.39 (t, J = 251.4 Hz), 63.46, 13.88, 8.44. EI-MS (m/z) 253 (M+); HRMS (EI): m/z 

[M+] calcd for C13H13F2NO2, 253.0906. found, 253.0909.

Ethyl 2-(1,3-dimethyl-1H-indol-2-yl)-2,2-difluoroacetate (3l) The product (40.6mg, 76% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as 

colorless oily liquid. Known compound.21 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.0 Hz, 1H), 

7.37 – 7.32 (m, 2H), 7.18 (dq, J = 7.9 Hz, 4.4 Hz and 3.8 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.85 (d, J = 

1.4 Hz, 3H), 2.46 (t, J = 3.1 Hz, 3H), 1.34 (td, J = 7.2 Hz and 0.9 Hz, 3H).  19F NMR (471 MHz, 

CDCl3) δ -98.1 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 163.6 (t, J = 36.0 Hz), 138.0, 127.5, 124.7 (t, J = 

28.6 Hz), 124.0, 119.8, 119.6, 114.2 (t, J = 3.8 Hz), 112.3 (t, J = 251.8 Hz), 109.5, 63.4, 31.4 (t, J = 4.3 

Hz), 13.9, 8.9 (t, J = 2.7Hz). EI-MS (m/z) 267 (M+); HRMS (EI): m/z [M+] calcd for C14H15F2NO2, 

267.1065. found, 267.1065.

Ethyl 2,2-difluoro-2-(3-methylbenzofuran-2-yl)acetate (3m) The product (31.0mg, 61% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as 
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colorless oily liquid. Known compound.21 1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 7.5 Hz and 1.1 

Hz, 1H), 7.49 (dt, J = 8.3 Hz and 0.9 Hz, 1H), 7.39 (m, 1H), 7.31 (m, 1H), 4.39 (q, J = 7.2 Hz, 2H), 

2.42 (t, J = 2.6 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -103.4 (s). 13C{1H} 

NMR (126 MHz, CDCl3) δ 162.5 (t, J = 34.1 Hz), 154.2, 141.0 (t, J = 32.6 Hz), 128.9, 126.3, 123.1, 118.0, 

112.3 (t, J = 250.1 Hz), 110.3, 108.4, 63.6, 13.9, 7.7. EI-MS (m/z) 254 (M+); HRMS (EI): m/z [M+] 

calcd for C13H12F2O3, 254.0746. found, 254.0749.

Ethyl 2,2-difluoro-2-(3-methylbenzo[b]thiophen-2-yl)acetate (3n) The product (29.7 mg, 55% 

yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as 

colorless oily liquid. Known compound.21 1H NMR (400 MHz, CDCl3) δ 7.88 – 7.82 (m, 1H), 7.80 – 

7.74 (m, 1H), 7.47 – 7.41 (m, 2H), 4.34 (q, J = 7.2 Hz, 2H), 2.53 (t, J = 2.1 Hz, 3H), 1.33 (t, J = 7.1 Hz, 

3H).  19F NMR (471 MHz, CDCl3) δ -94.4 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 163.2 (t, J = 35.7 

Hz), 140.1, 138.9, 133.9 (t, J = 4.8 Hz), 128.1 (t, J = 28.4 Hz), 126.0, 124.5, 122.7, 122.5, 112.6 (t, J = 

252.7 Hz), 63.5, 13.9, 12.0. EI-MS (m/z) 270 (M+); HRMS (EI): m/z [M+] calcd for C13H12F2O2S, 

270.0526. found, 270.0522.

Ethyl 2-(2,6-dimethoxypyridin-3-yl)-2,2-difluoroacetate (3o) The product (38.6mg, 74% yield) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as 

colorless oily liquid. 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.3 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 

4.33 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H).  19F NMR (376 MHz, 

CDCl3) δ -101.6 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 164.8, 163.8 (t, J = 34.5 Hz), 159.7 (t, J = 5.2 

Hz), 138.3 (t, J = 6.2 Hz), 112.2 (t, J = 248.4 Hz), 107.2 (t, J = 26.3 Hz), 101.3, 62.8, 53.8, 53.6, 13.9. EI-

MS (m/z) 261 (M+); HRMS (EI): m/z [M+] calcd for C11H13F2NO4, 261.0812. found, 261.0807.

Ethyl 2-(2,6-dimethyl-4-oxo-4H-pyran-3-yl)-2,2-difluoroacetate (3p) The product (39.4 mg, 

80% yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 

8:1) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.13 – 6.05 (m, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.51 

(t, J = 3.4 Hz, 3H), 2.26 (d, J = 0.8 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H). 19F NMR (376 MHz, CDCl3) δ -

101.3 (q, J = 3.6 Hz). 13C{1H} NMR (126 MHz, CDCl3) δ 176.6 (t, J = 3.5 Hz), 167.3, 165.9, 162.9 (t, J = 

31.9 Hz), 119.3 (t, J = 22.4 Hz), 113.6, 112.3 (t, J = 250.2 Hz), 62.9, 19.6, 18.8 (t, J = 4.9 Hz), 13.8. EI-

MS (m/z) 246 (M+); HRMS (EI): m/z [M+] calcd for C11H12F2O4, 246.0693. found, 246.0698.

Ethyl 2-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-2,2-difluoroacetate (3q) The 

product (35.3 mg, 73% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 4:1) as light yellow solid (42.4 mg, 81% yield). Known compound.22 mp 80-

81 oC. 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.47 (s, 3H), 3.29 (s, 3H), 
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1.32 (t, J = 7.1 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -104.8 (s). 13C{1H} NMR (151 MHz, CDCl3) δ 

162.6 (t, J = 33.1 Hz), 160.3 (t, J = 4.0 Hz), 151.0, 142.7 (t, J = 8.1 Hz), 111.0 (t, J = 249.8 Hz), 106.8 (t, J 

= 25.3 Hz), 63.3, 37.6, 27.7, 13.7. EI-MS (m/z) 262 (M+); HRMS (EI): m/z [M+] calcd for 

C10H12F2N2O4, 262.0765. found, 262.0760.

Ethyl 2,2-difluoro-2-(3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)acetate (3r) The product (44.1 

mg, 75% yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate 

= 2:1) as light yellow solid. mp 191-193 oC. 1H NMR (400 MHz, CDCl3) δ 12.81 – 12.61 (s, 1H), 8.12 (d, 

J = 1.2 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.53 – 7.45 (m, 3H), 4.43 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 

3H).  19F NMR (376 MHz, CDCl3) δ -108.2 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 161.9 (t, J = 32.1 

Hz), 158.9 (t, J = 4.2 Hz), 145.6, 133.8, 133.7 (t, J = 25.1 Hz), 130.1, 129.1, 128.5 (t, J = 6.6 Hz), 126.0, 

110.0 (t, J = 251.7 Hz), 63.7, 13.8. EI-MS (m/z) 294 (M+); HRMS (EI): m/z [M+] calcd for 

C14H12F2N2O3, 294.0813. found, 294.0811.

Ethyl 2,2-difluoro-2-(9-methoxy-7-oxo-7H-furo[3,2-g]chromen-4-yl)acetate (3s) The product 

(34.5 mg, 51% yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl 

acetate = 3:1) as white solid. mp 103-104 oC. 1H NMR (500 MHz, CDCl3) δ 8.35 (d, J = 10.2 Hz, 1H), 

7.77 – 7.72 (m, 1H), 7.14 (q, J = 2.9 Hz, 1H), 6.47 (d, J = 10.1 Hz, 1H), 4.36 (s, 3H), 4.29 (q, J = 7.1 Hz, 

2H), 1.26 (t, J = 7.2 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -95.8(s). 13C{1H} NMR  (126 MHz, 

CDCl3) δ 163.5 (t, J = 35.3 Hz), 159.1, 147.4 (t, J = 2.2 Hz), 146.5, 143.5, 140.8 (t, J = 2.5 Hz), 134.8, 

125.3 (t, J = 3.9 Hz), 116.0, 114.4 (t, J = 3.1 Hz), 114.2, 113.8 (t, J = 26.7 Hz), 112.2 (t, J = 251.9 Hz), 107.2 

(t, J = 7.1 Hz), 63.8, 61.3, 13.8. EI-MS (m/z) 338 (M+); HRMS (EI): m/z [M+] calcd for C16H12F2O6, 

338.0590. found, 338.0596.

Methyl (R)-2-acetamido-3-(2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1H-indol-3-yl)propanoate (3t) 

The product (35.9 mg, 47% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 1:2) as yellow solid. mp 98-100 oC. 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 

1H), 7.70 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 

6.21 (d, J = 7.5 Hz, 1H), 4.91 (q, J = 7.2 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.68 (s, 3H), 3.38 (qd, J = 

14.4, 6.5 Hz, 2H), 1.92 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H).  19F NMR (376 MHz, CDCl3) δ -99.5 (d, J = 

267.1 Hz, 1F), -101.21 (d, J = 267.1 Hz, 1F). 13C{1H} NMR (151 MHz, CDCl3) δ 172.3, 170.0, 163.5 (t, J = 

35.6 Hz), 135.7, 127.6, 124.6, 124.4 (t, J = 30.2 Hz), 120.7, 119.8, 112.3, 111.8, 111.2 (t, J = 251.8 Hz), 63.9, 

52.8, 52.3, 26.8, 22.9, 13.8. EI-MS (m/z) 382 (M+); HRMS (EI): m/z [M+] calcd for C18H20F2N2O5, 

382.1334. found, 382.1335.
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Ethyl 2,2-difluoro-2-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-2,4-

dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetate (3u) The product (37.1 mg, 53% yield) was obtained 

through silica gel chromatography (Dichloromethane / Methanol = 20:1) as white syrup solid. 

Known compound.22 1H NMR (400 MHz, CD3OD) δ 8.69 (s, 1H), 6.27 (t, J = 6.4 Hz, 1H), 4.42 (dt, 

J = 6.1 Hz and 3.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.97 (q, J = 3.0 Hz, 1H), 3.86 – 3.72 (m, 2H), 2.99 

(s, 1H), 2.86 (s, 1H), 2.36 (m, 1H), 2.26 (dt, J = 13.5 Hz and 6.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H).  19F 

NMR (471 MHz, CD3OD) δ -104.9 (d, J = 274.4 Hz, 1F), -105.9 (d, J = 274.2 Hz, 1F). 13C{1H} NMR 

(126 MHz, CD3OD) δ 164.2 (t, J = 33.5 Hz), 162.6 (t, J = 4.2 Hz), 151.5, 142.3 (t, J = 8.1 Hz), 112.5 (t, J 

= 248.0 Hz), 108.8 (t, J = 25.5 Hz), 89.3, 87.4, 71.9, 64.3, 62.3, 42.0, 14.1. EI-MS (m/z) 351 (M+H); 

HRMS (EI): m/z [M+H] calcd for C13H16F2N2O7, 351.0926. found, 351.0923.

Ethyl 2-(1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-

1,2,3,4-tetrahydropyrimidin-5-yl)-2,2-difluoroacetate (3v) The product (43.2 mg, 59% yield) was 

obtained through silica gel chromatography (Dichloromethane/Methanol = 15:1) as white syrup 

solid. Known compound.22 1H NMR (400 MHz, CD3OD) δ 8.81 (s, 1H), 5.96 (d, J = 3.6 Hz, 1H), 

4.33 (q, J = 7.1 Hz, 2H), 4.24 (p, J = 5.0 Hz, 2H), 4.09 (dt, J = 4.3 Hz and 2.1 Hz, 1H), 3.92 (dd, J = 

12.1 Hz and 2.4 Hz, 1H), 3.78 (dd, J = 12.1 Hz and 2.1 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H).  19F NMR (471 

MHz, CD3OD) δ -105.0 (d, J = 274.5 Hz, 1F), -105.8 (d, J = 274.5 Hz, 1F). 13C{1H} NMR (126 MHz, 

CD3OD) δ 164.1 (t, J = 33.6 Hz), 162.5 (t, J = 3.5 Hz), 151.7, 142.4 (t, J = 8.0 Hz), 112.5 (t, J = 248.0 

Hz), 109.0 (t, J = 25.3 Hz), 91.3, 86.5, 76.3, 70.9, 64.3, 61.5, 49.0, 14.1. EI-MS (m/z) 367 (M+H); 

HRMS (EI): m/z [M+H] calcd for C13H17F2N2O8, 367.0954. found, 367.0957.

Diethyl ((1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)difluoromethyl)phosphonate 

(4a) The product (48.9mg, 75% yield) was obtained through silica gel chromatography 

(Petroleum ether/Ethyl acetate = 4:1) as light yellow solid. Known compound.22 mp 72-73 oC. 1H 

NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 4.39 – 4.25 (m, 4H), 3.44 (s, 3H), 3.33 (s, 3H), 1.38 (t, J = 7.1 

Hz, 6H).  19F NMR (471 MHz, CDCl3) δ -106.6(s, 1F), -106.9 (s, 1F). 13C{1H} NMR (126 MHz, CDCl3) 

δ 159.1, 151.0, 143.9 (td, J = 10.5 Hz and 3.4 Hz), 116.6 (td, J = 265.4 Hz and 223.0 Hz), 106.0 (td, J = 

22.8 Hz and 15.2 Hz), 65.4, 65.3, 37.7, 27.9, 16.4, 16.3. EI-MS (m/z) 326 (M+); HRMS (EI): m/z 

[M+] calcd for C11H17F2N2O5P, 326.0847. found, 326.0848.

2-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-N,N-diethyl-2,2-difluoroacetamide 

(4b) The product (49.1 mg, 85% yield) was obtained through silica gel chromatography 

(Petroleum ether/Ethyl acetate = 4:1) as white solid. Known compound.22 mp 68-69 oC. 1H NMR 

(400 MHz, CDCl3) δ 7.52 (s, 1H), 3.59 (q, J = 7.1 Hz, 2H), 3.45 – 3.36 (m, 5H), 3.31 (s, 3H), 1.26 (t, J 
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= 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -100.0 (s). 13C{1H} NMR (126 

MHz, CDCl3) δ 161.5 (t, J = 29.5 Hz), 160.1 (t, J = 3.6 Hz), 151.2, 141.5 (t, J = 9.5 Hz), 115.4 (t, J = 256.8 

Hz), 108.6 (t, J = 25.3 Hz), 42.4, 42.2 (t, J = 6.4 Hz), 37.4, 27.7, 14.3, 12.1. EI-MS (m/z) 289 (M+); 

HRMS (EI): m/z [M+] calcd for C12H17F2N3O3, 289.1236. found, 289.1232.

5-(1,1-Difluoro-2-morpholino-2-oxoethyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4c) The 

product (42.4 mg, 81% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 3:1) as light yellow solid. mp 100-111 oC. 1H NMR (400 MHz, CDCl3) δ 7.53 (s, 

1H), 3.80 (d, J = 4.5 Hz, 2H), 3.72 – 3.68 (m, 4H), 3.63 (s, 2H), 3.41 (s, 3H), 3.28 (s, 3H).  19F NMR 

(471 MHz, CDCl3) δ -98.9 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 160.7 (t, J = 29.8 Hz), 160.0 (t, J = 

3.6 Hz), 151.0, 141.8 (t, J = 9.5 Hz), 115.3 (t, J = 256.4 Hz), 107.7 (t, J = 24.9 Hz), 66.5, 66.5, 46.5 (t, J 

= 6.6 Hz), 43.8, 37.4, 27.7. EI-MS (m/z) 303 (M+); HRMS (EI): m/z [M+] calcd for C12H15F2N3O4, 

303.1024. found, 303.1025.

2-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-2,2-difluoro-N-phenylacetamide 

(4d) The product (33.4 mg, 54% yield) was obtained through silica gel chromatography 

(Petroleum ether/Ethyl acetate = 2:1) as light yellow solid. mp 126-127 oC. 1H NMR (400 MHz, 

CDCl3) δ 9.00 (s, 1H), 7.75 (s, 1H), 7.59 (d, J = 8.6 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.14 (t, J = 7.4 

Hz, 1H), 3.43 (s, 3H), 3.29 (s, 3H).  19F NMR (471 MHz, CDCl3) δ -105.4 (s). 13C{1H} NMR (126 MHz, 

CDCl3) δ 160.8 (t, J = 26.1 Hz), 160.6 (t, J = 4.0 Hz), 150.8, 143.7 (t, J = 9.0 Hz), 136.3, 128.9, 125.3, 

120.2, 112.6 (t, J = 254.5 Hz), 105.8 (t, J = 26.1 Hz), 37.6, 27.9. EI-MS (m/z) 309 (M+); HRMS (EI): 

m/z [M+] calcd for C14H13F2N3O3, 309.0920. found, 309.0919.

N-Butyl-2-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-2,2-difluoroacetamide (4e) 

The product (35.2 mg, 61% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 3:1) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 6.95 (s, 1H), 

3.43 (s, 3H), 3.34 – 3.26 (m, 5H), 1.54 (p, J = 7.4 Hz, 2H), 1.35 (dq, J = 14.6, 7.3 Hz, 2H), 0.90 (t, J = 

7.3 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -106.0 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 162.9 (t, J = 

29.5 Hz), 160.2 (t, J = 3.7 Hz), 151.0, 143.3 (t, J = 9.1 Hz), 112.8 (t, J = 253.3 Hz), 106.2 (t, J = 25.9 Hz), 

39.5, 37.5, 31.0, 27.8, 19.8, 13.6. EI-MS (m/z) 289 (M+); HRMS (EI): m/z [M+] calcd for 

C12H17F2N3O3, 289.1236. found, 289.1236.

5-(1,1-Difluoro-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4f) The 

product (42.3 mg, 72% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 3:1) as light yellow solid. mp 121-122 oC. 1H NMR (400 MHz, CDCl3) δ 8.11 (d, 

J = 7.8 Hz, 2H), 7.69 (s, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 3.51 (s, 3H), 3.31 (s, 
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3H).  19F NMR (471 MHz, CDCl3) δ -99.9 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 188.4 (t, J = 31.3 

Hz), 160.3 (t, J = 3.9 Hz), 151.2, 142.5 (t, J = 8.6 Hz), 134.1, 132.5, 130.1 (t, J = 2.8 Hz), 128.6, 115.2 (t, J 

= 254.9 Hz), 107.9 (t, J = 24.9 Hz), 37.7, 27.9. EI-MS (m/z) 294 (M+); HRMS (EI): m/z [M+] calcd 

for C14H12F2N2O3, 294.0816. found, 294.0813.

5-(1,1-Difluoro-2-oxo-2-(thiophen-2-yl)ethyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4g) 

The product (31.2 mg, 52% yield) was obtained through silica gel chromatography (Petroleum 

ether/Ethyl acetate = 3:1) as light yellow solid. mp 104-105 oC. 1H NMR (400 MHz, CDCl3) δ 8.18 – 

8.14 (m, 1H), 7.82 (dd, J = 4.9Hz and 1.0 Hz, 1H), 7.69 (s, 1H), 7.24 – 7.20 (m, 1H), 3.51 (s, 3H), 3.31 

(s, 3H).  19F NMR (471 MHz, CDCl3) δ -101.4 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 181.3 (t, J = 32.2 

Hz), 160.3 (t, J = 3.9 Hz), 151.2, 142.8 (t, J = 8.6 Hz), 137.9 (t, J = 2.9 Hz), 136.6, 136.3 (t, J = 5.4 Hz), 

128.7, 114.8 (t, J = 254.6 Hz), 107.4 (t, J = 25.1 Hz), 37.7, 27.9. EI-MS (m/z) 300 (M+); HRMS (EI): 

m/z [M+] calcd for C12H10F2N2O3S, 300.0369. found, 300.0375.

5-(Difluoro(phenylsulfonyl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4h) The 

product (50.8 mg, 77%) was obtained through silica gel chromatography (Petroleum ether/Ethyl 

acetate = 3:1) as light yellow solid. mp 174-175 oC. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.7 Hz, 

2H), 7.78 (t, J = 7.5 Hz, 1H), 7.73 (s, 1H), 7.64 (t, J = 7.8 Hz, 2H), 3.52 (s, 3H), 3.35 (s, 3H).  19F NMR 

(471 MHz, CDCl3) δ -99.5 (s). 13C{1H} NMR  (126 MHz, CDCl3) δ 158.2, 150.8, 146.8 (t, J = 8.4 Hz), 

135.4, 132.5, 130.9, 129.3, 120.5 (t, J = 289.9 Hz), 100.0 (t, J = 22.5 Hz), 38.0, 28.2. EI-MS (m/z) 330 

(M+); HRMS (EI): m/z [M+] calcd for C13H12F2N2O4S, 330.0484. found, 330.0486.

Diethyl ((1,3-dimethyl-1H-indol-2-yl)difluoromethyl)phosphonate (4i) The product (50.8 mg, 

77% yield) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 4:1) 

as light yellow oil . 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 6.4 Hz, 2H), 

7.15 (m, 1H), 4.32 – 4.07 (m, 4H), 3.89 (s, 3H), 2.46 (q, J = 3.2 Hz, 3H), 1.33 (t, J = 7.1 Hz, 6H). 19F 

NMR (471 MHz, CDCl3) δ -106.5 (s, 1F), -106.7 (s, 1F). 13C{1H} NMR (126 MHz, CDCl3) δ 138.2, 

127.6, 124.6 (td, J = 25.8 Hz and 13.5 Hz), 123.7, 119.6, 119.4, 117.3 (td, J = 264.4 Hz and 226.0 Hz), 

114.6 (td, J = 7.7 Hz and 4.2 Hz), 109.5, 64.8, 64.7, 31.7, 16.4, 16.3, 9.2. EI-MS (m/z) 331 (M+); 

HRMS (EI): m/z [M+] calcd for C15H20F2NO3P, 331.1143. found, 331.1144.

4-(1,1-difluoro-2-oxo-2-phenylethyl)-6-phenylpyridazin-3(2H)-one (4j) The product (45.6 mg, 

70%) was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 3:1) as 

white solid. mp 167-168 oC. 1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 7.5 Hz, 2H), 7.81 – 7.72 (m, 

3H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 – 7.43 (m, 5H), 6.99 (d, J = 9.9 Hz, 1H). 19F NMR (471 MHz, 
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CDCl3) δ -89.8 (s). 13C{1H} NMR (126 MHz, CDCl3) δ182.11 (t, J = 29.2 Hz), 158.3, 145.6, 133.9, 133.4, 

132.2, 132.12, 131.5, 130.5, 129.3, 129.1, 128.7, 126.3, 112.9 (t, J = 270.3 Hz). EI-MS (m/z) 326 (M+); 

HRMS (EI): m/z [M+] calcd for C18H12F2N2O2, 326.0861. found, 326.0865.

3-(Difluoro(phenylsulfonyl)methyl)-2,6-dimethoxypyridine (4k) The product (42.4 mg, 64%) 

was obtained through silica gel chromatography (Petroleum ether/Ethyl acetate = 3:1) as white 

solid. mp 161-162 oC. 1H NMR (400 MHz, CDCl3) δ 8.02 – 7.93 (m, 2H), 7.79 – 7.68 (m, 2H), 7.60 

(t, J = 7.9 Hz, 2H), 6.39 (dt, J = 8.4, 1.0 Hz, 1H), 3.96 (s, 3H), 3.86 (s, 3H). 19F NMR (471 MHz, 

CDCl3) δ -98.4 (s). 13C{1H} NMR (126 MHz, CDCl3) δ 165.7, 161.5, 141.8 (t, J = 6.7 Hz), 134.9, 133.6, 

130.8, 129.5, 122.1 (t, J = 298.5 Hz), 101.9, 100.1 (t, J = 23.4 Hz), 53.9, 53.8. EI-MS (m/z) 329 (M+); 

HRMS (EI): m/z [M+] calcd for C14H13F2NO4S, 329.0533. found, 329.0540.

Ethyl 2,2-difluoro-4,4-diphenylbut-3-enoate (7) The product (38.2 mg, 63%) was obtained 

through silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as light yellow liquid. 

Known compound.9s 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.20 (m, 10H), 6.28 (t, J = 11.7 Hz, 1H), 

3.92 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H).  19F NMR (471 MHz, CDCl3) δ -90.97 (d, J = 11.8Hz). 
13C{1H} NMR (126 MHz, CDCl3) δ 163.4 (t, J = 34.0 Hz), 150.9 (t, J = 11.2 Hz), 140.4, 137.0, 129.8 (t, J 

= 1.9 Hz), 129.0, 128.5, 128.3, 127.9, 127.8, 119.4 (t, J =28.4 Hz), 112.5 (t, J = 246.2 Hz), 62.7, 13.6. EI-

MS (m/z) 302 (M+); HRMS (EI): m/z [M+] calcd for C18H16F2O2, 302.1114. found, 302.1113.
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