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ABSTRACT: A new approach has been developed to prepare
monosubstituted C1-symmetric chiral dienes Ar-MSBod from
easily accessible chiral bicyclo[2.2.2]octa-2,5-dienyltrifluorobo-
rate derivative. This alkenyl trifluoroborate was synthesized in
five steps from inexpensive (−)-carvone. This approach allows
the construction of large libraries of diversely substituted chiral
dienes via cross-coupling reactions with inexpensive and widely
available aryl halides.

Over the two past decades, the transition metal/chiral
diene catalytic systems have proved to be very powerful

for the formation of C−C bonds, thanks to their unique
reactivity and selectivity due to the strong π-accepting ability of
diene ligands.1 In 2003, Hayashi and co-workers described the
first use of chiral dienes for the Rh-catalyzed asymmetric 1,4-
addition on α,β-unsaturated ketones using disubstituted
bicyclo[2.2.1]heptadiene (nbd*) ligand (Scheme 1).2 Almost

concomitantly, Carreira’s group developed another family of
chiral dienes, the C1-symmetric monosubstituted
bicyclo[2.2.2]octa-2,5-diene-type ligands (Ar-MSBod), in Ir-
catalyzed allylic substitution.3 Since then, other chiral dienes
have been developed bearing different structural backbones,
mainly C2-symmetric bicyclo[2.2.2]octadiene type ligands, like
bod*,4 tfb*,5 and another6 developed by Hayashi’s group or a
disubstituted diene, derived from carvone, described by
Carreira and co-workers.7 Laschat and Lin also reported the
development of C2-symmetric bicyclo[3.3.0]octadienes and
their use in asymmetric catalytic reactions.8

All of those chiral dienes have been shown to be useful in
asymmetric transition-metal-catalyzed reactions, particularly in

rhodium-catalyzed asymmetric transformations.1,9 Among
these chiral dienes, the C1-symmetric Ar-MSBod ligands are
attractive not only because they have been shown to be
efficient in many rhodium-catalyzed reactions10 but also
because of their ease of synthesis starting from the cheap
and commercially available (+)- or (−)-carvone (Scheme 2).

In 2004, Carreira’s group reported the first synthesis of Ar-
MSBod ligands using a Negishi-type coupling with the triflate
derived from ketone 211 and arylzinc reagents (Scheme 2).3

Inspired by this work, we described a more general preparation
of Ar-MSBod by introducing the aryl substituent through a
palladium-catalyzed Suzuki−Miyaura cross-coupling reaction
with readily available arylboron reagents.12 However, this
approach presented some drawbacks such as the cost of the
triflating reagents, the use of large excess of aryl derivative
reagents, and sometimes low yields, particularly for introducing
bulky aryl substituents and a moderate availability of
commercial organoboron compounds.
We envisioned a reverse approach for the synthesis of Ar-

MSBod ligands, involving the cross-coupling of potassium
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Scheme 1. Some Representative Chiral Dienes

Scheme 2. New Synthetic Route for the Preparation of R-
MSBod

Letter

pubs.acs.org/OrgLettCite This: Org. Lett. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.orglett.9b01609
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

by
 B

U
FF

A
L

O
 S

T
A

T
E

 a
t 1

0:
32

:5
3:

15
1 

on
 M

ay
 2

4,
 2

01
9

fr
om

 h
ttp

s:
//p

ub
s.

ac
s.

or
g/

do
i/1

0.
10

21
/a

cs
.o

rg
le

tt.
9b

01
60

9.

pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b01609
http://dx.doi.org/10.1021/acs.orglett.9b01609


alkenyl trifluoroborate 1 with aryl halides (Scheme 2). Interest
in potassium organotrifluoroborates lies in their high stability,
easy purification, and good reactivity in palladium-catalyzed
cross-coupling reactions.13 Another advantage of this reverse
approach comes from the great diversity and availability of aryl
halides, allowing a fast access to larger libraries of
monosubstituted dienes.
We report herein a facile and readily scalable synthesis of

enantiomerically pure Ar-MSBod relying on the alkenyl
trifluoroborate key derivative 1 as coupling partner with aryl
halide reagents through the Suzuki−Miyaura reaction.
We envisioned the formation of potassium alkenyl

trifluoroborate 1 via lithium−halogen exchange from the
corresponding vinyl iodine 4 (Scheme 3), which could be

prepared from readily available ketone 2. Among the few
approaches described for transforming a ketone to vinyl iodide,
the Barton iodination reaction14 is predominantly used,
although it requires the prior conversion of the ketone to
hydrazone. In the presence of iodine and a strong non-
nucleophilic base, the hydrazone is generally converted to vinyl
iodide with good yields.15

To avoid the reduction of the double bond, mild conditions
were used to convert ketone 2 to hydrazone 3, that is,
hydrazine monohydrate, in the presence of a catalytic amount
of acetic acid, which provided the expected hydrazone 3 in
72% yield after recrystallization. Hydrazone 3 was converted to
the vinyl iodide 4 by oxidation using iodine and DABCO at
room temperature in 63% yield. Vinyl iodide 4, which provides
a cheap alternative to the corresponding triflate derivative, was
successfully cross-coupled with arylboronic acids to prepare
Ar-MSBod via Suzuki−Miyaura cross-coupling.16 However,
vinyl iodide 4 proved to be quite unstable at room
temperature. which motivated the formation of potassium
organotrifluoroborate 1, affording an attractive alternative for
the formation of Ar-MSBod ligands. The potassium trifluor-
oborate derivative 1 was obtained from the vinyl iodide 4 in
75% yield via lithium−halogen exchange, transmetalation, and
fluorination. To the best of our knowledge, this is the first
example of formation of a chiral diene−BF3K. Starting from
(+)-carvone, it is possible to synthesize the other enantiomer
of this chiral alkenyl trifluoroborate.
At this stage, no single crystals suitable for X-ray analysis

could be obtained from alkenyl trifluoroborate 1, but the
structure of the corresponding boronic acid 7, obtained by
defluorination of 1 over wet silica gel,17 was unambiguously
confirmed (Scheme 4).
Formation of Ar-MSBod via Suzuki−Miyaura reaction was

then studied using the Pd-catalyzed cross-coupling between
the alkenyl trifluoroborate 1 and 4-bromoanisole (5a) as
model substrates (Table 1).

Inspired by the work of Molander’s group18 dealing with the
Suzuki−Miyaura reaction of alkenyl trifluoroborates and aryl
halides, catalytic systems, using Pd(II) sources and PPh3 as
ligand, were tried (Table 1, entries 1 and 2), using THF/water
as solvent mixture and K3PO4 as a base. However, these
conditions showed low conversions of 4-bromoanisole. More
surprisingly, a side product 6b was observed which resulted
from the exchange of one of the phenyl group of PPh3,
indicating that the reduction elimination is the rate-
determining step.19 The use of a Pd(0) precursor, Pd2dba3,
offered a better reactivity than PdCl2 favoring the formation of
the desired diene 6a (Table 1, entries 3 and 4). To avoid aryl
scrambling on the palladium center, some nonphenyl-
containing phosphine ligands were evaluated in the presence
of Pd2dba3 (Table 1, entries 5 and 6). Despite lower activity
compared to [Pd/PPh3] catalytic systems, the formation of
side product 6b was totally suppressed. Other sources of
Pd(II), such as Pd(OAc)2 and Buchwald’s precatalysts, known
for their readily activation in mild conditions,20 did not offer
better reactivity (Table 1, entries 7−9). It seems that the in
situ reduction of Pd(II) to Pd(0) is a limiting process which, in

Scheme 3. Preparation of Potassium Alkenyltrifluoroborate
1a

aKey: (a) NH2NH2·H2O (2.5 equiv), AcOH cat., EtOH, rt, 91%; (b)
I2 (2 equiv), DABCO (5 equiv), Et2O, rt, 63%; (c) n-BuLi (1.1
equiv), B(OMe)3 (1.5 equiv), THF, −78 °C to rt, then aq KHF2 (8
equiv), 75%.

Scheme 4. Preparation of Alkenylboronic Acid 7 and X-ray
Crystal Structure of 7·H2O

Table 1. Optimization of the Suzuki−Miyaura Reaction with
1a

entry [Pd] cat. ligand conv of 5ab (%) 6a/6b ratiob

1 PdCl2 PPh3 48 50:50
2 Pd(OAc)2 PPh3 32 78:22
3 Pd2dba3 PPh3 52 67:33
4c Pd2dba3 dppf 48 86:14
5c Pd2dba3 RuPhos 30 100:0
6c Pd2dba3 HPCy3BF4 43 100:0
7 RuPhos Pd G4 25 100:0
8c Pd(OAc)2 HPCy3BF4 17 100:0
9 PCy3 Pd G4 16 100:0
10d Pd2dba3 HPCy3BF4 100 100:0

aThe reaction was conducted with 1 (0.3 mmol), 5a (0.25 mmol),
[Pd] cat. (4 mol % Pd), ligand (12 mol %) and K3PO4 (0.9 mmol) in
degassed THF/H2O 10:1 at 85 °C. bDetermined by GC using
naphthalene as internal standard. c8 mol % of ligand. dPd2dba3 (8 mol
% Pd) and HPCy3BF4 (16 mol %).
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this case, forces the use of Pd(0) directly. Finally, a full
conversion of 4-bromoanisole had been obtained by increasing
the catalyst loading to 8 mol % Pd in the presence of
HPCy3BF4 as ligand (Table 1, entry 10). These reaction
conditions allowed us to isolate the desired diene 6a in 67%
yield, without any formation of other side products.
These conditions proved to be quite general, and the

reaction of diversely substituted aryl bromide reagents 5 with 1
afforded the expected Ar-MSBod 6 with moderate to good
yields (Scheme 5).
These optimized conditions are also adapted for the

coupling of aryl iodides as the reaction of 4-iodoanisole,

under identical conditions, furnished the chiral diene 6a in
71% yield. Chiral dienes 6f and 6n were also obtained from the
corresponding aryl iodide with good yields. However, cross-
coupling reaction with more interesting aryl chlorides failed.
Moreover, cross-coupling reaction with 2- and 3-substituted
electron-rich aryl bromides does afford the expected chiral Ar-
MSBod with equally good yields, while the cross-coupling of
the corresponding diene triflate with the corresponding
boronic acids was generally low yielding.3,10e−g,12 Indeed, the
yields were increased by 10 to 30% in the formation of chiral
dienes 6a, 6g, and 6j−m, and compound 6o was produced
with 77% yield, while the coupling of the corresponding diene
triflate was low yielding (11%). This represents an interesting
feature of this approach as those 2- and 3-substituted chiral
diene are generally the most effective in asymmetric rhodium-
catalyzed reactions.10 Diversely substituted heteroaryl bro-
mides were also successfully cross-coupled with 1 to afford
chiral dienes bearing dibenzo[b,d]furan (6s), quinoxaline (6t),
pyridine (6u), or quinoline (6v) substituents with good yields.
The efficiency of this approach to monosubstituted chiral
dienes was supported by a scale-up experiment. Under
standard conditions, a gram-scale reaction of 1 with 1-
bromo-4-methoxy-2-methylbenzene delivered the desired
diene 6j in 71% yield.
In conclusion, we have developed an efficient and easily

scalable method for the synthesis of Ar-MSBod chiral diene
ligands using the Suzuki−Miyaura cross-coupling reaction of
stable potassium bicyclo[2.2.2]octa-2,5-dienyltrifluoroborate
derivative 1 as key intermediate and inexpensive and widely
available aryl halides. This synthetic approach allows the
formation of a large variety of Ar-MSBod, notably the ones
substituted in the ortho positions, which could further lead to
better activity and selectivity in transition-metal/chiral diene
catalytic systems.
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Scheme 5. Chiral Ar-MSBod from Potassium
Alkenyltrifluoroborate 1a

aThe reaction was conducted with 1 (0.3 mmol), aryl bromide 5
(0.25 mmol), K3PO4 (0.9 mmol), Pd2dba3 (4 mol %), and HPCy3BF4
(16 mol %) in degassed THF/H2O 10:1 at 85 °C. Isolated yields are
indicated. b71% yield using 4-iodoanisole instead of 4-bromoanisole
and no reaction observed using 4-chloroanisole instead of 4-
bromoanisole. cReaction from the corresponding aryl iodide.
dReaction conducted with 4 mmol of 1.
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