Tetrahedron 65 (2009) 822-830

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis and characterization of benzo[c]thiophene analogs tethered with dibenzo-heterocycles as potential OLEDs

Natarajan Senthil Kumar, J. Arul Clement, Arasambattu K. Mohanakrishnan*

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India

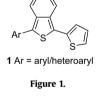
ARTICLE INFO

ABSTRACT

Article history Received 25 September 2008 Received in revised form 6 November 2008 Accepted 14 November 2008 Available online 24 November 2008

Keywords: Friedel-Crafts reaction Carbazole Triphenvlamine Thionation Benzo[c]thiophene

Synthesis of mixed heterocyclic system containing benzo[c]thiophene, dibenzo-heterocycles, and thiophene unit is described.


© 2008 Elsevier Ltd. All rights reserved.

Tetrahedror

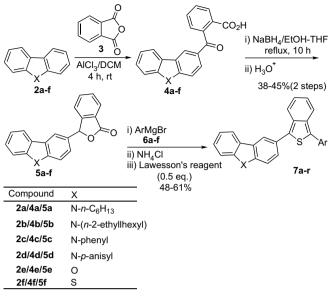
1. Introduction

Electronic properties of the linear conjugated oligomers acquired growing importance in many areas of modern chemistry. In particular, π -conjugated thiophene oligomers possess interesting electronic and optical properties and they have been investigated as Organic Field Effect Transistors (OFETs)¹ and Organic Light-Emitting Diodes (OLEDs).² Carbazole analogs due to their unique optical and chemical properties are often used as functional building blocks in the construction of organic materials for optoelectronic devices.³ Triarylamine-substituted carbazole based dendrimer containing oligothiophene core has been explored in Organic Solar Cells (OSCs) as well as OLEDs.⁴ Promarak and coworkers recently reported the synthesis of *N*-carbazole end-capped oligothiophene-fluorenes as promising hole-transporting and light-emitting layers in OLED devices. The incorporation of Ncarbazole units at the terminal ends improved its morphology and electrochemical properties.⁵ Thus, the carbazole analogs due to their intense luminescence⁶ have been widely used in OLEDs as blue emitters,⁷ white emitters,⁸ green emitters,⁹ and red emitters.¹⁰

Over the years, benzo[c]thiophene analogs 1 (Fig. 1) are explored as components in OLEDs¹¹ as well as photovoltaics.¹² Very recently, Swager and co-workers compared the effectiveness of isobenzofuran over isothionaphthene as red-shifting component in

donor-acceptor type dyes.¹³ In further continuation of our work on benzo[c]thiophenes,¹⁴ we report here our results on the synthesis of benzo[c]thiophene containing dibenzo-heterocycles.

2. Results and discussion


Friedel-Crafts phthaloylation of dibenzo-heterocycles 2a-f in the presence of anhydrous AlCl₃ in dry DCM at room temperature for 4 h followed by workup afforded crude keto acids 4a-f. Selective reduction of the ketone carbonyl function of acids 4a-f using NaBH₄ in THF/EtOH (2:5) at reflux for 10 h followed by workup and acid catalyzed cyclization furnished the required lactones 5a-f in 38-45% yields. Ring opening of the lactones 5a-f using freshly prepared 2-thienyl/arylmagnesium bromides 6a-f followed by quenching with aq NH₄Cl led to the isolation of keto alcohols.

The DCM solution of keto alcohol on thionation using 0.5 equiv / of Lawesson's reagent followed by workup and column chromatographic purification afforded the respective benzolclthiophene

^{*} Corresponding author. Tel.: +91 44 22202813; fax: +91 44 22300488. E-mail address: mohan 67@hotmail.com (A.K. Mohanakrishnan).

^{0040-4020/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.11.044

Scheme 1.

analogs **7a–r** in 48–61% yields (Scheme 1). Complete details such as type of the lactones, Grignards employed, and the respective benzo[*c*]thiophene analogs obtained along with their yields are presented in Table 1. Ring opening of the 9-alkyl and 9-arylcarbazolyl lactones **5a/b**, **5c**, and **5d** with 2-thienyl/aryl Grignards **6a–f** followed by subsequent thionation gave the respective 1-(carbazolyl)-3-(thienyl/aryl)benzo[*c*]thiophenes **7a–n** in 48–61% yields (Table 1, entries 1–4). Similarly, the ring opening of dibenzofuranyl lactone **5e** using thienyl-2-magnesium bromides **6b/6c** followed by thionation furnished 1-(dibenzofuranyl)-3-(2/5-hexylthienyl)benzo[*c*]thiophenes **7o/7p** in 51% and 55% yields (Table 1, entry 5).

Reaction of dibenzothiophenyl lactone **5f** with 3-hexyl-2-thienylmagnesium bromide/5-hexyl-2-thienylmagnesium bromide gave 1-dibenzothiophenyl-3-thienylbenzo[c]thiophenes **7q/7r** in 60% and 57% yields, respectively (Table 1, entry 6). All these benzo[c]thiophenes **7a**-**r** were found to be highly soluble in common organic solvents.

Following the similar procedure as mentioned above, triphenylamine incorporated benzo[c]thiophene analogs **11a–c** are smoothly prepared in 55–60% yields (Scheme 2).

Some selected dibenzo-heterocycles tethered benzo[c]thiophenes **7b**, **7g**, **7j**, **7o**, and **7q** are converted into the corresponding dimers **12a–e** in moderate yields (47–61%) using anhydrous FeCl₃ in dry DCM (Scheme 3). However, all attempts to dimerize triphenylamine based benzo[c]thiophene **11a** or **11b** were complicated due to the poor solubility of the resulting dimerization products.

3. Photophysical and electrochemical studies

The UV–vis spectra of monomeric benzo[*c*]thiophenes exhibited a strong absorption in the region of 445–465 nm due to the π – π * electronic transition of the conjugated backbone system. The dimerization of monomeric benzo[*c*]thiophenes red shifted the λ_{max} values in the range of 35–60 nm. The exact absorption λ_{max} values of these compounds are given in Table 2. The qualitative emission data of selected dibenzo-heterocycles incorporated benzo[*c*]thiophenes were recorded in DCM solution and the emission values are also presented. The HOMO and LUMO energy levels of benzo[*c*]thiophenes were calculated from the absorption and the onset oxidation potential. The *E*_g, HOMO, and LUMO values obtained for the representative benzo[*c*]thiphenes are presented in Table 2. The monomeric benzo[*c*]thiophene analogs showed E_g values in the range of 2.7–2.8 eV. The dimerization of benzo[*c*]thiophenes reduced the E_g values around ~0.3 eV. In general, dimerization only slightly reduced and enhanced the HOMO energy levels (~5.2 eV to ~5.0 eV) and LUMO energy levels (~2.4 eV to ~2.5 eV), respectively (Table 2).

4. Conclusions

In summary, the synthesis of benzo[c]thiophene analogs incorporating dibenzo-heterocycle as well as triphenylamine units was achieved in reasonable yields. The highly soluble nature of these benz-annelated thiophenes may make them suitable for transistor applications through spin-coating techniques. The higher-lying HOMO energy levels of these dibenzo-heterocycles incorporated benzo[c]thiophenes (~5.1 to 5.2 eV) may find them as suitable candidates for application as hole-transporting materials in double-layer OLEDs.

5. Experimental

5.1. General

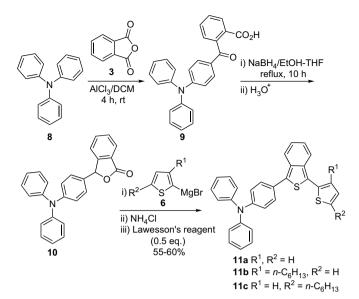
All melting points are uncorrected. IR spectra were recorded on a SHIMADZU FT-IR 8300 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using TMS as an internal standard on a Bruker-300 spectrometer. Mass spectra were recorded on a JEOL DX 303 HF spectrometer. Elemental analyses were carried out on a Perkin-Elmer series II 2400 (IIT Madras) instrument. All UV-vis spectra were recorded in CH₂Cl₂ solution. The emission spectra were recorded on Perkin-Elmer LS-45 spectrophotometer. The cyclic voltammogram of 10⁻³ M solution of benzo[c]thiophenes was carried out on a CHI 600C electrochemical analyzer. All the measurements were carried out under oxygen free condition using three electrode cells in which glassy carbon electrode was working electrode, saturated Ag/AgCl electrode was reference electrode, and platinum wire was used as an auxiliary electrode. Tetrabutylammoniumhexafluoro phosphate ($TBAPF_6$) was used as supporting electrolyte and its concentration was 10^{-1} M.

5.2. A representative procedure for the preparation of lactone 5a from dibenzo-heterocycle 2a (procedure A)

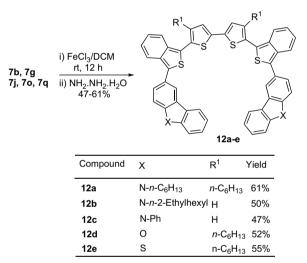
5.2.1. 3-(9-Hexyl-9H-carbazol-3-yl)isobenzofuran-1(3H)-one (5a)

To a stirred suspension of phthalic anhydride (7.07 g, 47.81 mmol) in dry DCM (150 mL), powdered anhydrous AlCl₃ (7.96 g, 59.76 mmol) was added in two portions to get yellow solution, which was cooled to 0 °C. N-Hexyl carbazole 2a (10 g, 39.84 mmol) in DCM (20 mL) was added dropwise to the above solution at 0 °C and stirred for 4 h at room temperature. The reaction mixture was guenched with ice water containing HCl and extracted with DCM (2×30 mL). Evaporation of solvent gave crude keto acid, which was dissolved in THF/EtOH (2:5). To this solution, NaBH₄ (7.57 g, 199.2 mmol) was added in portions and refluxed for 10 h. The reaction mixture was poured into water and concd HCl was added dropwise under stirring (pH=1-2). It was then extracted with EtOAc and dried (Na₂SO₄). Solvent was evaporated in vacuo to give the crude product, which was purified by column chromatography (10% EA/Hexane) to give the title compound 5a [6.1 g, 40% (two steps)] as a thick yellow liquid. [Found: C, 81.6; H, 6.4; N, 3.5. C₂₆H₂₅NO₂ requires: C, 81.43; H, 6.57; N, 3.65%.] R_f (10% EA/Hexane) 0.62; $\nu_{\rm max}$ (KBr) 2851, 1759, 1595, 1500, 745 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.03-7.97 (3H, m, ArH), 7.64-7.48 (2H, m, ArH), 7.46-7.43 (1H, m, ArH), 7.40-7.31 (3H, m, ArH), 7.27-7.18 (2H, m, ArH), 6.58 (1H, s, CH), 4.23 (2H, t, J 7.2 Hz, NCH₂), 1.84-1.71 (2H, m, CH₂), 1.42–1.25 (6H, m, CH₂), 0.90–0.82 (3H, m, CH₃); $\delta_{\rm C}$

Table 1


Entry	Lactones	ArMgBr	Products	Yield (%) ^a mp	
1	5a	$R^{2} - K^{1}$ $R^{2} - K^{1}$ $R^{2} - K^{2} = H$ $R^{1} = H, R^{2} = H$ $R^{1} = H, R^{2} = H$ $R^{1} = H, R^{2} = n - C_{6}H_{13}$	R^{1} $R^{1} = H, R^{2} = H$ $R^{2} = R - C_{6}H_{13}, R^{2} = H$ $R^{2} = R - C_{6}H_{13}$	52 (Orange liquid) 48 (Orange liquid) 53 (Orange liquid)	
2	5a	R_2 - MgBr R_1 6d $R^1 = CH_3, R^2 = H$ 6e $R^1 = H, R^2 = CH_3$ 6f $R^1 = H, R^2 = OCH_3$	$\begin{array}{c} & R_{1} \\ & R_{2} \\$	55 (Orange liquid) 48 (Orange liquid) 57 (Orange liquid)	
3	5b	$R^{2} \xrightarrow{R^{1}} MgBr$ 6a R ¹ = H, R ² = H 6b R ¹ = n-C ₆ H ₁₃ , R ² = H 6c R ¹ = H, R ² = n-C ₆ H ₁₃	$\begin{array}{c} & & R^{1} \\ & & R^{2} \\$	57 (Orange liquid) 61 (Orange liquid) 50 (Orange liquid)	
4	5c/5d	$R^{2} \xrightarrow{R^{1}} MgBr$ 6a R ¹ = H, R ² = H 6b R ¹ = <i>n</i> -C ₆ H ₁₃ , R ² = H 6c R ¹ = H, R ² = <i>n</i> -C ₆ H ₁₃	$\mathbf{F}_{R}^{1} = \mathbf{H}, \mathbf{R}^{1} = \mathbf{H}, \mathbf{R}^{2} = \mathbf{H}$ $\mathbf{F}_{R} = \mathbf{H}, \mathbf{R}^{1} = \mathbf{H}, \mathbf{R}^{2} = \mathbf{H}$ $\mathbf{F}_{R} = \mathbf{H}, \mathbf{R}^{1} = \mathbf{H}, \mathbf{R}^{2} = \mathbf{R} - \mathbf{C}_{6}\mathbf{H}_{13}, \mathbf{R}^{2} = \mathbf{H}$ $\mathbf{F}_{R} = \mathbf{OMe}, \mathbf{R}^{1} = \mathbf{R} - \mathbf{C}_{6}\mathbf{H}_{13}, \mathbf{R}^{2} = \mathbf{H}$ $\mathbf{F}_{R} = \mathbf{OMe}, \mathbf{R}^{1} = \mathbf{R} - \mathbf{C}_{6}\mathbf{H}_{13}, \mathbf{R}^{2} = \mathbf{R}$	55 (114 °C) 57 (62 °C) 51 (Orange liquid) 61 (Orange liquid) 49 (Orange liquid)	
5	5e	R^2 R^1 6b $R^1 = n - C_6 H_{13}, R^2 = H$ 6c $R^1 = H, R^2 = n - C_6 H_{13}$	$\mathbf{F}_{0}^{1} = \mathbf{F}_{0}^{1} + \mathbf{F}_{0}^{1} = \mathbf{F}_{0}^{1} + \mathbf{F}_{0}^{2} = \mathbf{F}_{0}^{1} + \mathbf{F}_{0}^{2} = \mathbf{F}_{0}^{1} + \mathbf{F}_{0}^{2} = \mathbf{F}_{0}^{1} + \mathbf{F}_{0}^{2} + \mathbf{F}$	51 (115 °C) 55 (Orange liquid)	
6	5f	R^{2} R^{1} R^{2} R^{2} R^{1} 6b $R^{1} = n \cdot C_{6}H_{13}, R^{2} = H$ 6c $R^{1} = H, R^{2} = n \cdot C_{6}H_{13}$	$S = \frac{R^{1}}{2q R^{1} = n - C_{6}H_{13}, R^{2} = H}$ $7r R^{1} = H, R^{2} = n - C_{6}H_{13}$	60 (107 °C) 57 (Orange liquid)	

^a Isolated yield of products after column chromatography.


(75.6 MHz, CDCl₃) 170.8, 150.3, 140.9, 134.2, 129.2, 126.4, 126.1, 126.0, 125.5, 124.9, 123.2, 123.0, 122.5, 120.5, 119.8, 119.2, 109.2, 109.0, 84.0, 43.2, 31.6, 28.9, 26.9, 22.5, 14.0; m/z (EI) 383 (100, M⁺).

5.2.2. 3-(9-(2-Ethylhexyl)-9H-carbazol-3-yl)isobenzofuran-1(3H)-one (**5b**)

Following the above-mentioned procedure (A), lactone **5b** (6.03 g, 41%) was obtained using N-(2-ethylhexyl carbazole) **2b**

Scheme 2.

Table 2

Summary of the physical pr	roperties of selected benzo[c]thiophenes
----------------------------	--

Compound	$\lambda_{\max}^{a}(nm)$	$\lambda_{emiss}^{b}(nm)$	$E_{g}^{c}(eV)$	$E_{\mathrm{ox}}^{\mathrm{onset}}\left(\mathrm{eV}\right)$	$HOMO^{d}\left(eV ight)$	LUMO ^e (eV)
7a	455	550	2.72	0.70	5.14	2.42
7b	450	540	2.75	0.69	5.13	2.38
7g	465	544	2.67	0.71	5.15	2.48
7h	458	550	2.71	0.68	5.12	2.41
7j	445	530	2.78	0.70	5.14	2.36
71	458	545	2.71	0.73	5.17	2.46
7o	445	530	2.78	0.70	5.14	2.36
7q	458	545	2.71	0.73	5.17	2.46
11a	457	545	2.71	0.65	5.09	2.38
11b	445	535	2.78	0.72	5.16	2.38
11c	440	540	2.82	0.71	5.15	2.33
12a	497	615	2.49	0.57	5.01	2.52
12b	492	597	2.52	0.55	4.99	2.47
12c	498	605	2.49	0.58	5.02	2.53
12d	505	650	2.45	0.55	4.99	2.54
12e	510	645	2.43	0.57	5.01	2.58

^a Measured in dilute dichloromethane solution.

^b Excited at absorption maxima.

^c Estimated from the absorption ($E_g=1240/\lambda_{max}$).

^d Calculated using the empirical equation: HOMO= $(4.44+E_{ox}^{onset})$.

^e Calculated from LUMO=HOMO-E_g.

(10 g, 35.84 mmol), phthalic anhydride (6.36 g, 43.00 mmol), AlCl₃ (7.16 g, 53.75 mmol), and NaBH₄ (6.81 g, 179.2 mmol) as a thick yellow liquid. [Found: C, 82.0; H, 7.3; N, 3.2. $C_{28}H_{29}NO_2$ requires: C, 81.72; H, 7.10; N, 3.40%.] R_f (10% EA/Hexane) 0.65; ν_{max} (KBr) 2822, 1759, 1596, 1500, 762 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.04–7.97 (3H, m, ArH), 7.66–7.60 (2H, m, ArH), 7.57–7.52 (1H, m, ArH), 7.48–7.43 (1H, m, ArH), 7.39–7.35 (1H, m, ArH), 7.33 (1H, s, ArH), 7.27–7.18 (2H, m, ArH), 6.59 (1H, s, CH), 4.13–4.10 (2H, m, NCH₂), 2.03 (1H, m, CH), 1.42–1.21 (7H, m, CH₂CH₃), 0.91–0.82 (7H, m, CH₂CH₃); δ_C (75.6 MHz, CDCl₃) 170.8, 150.3, 140.4, 134.3, 129.2, 126.4, 126.1, 126.0, 125.5, 124.9, 123.2, 123.0, 122.4, 120.4, 119.8, 119.2, 109.5, 109.3, 84.0, 47.5, 39.4, 31.0, 28.8, 24.4, 23.0, 14.0, 10.9; m/z (EI) 411 (13, M⁺).

5.2.3. 3-(9-Phenyl-9H-carbazol-3-yl)isobenzofuran-1(3H)-one (5c)

Following the above-mentioned procedure (A), lactone **5c** (6.93 g, 45%) was obtained using *N*-phenyl carbazole **2c** (10 g, 41.15 mmol), phthalic anhydride (7.30 g, 49.38 mmol), AlCl₃ (8.22 g, 61.72 mmol), and NaBH₄ (7.82 g, 205.76 mmol) as a colorless solid; mp 87 °C. [Found: C, 83.0; H, 4.8; N, 3.5. C₂₆H₁₇NO₂ requires: C, 83.18; H, 4.56; N, 3.73%.] *R*_f (10% EA/Hexane) 0.55; ν_{max} (KBr) 1761, 1600, 1501, 753 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.09–7.98 (3H, m, ArH), 7.64–7.41 (7H, m, ArH), 7.40–7.20 (6H, m, ArH), 6.60 (1H, s, CH); δ_{C} (75.6 MHz, CDCl₃) 170.8, 150.3, 141.5, 141.4, 137.3, 134.3, 130.0, 129.3, 127.8, 127.7, 127.1, 126.5, 125.9, 125.6, 125.1, 123.6, 123.1, 122.9, 120.5, 120.3, 119.6, 110.3, 110.0, 83.8; *m/z* (EI) 375 (13, M⁺).

5.2.4. 3-(9-(4-Methoxyphenyl)-9H-carbazol-3-yl)isobenzofuran-1(3H)-one (**5d**)

Following the above-mentioned procedure (A), lactone **5d** (6.22 g, 42%) was obtained using *N*-(*p*-anisyl)carbazole **2d** (10 g, 36.49 mmol), phthalic anhydride (6.48 g, 43.79 mmol), AlCl₃ (7.29 g, 54.74 mmol), and NaBH₄ (6.93 g, 182.48 mmol) as a colorless solid; mp 95 °C. [Found: C, 80.2; H, 4.5; N, 3.3. C₂₇H₁₉NO₃ requires: C, 79.98; H, 4.72; N, 3.45%.] *R*_f (10% EA/Hexane) 0.51; ν_{max} (KBr) 2811, 1759, 1605, 1500, 755, 685 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.04–8.01 (3H, m, ArH), 7.61–7.54 (2H, m, ArH), 7.36–7.25 (8H, m, ArH), 7.08 (2H, s, ArH), 6.59 (1H, s, CH), 3.87 (3H, s, OCH₃); δ_{c} (75.6 MHz, CDCl₃) 170.8, 159.1, 150.3, 141.9, 141.8, 134.3, 129.83, 129.3, 128.5, 127.5, 126.4, 126.0, 125.6, 125.1, 123.4, 123.1, 122.7, 120.4, 120.1, 119.6, 115.2, 110.3, 110.0, 83.9, 55.6; *m/z* (EI) 405 (13, M⁺).

5.2.5. 3-(Dibenzofuran-3-yl)isobenzofuran-1(3H)-one (5e)

Following the above-mentioned procedure (A), lactone **5e** (7.14 g, 40%) was obtained using dibenzofuran **2e** (10 g, 59.52 mmol), phthalic anhydride (10.57 g, 71.43 mmol), AlCl₃ (11.89 g, 89.28 mmol), and NaBH₄ (11.3 g, 297.61 mmol) as a colorless solid; mp 171 °C. [Found: C, 80.2; H, 3.8; C₂₀H₁₂O₃ requires: C, 79.99; H, 4.03%.] *R*_f (10% EA/Hexane) 0.60; ν_{max} (KBr) 1755, 1585, 1500, 741 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.99 (1H, t, *J* 7.5 Hz, ArH), 7.92–7.83 (2H, m, ArH), 7.66–7.61 (1H, m, ArH), 7.58–7.52 (3H, m, ArH), 7.44 (1H, t, *J* 7.5 Hz, ArH), 7.34–7.25 (3H, m, ArH), 6.55 (1H, s, CH); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 170.6, 156.7, 156.5, 149.9, 134.5, 131.0, 129.5, 127.7, 126.2, 125.7, 124.9, 123.6, 123.0, 123.0, 120.9, 119.7, 112.2, 111.8, 83.0; *m/z* (EI) 300 (100, M⁺).

5.2.6. 3-(Dibenzothiophen-3-yl)isobenzofuran-1(3H)-one (5f)

Following the above-mentioned procedure (A), lactone **5f** (6.52 g, 38%) was obtained using dibenzothiophene **2f** (10 g, 54.34 mmol), phthalic anhydride (9.65 g, 65.22 mmol), AlCl₃ (10.86 g, 81.52 mmol), and NaBH₄ (10.3 g, 271.74 mmol) as a colorless solid; mp 90 °C. [Found: C, 75.7; H, 3.7; S, 10.4. C₂₀H₁₂O₂S requires: C, 75.93; H, 3.82; S, 10.14%.] R_f (10% EA/Hexane) 0.65; ν_{max} (KBr) 1759, 1595, 1500, 741 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.09–8.04 (2H, m, ArH), 7.99 (1H, t, *J* 7.5 Hz, ArH), 7.82–7.80 (2H, m, ArH), 7.65–7.52 (2H, m, ArH), 7.45–7.42 (2H, m, ArH), 7.34–7.26 (2H, m, ArH), 6.55 (1H, s, CH);

 δ_{C} (75.6 MHz, CDCl₃) 170.6, 149.8, 140.5, 139.9, 136.0, 134.9, 134.5, 132.8, 129.5, 127.2, 125.7, 125.6, 125.3, 124.6, 123.4, 123.0, 122.9, 121.8, 120.3, 82.9; m/z (EI) 316 (45, M⁺).

5.3. A representative procedure for the preparation of benzo[c]thiophene (7a) from lactone (5a) (procedure B)

5.3.1. 9-Hexyl-3-(1-(thiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**7a**)

To a solution of lactone 5a (2 g, 5.22 mmol) in anhydrous THF (25 mL) was added 2-thienylmagnesium bromide [prepared from 2-bromothiophene (1.02 g, 6.26 mmol) and magnesium turnings (0.16 g, 6.88 mmol)] at 0 °C under N₂. The reaction mixture was slowly raised to room temperature and stirred for 4 h. It was then quenched with aq NH₄Cl solution, extracted with DCM (2×20 mL), and dried (Na₂SO₄). The DCM solution was then stirred with Lawesson's reagent (1.06 g, 2.61 mmol) at room temperature for 4 h. Solvent was evaporated in vacuo to give the crude product, which was purified by column chromatography (100% Hexane) to give the title compound **7a** (1.26 g, 52%) as an orange liquid. [Found: C, 77.1; H, 5.7; N, 3.2; S, 14.0. C₃₀H₂₇NS₂ requires: C, 77.38; H, 5.84; N, 3.01; S, 13.77%.] R_f (100% Hexane) 0.70; v_{max} (KBr) 2822, 1596, 1500, 762 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.34 (1H, s, ArH), 8.12 (1H, d, J 7.5 Hz, ArH), 7.97 (1H, d, J 8.7 Hz, ArH), 7.87 (1H, d, J 8.7 Hz, ArH), 7.72 (1H, d, J 8.4 Hz, ArH), 7.70-7.37 (3H, m, ArH), 7.34-7.30 (2H, m, ArH), 7.23 (1H, t, J 6.9 Hz, ArH), 7.14-7.06 (3H, m, ArH), 4.26 (2H, t, J 7.05 Hz, NCH₂), 1.90-1.81 (2H, m, CH₂), 1.38-1.25 (6H, m, CH₂), 0.88–0.84 (3H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 141.0, 140.1, 136.5, 135.8, 135.4, 135.0, 127.9, 127.3, 126.1, 125.7, 125.1, 124.9, 124.6, 124.6, 124.0, 123.6, 122.8, 121.7, 121.4, 121.2, 120.6, 119.2, 109.3, 109.0, 43.3, 31.7, 29.1, 27.1, 22.6, 14.1; *m/z* (EI) 465 (13, M⁺).

5.3.2. 9-Hexyl-3-(1-(3-hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**7b**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7b** (1.38 g, 48%) was obtained using lactone **5a** (2 g, 5.22 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.55 g, 6.27 mmol) and Mg (0.16 g, 6.90 mmol)], and Lawesson's reagent (1.06 g, 2.61 mmol) as a thick orange liquid. [Found: C, 78.4; H, 7.3; N, 2.8; S, 11.4. C₃₆H₃₉NS₂ requires: C, 78.64; H, 7.15; N, 2.55; S, 11.66%.] $R_f(100\%$ Hexane) 0.72; δ_H (300 MHz, CDCl₃) 8.37 (1H, s, ArH), 8.13 (1H, d, J 7.8 Hz, ArH), 7.91-7.87 (1H, m, ArH), 7.76 (1H, d, J 10.2 Hz, ArH), 7.61-7.60 (1H, m, ArH), 7.48–7.34 (4H, m, ArH), 7.24 (1H, d, J 7.35 Hz, ArH), 7.08–7.05 (3H, m, ArH), 4.29 (2H, t, J 7.2 Hz, NCH₂), 2.68 (2H, d, J 7.8 Hz, CH₂), 1.94-1.85 (2H, m, CH₂), 1.63-1.58 (2H, m, CH₂), 1.41-1.21 (12H, m, CH₂), 0.88-0.79 (6H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 142.2, 141.0, 140.1, 137.9, 137.1, 134.2, 129.3, 128.6, 127.4, 126.1, 125.7, 124.8, 124.0, 123.8, 123.7, 123.6, 122.8, 121.7, 121.3, 121.2, 120.6, 119.2, 109.2, 109.0, 43.3, 31.7, 30.9, 29.2, 29.1, 29.0, 27.0, 22.6, 14.1, 14.0; *m/z* (EI) 549 (45, M⁺).

5.3.3. 9-Hexyl-3-(1-(5-hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**7c**)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **7c** (1.52 g, 53%) was obtained using lactone **5a** (2 g, 5.22 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.55 g, 6.27 mmol) and Mg (0.16 g, 6.90 mmol)], and Lawesson's reagent (1.06 g, 2.61 mmol) as a thick orange liquid. [Found: C, 78.4; H, 7.3; N, 2.8; S, 11.4. C₃₆H₃₉NS₂ requires: C, 78.64; H, 7.15; N, 2.55; S, 11.66%.] *R*_f (100% Hexane) 0.72; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.34 (1H, s, ArH), 8.13 (1H, d, *J* 7.5 Hz, ArH), 7.97 (1H, d, *J* 8.4 Hz, ArH), 7.86 (1H, d, *J* 8.7 Hz, ArH), 7.74 (1H, d, *J* 8.4 Hz, ArH), 7.51–7.40 (3H, m, ArH), 4.30 (2H, t, *J* 6.9 Hz, NCH₂), 2.85 (2H, t, *J* 7.5 Hz, CH₂), 1.91–1.83 (2H, m, CH₂), 1.76–1.69 (2H, m, CH₂), 1.39–1.25 (12H, m, CH₂), 0.93–0.85 (6H, m, CH₃); $\delta_{\rm C}$ (75.6 MHz,

CDCl₃) 146.0, 141.0, 140.0, 135.0, 134.9, 133.8, 127.3, 126.5, 126.1, 124.8, 124.7, 124.6, 124.3, 123.9, 123.5, 122.8, 121.6, 121.5, 121.2, 120.6, 119.2, 109.2, 109.0, 43.3, 31.6, 30.3, 29.0, 28.9, 27.0, 22.6, 22.6, 14.1, 14.0; *m/z* (EI) 549 (27, M⁺).

5.3.4. 9-Hexyl-3-(1-o-tolylbenzo[c]thiophen-3-yl)-9H-carbazole (7d)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **7d** (1.36 g, 55%) was obtained using lactone **5a** (2 g, 5.22 mmol), *o*-tolylmagnesium bromide [prepared from 2-bromotoluene (1.07 g, 6.26 mmol) and Mg (0.16 g, 6.88 mmol)], and Lawesson's reagent (1.06 g, 2.61 mmol) as a thick orange liquid. [Found: C, 83.5; H, 6.8; N, 2.8; S, 6.5. C₃₃H₃₁NS requires: C, 83.68; H, 6.60; N, 2.96; S, 6.77%.] *R*_f (100% Hexane) 0.72; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.39 (1H, s, ArH), 8.12 (1H, d, *J* 7.5 Hz, ArH), 7.90 (1H, d, *J* 8.4 Hz, ArH), 7.76 (1H, d, *J* 8.4 Hz, ArH), 7.46–7.44 (3H, m, ArH), 7.39–7.27 (6H, m, ArH), 7.02 (2H, t, *J* 8.4 Hz, ArH), 4.26 (2H, t, *J* 6.9 Hz, NCH₂), 2.33 (3H, s, CH₃), 1.85 (2H, q, *J* 6.4 Hz, CH₂), 1.40–1.29 (6H, m, CH₂), 0.85 (3H, t, *J* 5.8 Hz, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 141.0, 140.0, 139.0, 138.1, 136.7, 135.8, 134.0, 133.2, 132.3, 131.7, 130.9, 130.6, 128.3, 127.4, 126.1, 125.8, 125.1, 123.7, 122.9, 121.6, 121.4, 121.2, 120.7, 119.2, 109.2, 109.0, 43.3, 31.7, 29.1, 27.1, 22.7, 20.8, 14.0; *m/z* (EI) 473 (23, M⁺).

5.3.5. 9-Hexyl-3-(1-p-tolylbenzo[c]thiophen-3-yl)-9Hcarbazole (**7e**)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **7e** (1.18 g, 48%) was obtained using lactone **5a** (2 g, 5.22 mmol), *p*-tolylmagnesium bromide [prepared from 4-bromotoluene (1.07 g, 6.26 mmol) and Mg (0.16 g, 6.88 mmol)], and Lawesson's reagent (1.06 g, 2.61 mmol) as a thick orange liquid. [Found: C, 83.4; H, 6.7; N, 2.8; S, 6.6. C₃₃H₃₁NS requires: C, 83.68; H, 6.60; N, 2.96; S, 6.77%.] *R*_f (100% Hexane) 0.72; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.37 (1H, s, ArH), 8.14 (1H, d, *J* 7.8 Hz, ArH), 7.91–7.84 (2H, m, ArH), 7.78–7.75 (1H, m, ArH), 7.61 (1H, d, *J* 7.8 Hz, ArH), 7.49–7.43 (3H, m, ArH), 7.40–7.20 (5H, m, ArH), 7.09–7.05 (1H, m, ArH), 4.31 (2H, t, *J* 7.2 Hz, NCH₂), 2.42 (3H, s, CH₃), 1.91–1.87 (2H, m, CH₂), 1.41–1.25 (6H, m, CH₂), 0.87 (3H, t, *J* 6.9 Hz, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 141.0, 140.0, 137.1, 135.4, 135.0, 134.9, 133.2, 131.8, 129.8, 129.1, 127.4, 126.8, 126.1, 125.0, 124.0, 123.8, 123.5, 122.8, 121.6, 121.2, 120.6, 119.1, 109.2, 109.0, 43.3, 37.6, 29.1, 27.0, 22.6, 21.3, 14.1; *m/z* (EI) 473 (35, M⁺).

5.3.6. 9-Hexyl-3-(1-(4-methoxyphenyl)benzo[c]thiophen-3-yl)-9H-carbazole (**7f**)

Following the above-mentioned procedure (B), benzo[c]thiophene 7f (1.45 g, 57%) was obtained using lactone 5a (2 g, 4.86 mmol), p-anisylmagnesium bromide [prepared from 4-bromoanisole (1.17 g, 6.26 mmol) and Mg (0.16 g, 6.88 mmol)], and Lawesson's reagent (1.06 g, 2.61 mmol) as a thick orange liquid. [Found: C, 80.7; H, 6.6; N, 2.7; S, 6.8. C₃₃H₃₁NOS requires: C, 80.94; H, 6.38; N, 2.86; S, 6.55%.] R_f (100% Hexane) 0.69; δ_H (300 MHz, CDCl₃) 8.37 (1H, s, ArH), 8.14 (1H, d, J 7.5 Hz, ArH), 7.81-7.75 (2H, m, ArH), 7.91-7.88 (1H, m, ArH), 7.50-7.43 (3H, m, ArH), 7.25 (1H, t, J 6.9 Hz, ArH), 7.08–7.02 (3H, m, ArH), 6.94 (1H, d, J 8.7 Hz, ArH), 4.31 (2H, t, J 7.05 Hz, NCH₂), 3.87 (3H, s, OCH₃), 1.92-1.89 (2H, m, CH₂), 1.42–1.25 (6H, m, CH₂), 0.88 (3H, t, J 6.9 Hz, CH₃); δ_{C} (75.6 MHz, CDCl₃) 159.1, 158.7, 141.0, 139.9, 134.9, 133.5, 133.0, 130.4, 127.7, 127.4, 126.0, 125.0, 123.9, 123.7, 123.5, 122.8, 121.5, 121.1, 120.6, 119.1, 114.5, 114.2, 109.2, 108.9, 55.4, 43.3, 31.6, 29.0, 27.0, 22.6, 14.0; m/z (EI) 489 (13, M⁺).

5.3.7. 9-(2-Ethylhexyl)-3-(1-(thiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (7g)

Following the above-mentioned procedure (B), benzo[c]thiophene **7g** (1.37 g, 57%) was obtained using lactone **5b** (2 g, 4.86 mmol), 2-thienylmagnesium bromide [prepared from 2-bromothiophene (0.95 g, 5.84 mmol) and Mg (0.15 g, 6.41 mmol)], and

Lawesson's reagent (0.98 g, 2.43 mmol) as a thick orange liquid. [Found: C, 77.6; H, 6.1; N, 2.6; S, 13.2. $C_{32}H_{31}NS_2$ requires: C, 77.85; H, 6.33; N, 2.84; S, 12.99%.] R_f (100% Hexane) 0.75; δ_H (300 MHz, CDCl₃) 8.24 (1H, s, ArH), 8.02 (1H, d, *J* 7.8 Hz, ArH), 7.87 (1H, d, *J* 8.7 Hz, ArH), 7.77 (1H, d, *J* 8.4 Hz, ArH), 7.63–7.60 (1H, m, ArH), 7.39–7.21 (5H, m, ArH), 7.16–7.08 (1H, m, ArH), 7.04–6.94 (3H, m, ArH), 4.05–4.02 (2H, m, NCH₂), 1.99–1.96 (1H, m, CH), 1.32–1.15 (7H, m, CH₂CH₃), 0.84–0.75 (7H, m, CH₂CH₃); δ_C (75.6 MHz, CDCl₃) 141.5, 140.6, 136.5, 135.8, 135.4, 135.0, 127.9, 127.3, 126.1, 125.7, 125.1, 125.0, 124.6, 124.5, 124.0, 123.5, 122.8, 121.7, 121.4, 121.1, 120.6, 119.2, 109.5, 109.3, 47.6, 39.5, 31.1, 28.9, 24.5, 23.2, 14.1, 11.0; *m/z* (EI) 493 (100, M⁺).

5.3.8. 9-(2-Ethylhexyl)-3-(1-(3-hexylthiophen-2-yl)benzo[c]-thiophen-3-yl)-9H-carbazole (**7h**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7h** (1.71 g, 61%) was obtained using lactone **5b** (2 g, 4.86 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.44 g, 5.84 mmol) and Mg (0.5 g, 6.41 mmol)], and Lawesson's reagent (0.98 g, 2.43 mmol) as a thick orange liquid. [Found: C, 77.8; H, 7.3; N, 2.2; S, 11.3. C₃₈H₄₃NS₂ requires: C, 78.98; H, 7.50; N, 2.42; S, 11.10%.] *R*_f (100% Hexane) 0.70; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.49–8.48 (1H, m, ArH), 8.24 (1H, d, J 7.8 Hz, ArH), 8.02-7.99 (1H, m, ArH), 7.88-7.85 (1H, m, ArH), 7.73-7.70 (1H, m, ArH), 7.60-7.44 (4H, m, ArH), 7.37-7.31 (1H, m, ArH), 7.20-7.15 (3H, m, ArH), 4.30-4.24 (2H, m, NCH₂), 2.78 (2H, d, J 7.5 Hz, CH₂), 2.23-2.18 (1H, m, CH), 1.74-1.67 (2H, m, CH₂), 1.52-1.33 (13H, m, CH₂CH₃), 1.05–0.98 (10H, m, CH₂CH₃); δ_{C} (75.6 MHz, CDCl₃) 142.2, 141.5, 140.6, 137.9, 137.1, 134.2, 129.3, 128.6, 127.4, 126.1, 125.7, 124.8, 124.1, 123.8, 123.7, 123.5, 122.8, 121.7, 121.4, 121.2, 120.6, 119.2, 109.5, 109.3, 47.6, 39.6, 31.7, 31.1, 31.0, 29.8, 29.2, 29.2, 28.9, 24.5, 23.2, 22.7, 14.2, 11.0; *m*/*z* (EI) 577 (25, M⁺).

5.3.9. 9-(2-Ethylhexyl)-3-(1-(5-hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**7i**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7i** (1.40 g, 50%) was obtained using lactone **5b** (2 g, 4.86 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.44 g, 5.84 mmol) and Mg (0.5 g, 6.41 mmol)], and Lawesson's reagent (0.98 g, 2.43 mmol) as a thick orange liquid. [Found: C, 78.8; H, 7.3; N, 2.6; S, 11.3. C₃₈H₄₃NS₂ requires: C, 78.98; H, 7.50; N, 2.42; S, 11.10%.] R_f (100% Hexane) 0.75; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.41–8.40 (1H, m, ArH), 8.07 (1H, d, J 8.1 Hz, ArH), 8.03-8.01 (1H, m, ArH), 7.95-7.92 (1H, m, ArH), 7.81-7.78 (1H, m, ArH), 7.57-7.45 (3H, m, ArH), 7.33-7.28 (1H, m, ArH), 7.18-7.10 (3H, m, ArH), 6.86 (1H, d, J 3.6 Hz, ArH), 4.24-4.21 (2H, m, NCH₂), 2.92 (2H, d, J 7.5 Hz, CH2), 2.22-2.14 (2H, m, CH2), 1.80 (2H, q, J 7.5 Hz, CH₂), 1.47-1.40 (12H, m, CH₂), 1.04-0.92 (10H, m, CH₂CH₃); δ_C (75.6 MHz, CDCl₃) 146.0, 141.5, 140.5, 135.0, 134.9, 133.8, 127.3, 126.5, 126.1, 124.8, 124.8, 124.7, 124.3, 123.9, 123.5, 122.8, 121.6, 121.1, 120.5, 119.1, 109.5, 109.3, 47.6, 39.5, 31.7, 31.1, 30.9, 30.3, 29.8, 28.9, 24.5, 23.1, 22.6, 14.1, 14.0, 11.1; *m*/*z* (EI) 577 (13, M⁺).

5.3.10. 3-(1-(Thiophen-2-yl)benzo[c]thiophen-3-yl)-9-phenyl-9H-carbazole (**7***j*)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **7j** (1.33 g, 55%) was obtained using lactone **5c** (2 g, 5.33 mmol), 2-thienylmagnesium bromide [prepared from 2-bromothiophene (1.04 g, 6.4 mmol) and Mg (0.17 g, 7.02 mmol)], and Lawesson's reagent (1.08 g, 2.66 mmol) as an orange solid; mp 80 °C. [Found: C, 79.0; H, 4.3; N, 2.8; S, 13.8. C₃₀H₁₉NS₂ requires: C, 78.74; H, 4.18; N, 3.06; S, 14.01%.] *R*_f(100% Hexane) 0.70; ν_{max} (KBr) 1600, 1505, 761 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.40–8.39 (1H, m, ArH), 8.18 (1H, d, *J* 7.8 Hz, ArH), 8.00 (1H, d, *J* 8.4 Hz, ArH), 7.88 (1H, d, *J* 8.4 Hz, ArH), 7.71–7.58 (6H, m, ArH), 7.53–7.48 (2H, m, ArH), 7.46–7.42 (2H, m, ArH), 7.37–7.30 (2H, m, ArH), 7.16–7.09 (3H, m, ArH); δ_{C} (75.6 MHz,

CDCl₃) 141.5, 140.5, 137.5, 136.3, 135.4, 135.3, 135.1, 130.1, 130.0, 127.8, 127.7, 127.6, 127.1, 126.5, 125.8, 125.2, 125.1, 124.6, 124.1, 124.0, 123.2, 121.5, 121.4, 121.1, 120.6, 120.3, 110.4, 110.1; *m/z* (EI) 457 (41, M⁺).

5.3.11. 3-(1-(3-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9-phenyl-9H-carbazole (7k)

Following the above-mentioned procedure (B), benzo[c]thiophene **7k** (1.47 g, 52%) was obtained using lactone **5c** (2 g, 5.33 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.58 g, 6.4 mmol) and Mg (0.17 g, 7.02 mmol)], and Lawesson's reagent (1.08 g, 2.66 mmol) as an orange solid; mp 62 °C. [Found: C, 79.5; H, 6.0; N, 2.8; S, 11.6. C₃₆H₃₁NS₂ requires: C, 79.81; H, 5.77; N, 2.59; S, 11.84%.] R_f (100% Hexane) 0.70; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.41 (1H, d, J 6.3 Hz, ArH), 8.16 (1H, t, J 8.1 Hz, ArH), 7.90–7.85 (1H, m, ArH), 7.72–7.69 (1H, m, ArH), 7.60-7.55 (5H, m, ArH), 7.51-7.36 (4H, m, ArH), 7.34-7.27 (2H, m, ArH), 7.09–7.02 (3H, m, ArH), 2.71–2.63 (2H, m, CH₂), 1.63–1.56 (2H, m, CH₂), 1.21–1.19 (6H, m, CH₂), 0.81–0.77 (3H, m, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 142.2, 141.4, 140.5, 137.9, 137.5, 136.7, 134.3, 130.0, 129.3, 128.5, 127.7, 127.1, 127.0, 126.5, 126.0, 125.7, 124.1, 124.0, 123.9, 123.3, 121.7, 121.2, 121.1, 120.6, 120.3, 110.4, 110.1, 31.7, 30.9, 29.2, 29.1, 22.6, 14.1; *m*/*z* (EI) 541 (100, M⁺).

5.3.12. 3-(1-(5-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9-phenyl-9H-carbazole (71)

Following the above-mentioned procedure (B), benzo[c]thiophene **71** (1.47 g, 51%)was obtained using lactone **5c** (2 g, 5.33 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.58 g, 6.4 mmol) and Mg (0.17 g, 7.02 mmol)], and Lawesson's reagent (1.08 g, 2.66 mmol) as a thick orange liquid. [Found: C, 79.6; H, 6.1; N, 2.8; S, 11.6. C₃₆H₃₁NS₂ requires: C, 79.81; H, 5.77; N, 2.59; S, 11.84%.] R_f (100% Hexane) 0.72; $\nu_{\rm max}$ (KBr) 2851, 1597, 1500, 765 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.43– 8.42 (1H, m, ArH), 8.19 (1H, d, J 7.5 Hz, ArH), 7.91-7.88 (1H, m, ArH), 7.74-7.65 (1H, m, ArH), 7.64-7.59 (5H, m, ArH), 7.52-7.46 (4H, m, ArH), 7.43 (1H, d, J 3.9 Hz, ArH), 7.36–7.30 (2H, m, ArH), 7.10–7.06 (2H, m, ArH), 2.69 (2H, t, J 7.65 Hz, CH₂), 1.64–1.59 (2H, m, CH₂), 1.29–1.22 (6H, m, CH₂), 0.84–0.80 (3H, m, CH₃); δ_{C} (75.6 MHz, CDCl₃) 142.2, 141.4, 140.5, 137.9, 137.5, 136.7, 134.3, 130.0, 129.3, 128.5, 127.7, 127.1, 127.0, 126.5, 126.0, 125.7, 124.1, 124.0, 123.9, 123.3, 121.7, 121.2, 121.1, 120.6, 120.3, 110.4, 110.1, 31.7, 30.9, 29.2, 29.1, 22.6, 14.1; *m*/*z* (EI) 541 (51, M⁺).

5.3.13. 3-(1-(3-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9-(4methoxyphenyl)-9H-carbazole (**7m**)

Following the above-mentioned procedure (B), benzo[c]thiophene 7m (1.20 g, 61%) was obtained using lactone 5d (2 g, 4.94 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.46 g, 5.92 mmol) and Mg (0.16 g, 6.48 mmol)], and Lawesson's reagent (1.00 g, 2.47 mmol) as a thick orange liquid. [Found: C, 77.5; H, 6.0; N, 2.7; S, 11.4. C₃₇H₃₃NOS₂ requires: C, 77.72; H, 5.82; N, 2.45; S, 11.22%.] *R*_f (100% Hexane) 0.65; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.23–8.22 (1H, m, ArH), 8.00 (1H, d, J 7.5 Hz, ArH), 7.87-7.84 (1H, m, ArH), 7.87-7.59 (4H, m, ArH), 7.52-7.49 (1H, m, ArH), 7.37-7.34 (4H, m, ArH), 7.15-7.12 (2H, m, ArH), 6.77-6.74 (3H, m, ArH), 3.76 (3H, s, OCH₃), 2.70 (2H, t, J 7.8 Hz, CH₂), 1.28–1.23 (8H, m, CH₂), 0.85–0.81 (3H, m, CH₃); δ_{C} (75.6 MHz, CDCl₃) 142.4, 140.0, 138.8, 137.9, 136.4, 135.3, 134.6, 130.6, 130.3, 129.3, 128.1, 127.1, 125.9, 125.2, 124.8, 124.5, 124.2, 123.3, 123.2, 123.0, 122.1, 121.8, 121.7, 120.8, 120.6, 119.7, 117.1, 116.4, 55.5, 31.6, 30.9, 29.1, 29.0, 22.6, 14.1; *m*/*z* (EI) 571 (53, M⁺).

5.3.14. 3-(1-(5-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)-9-(4-methoxyphenyl)-9H-carbazole (**7n**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7n** (1.38 g, 49%) was obtained using lactone **5d** (2 g,

4.94 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.46 g, 5.92 mmol) and Mg (0.16 g, 6.48 mmol)], and Lawesson's reagent (1.00 g, 2.47 mmol) as a thick orange liquid. [Found: C, 77.5; H, 6.0; N, 2.7; S, 11.5. $C_{37}H_{33}NOS_2$ requires: C, 77.72; H, 5.82; N, 2.45; S, 11.22%.] R_f (100% Hexane) 0.65; δ_H (300 MHz, CDCl₃) 8.22–8.20 (1H, m, ArH), 8.01 (1H, d, *J* 7.8 Hz, ArH), 7.85–7.79 (1H, m, ArH), 7.87–7.57 (4H, m, ArH), 7.52–7.49 (1H, m, ArH), 7.37–7.34 (4H, m, ArH), 7.15–7.12 (2H, m, ArH), 6.77–6.74 (3H, m, ArH), 3.77 (3H, s, OCH₃), 2.75 (2H, t, *J* 7.65 Hz, CH₂), 1.28–1.23 (8H, m, CH₂), 0.85–0.79 (3H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 142.4, 141.9, 141.7, 139.8, 138.9, 138.1, 137.9, 136.7, 135.7, 135.0, 134.6, 133.8, 132.9, 132.1, 131.1, 129.8, 128.1, 127.9, 125.5, 125.1, 124.7, 123.7, 123.1, 120.6, 120.4, 120.3, 120.2, 55.4, 31.4, 30.6, 29.6, 23.8, 22.5, 14.0; m/z (EI) 571 (15, M⁺).

5.3.15. 3-(1-(3-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)dibenzofuran (**70**)

Following the above-mentioned procedure (B), benzo[c]thiophene **70** (1.58 g, 51%) was obtained using lactone **5e** (2 g, 6.66 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.98 g, 8.00 mmol) and Mg (0.21 g, 8.82 mmol)], and Lawesson's reagent (1.35 g, 3.33 mmol) as an orange solid; mp 115 °C. [Found C, 77.0; H, 5.5; S, 13.5. C₃₀H₂₆OS₂ requires: C, 77.21; H, 5.62; S, 13.74%.] R_f (100% Hexane) 0.70; δ_H (300 MHz, CDCl₃) 8.30 (1H, s, ArH), 7.93–7.88 (2H, m, ArH), 7.78 (1H, d, J 8.1 Hz, ArH), 7.67 (1H, d, J 8.1 Hz, ArH), 7.56-7.48 (2H, m, ArH), 7.42–7.37 (1H, m, ArH), 7.28 (1H, t, J 7.35 Hz, ArH), 7.20 (1H, d, / 5.1 Hz, ArH), 6.98–6.89 (3H, m, ArH), 2.95 (t, / 7.8 Hz, 2H, CH₂), 1.71 (q, J 7.65 Hz, 2H, CH₂), 1.39 (2H, q, J 6.9 Hz, CH₂), 1.27–1.18 (4H, m, CH₂), 0.78–0.73 (3H, m, CH₃); δ_{C} (75.6 MHz, CDCl₃) 156.7, 155.2, 143.7, 140.5, 139.3, 130.3, 127.5, 127.0, 126.7, 125.4, 125.0, 124.7, 124.2, 124.1, 123.9, 122.9, 120.9, 120.8, 120.5, 119.7, 116.5, 112.2, 111.8, 31.9, 31.0, 30.1, 29.6, 22.7, 14.1; m/z (EI) 466 (25, M⁺).

5.3.16. 3-(1-(5-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)dibenzofuran (**7p**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7p** (1.71 g, 55%) was obtained using lactone **5e** (2 g, 6.66 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.98 g, 8.00 mmol) and Mg (0.21 g, 8.82 mmol)], and Lawesson's reagent (1.35 g, 3.33 mmol) as a thick orange liquid. [Found: C, 77.1; H, 5.4; S, 13.5. $C_{30}H_{26}OS_2$ requires: C, 77.21; H, 5.62; S, 13.74%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 2835, 1605, 1510, 771 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.40 (1H, s, ArH), 7.93–7.28 (9H, m, ArH), 7.05–6.85 (3H, m, ArH), 2.92–2.90 (2H, m, CH₂), 1.78–1.28 (8H, m, CH₂), 0.93–0.91 (3H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 156.7, 155.2, 145.2, 143.0, 140.4, 131.2, 129.6, 127.5, 125.4, 125.0, 124.9, 124.7, 124.3, 124.1, 122.9, 122.0, 121.3, 121.1, 120.9, 120.2, 119.9, 116.6, 112.2, 111.8, 31.6, 31.6, 30.2, 28.8, 22.6, 14.1; m/z (EI) 466 (45, M⁺).

5.3.17. 3-(1-(3-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)dibenzothiophene (**7q**)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **7q** (1.83 g, 60%) was obtained using lactone **5f** (2 g, 6.33 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.87 g, 7.59 mmol) and Mg (0.20 g, 8.33 mmol)], and Lawesson's reagent (1.28 g, 3.16 mmol) as an orange solid; mp 117 °C. [Found: C, 74.4; H, 5.7; S, 19.7. C₃₀H₂₆S₃ requires: C, 74.64; H, 5.43; S, 19.93%.] *R*_f (100% Hexane) 0.70; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.47 (1H, s, ArH), 8.26–8.23 (1H, m, ArH), 8.00–7.90 (3H, m, ArH), 7.81 (1H, d, *J* 8.4 Hz, ArH), 7.68–7.65 (1H, m, ArH), 7.53–7.51 (2H, m, ArH), 7.44 (1H, d, *J* 5.4 Hz, ArH), 7.17–7.12 (3H, m, ArH), 2.73 (2H, t, *J* 7.8 Hz, CH₂), 1.69–1.64 (2H, m, CH₂), 1.34–1.27 (6H, m, CH₂), 0.89–0.84 (3H, m, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 142.4, 140.0, 138.8, 138.0, 136.4, 135.3, 135.1, 134.6, 130.6,

129.3, 128.1, 128.0, 127.1, 125.9, 125.2, 124.6, 124.4, 124.1, 123.3, 123.0, 122.1, 121.8, 120.8, 31.6, 30.9, 29.1, 29.0, 22.6, 14.1; m/z (EI) 482 (15, M⁺).

5.3.18. 3-(1-(5-Hexylthiophen-2-yl)benzo[c]thiophen-3vl)dibenzothiophene (**7r**)

Following the above-mentioned procedure (B), benzo[c]thiophene **7r** (1.74 g, 57%) was obtained using lactone **5f** (2 g, 6.33 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.87 g, 7.59 mmol) and Mg (0.20 g, 8.33 mmol)], and Lawesson's reagent (1.28 g, 3.16 mmol) as a thick orange liquid. [Found: C, 74.8; H, 5.2; S, 19.7. C₃₀H₂₆S₃ requires: C, 74.64; H, 5.43; S, 19.93%.] R_f (100% Hexane) 0.70; v_{max} (KBr) 2871, 1610, 1500, 775 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.46 (1H, s, ArH), 8.29– 8.25 (1H, m, ArH), 8.00–7.90 (3H, m, ArH), 7.78 (1H, d, J 8.2 Hz, ArH), 7.68–7.65 (1H, m, ArH), 7.53–7.51 (2H, m, ArH), 7.44 (1H, d, J 5.4 Hz, ArH), 7.17–7.12 (3H, m, ArH), 2.76 (2H, t, J 7.65 Hz, CH₂), 1.71–1.65 (2H, m, CH₂), 1.34–1.27 (6H, m, CH₂), 0.87–0.81 (3H, m, CH₃); δ_{C} (75.6 MHz, CDCl₃) 142.5, 140.0, 138.8, 138.0, 136.4, 135.3, 135.2, 134.6, 130.6, 129.3, 128.2, 128.1, 127.1, 126.0, 125.2, 124.6, 124.5, 124.2, 123.4, 123.0, 122.1, 121.8, 120.8, 31.7, 30.9, 29.2, 29.1, 22.6, 14.1; *m*/*z* (EI) 482 (22, M⁺).

5.3.19. 3-(4-(Diphenylamino)phenyl)isobenzofuran-1(3H)-one (10)

Following the above-mentioned procedure (A), lactone **10** (6.46 g, 42%) was obtained using triphenylamine **8** (10 g, 40.81 mmol), phthalic anhydride (7.25 g, 48.97 mmol), AlCl₃ (8.15 g, 61.22 mmol), and NaBH₄ (7.74 g, 204.00 mmol) as colorless solid; mp 96 °C. [Found: C, 82.5; H, 5.3; N, 3.5. C₂₆H₁₉NO₂ requires: C, 82.74; H, 5.07; N, 3.71%.] R_f (10% EA/Hexane) 0.61; ν_{max} (KBr) 1759, 1600, 1505, 755 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.95 (1H, t, *J* 7.5 Hz, ArH), 7.68 (1H, t, *J* 7.2 Hz, ArH), 7.56 (1H, t, *J* 7.5 Hz, ArH), 7.27–7.20 (4H, m, ArH), 7.09–7.00 (10H, m, ArH), 6.36 (1H, s, CH); δ_C (75.6 MHz, CDCl₃) 170.5, 149.6, 149.0, 147.9, 147.3, 134.3, 129.4, 129.3, 129.2, 128.4, 125.6, 124.9, 124.2, 123.5, 123.1, 122.9, 122.7, 82.8; m/z (EI) 377 (11, M⁺).

5.3.20. N-Phenyl-N-(4-(1-(thiophen-2-yl)benzo[c]thiophen-3-yl)phenyl)benzenamine (**11a**)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **11a** (1.33 g, 55%) was obtained using lactone **10** (2 g, 5.30 mmol), 2-thienyImagnesium bromide [prepared from 2-bromothiophene (1.04 g, 6.36 mmol) and Mg (0.17 g, 7.02 mmol)], and Lawesson's reagent (1.07 g, 2.65 mmol) as orange solid; mp 140 °C. [Found: C, 78.6; H, 4.8; N, 2.9; S, 14.2. C₃₀H₂₁NS₂ requires: C, 78.39; H, 4.61; N, 3.05; S, 13.95%.] *R*_f (100% Hexane) 0.70; ν_{max} (KBr) 1601, 1500, 765 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.01 (1H, d, *J* 8.1 Hz, ArH), 7.87 (1H, d, *J* 8.1 Hz, ArH), 7.57 (2H, d, *J* 7.8 Hz, ArH), 7.38–7.32 (6H, m, ArH), 7.24–7.12 (11H, m, ArH); δ_{C} (75.6 MHz, CDCl₃) 147.5, 136.2, 135.4, 134.9, 134.1, 129.9, 129.4, 127.9, 127.7, 125.9, 125.2, 124.8, 124.6, 124.1, 123.5, 123.4, 121.5; *m/z* (EI) 459 (13, M⁺).

5.3.21. 4-(1-(3-Hexylthiophen-2-yl)benzo[c]thiophen-3-yl)benzenamine (11b)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **11b** (1.73 g, 60%) was obtained using lactone **10** (2 g, 5.30 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.57 g, 6.36 mmol) and Mg (0.17 g, 7.00 mmol)], and Lawesson's reagent (1.08 g, 2.66 mmol) as a thick orange liquid. [Found: C, 79.7; H, 6.3; N, 2.3; S, 11.6. C₃₆H₃₃NS₂ requires: C, 79.51; H, 6.12; N, 2.58; S, 11.79%.] *R*_f (100% Hexane) 0.70; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.88–7.85 (1H, m, ArH), 7.63–7.56 (3H, m, ArH), 7.40 (1H, d, *J* 5.1 Hz, ArH), 7.36–7.28 (4H, m, ArH), 7.23–7.19 (6H, m, ArH), 7.12–7.07 (5H, m, ArH), 2.69 (2H, t, *J* 7.8 Hz, CH₂), 1.65–1.60 (2H, m, CH₂), 1.33–1.24 (6H, m, CH₂), 0.89–0.82 (3H, m, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 147.5, 147.4, 142.3, 137.9, 135.4, 134.1, 129.9, 129.4,

129.3, 128.3, 127.9, 125.7, 124.8, 124.0, 123.9, 123.5, 123.3, 121.7, 121.1, 31.6, 30.9, 29.1, 29.0, 22.6, 14.0; *m/z* (EI) 543 (33, M⁺).

5.3.22. 4-(1-(5-Hexylthiophen-2-yl)benzo[c]thiophen-3vl)benzenamine (**11c**)

Following the above-mentioned procedure (B), benzo[*c*]thiophene **11c** (1.64 g, 57%) was obtained using lactone **10** (2 g, 5.30 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.57 g, 6.36 mmol) and Mg (0.17 g, 7.00 mmol)], and Lawesson's reagent (1.08 g, 2.66 mmol) as a thick orange liquid. [Found: C, 79.7; H, 6.4; N, 2.3; S, 11.5. C₃₆H₃₃NS₂ requires: C, 79.51; H, 6.12; N, 2.58; S, 11.79%.] *R*_f (100% Hexane) 0.70; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.03–8.00 (1H, m, ArH), 7.87–7.84 (1H, m, ArH), 7.57 (2H, d, *J* 8.4 Hz, ArH), 7.38–7.32 (4H, m, ArH), 7.25–7.20 (7H, m, ArH), 7.16–7.09 (4H, m, ArH), 6.86 (1H, d, *J* 3.6 Hz, ArH), 2.91 (2H, t, *J* 7.65 Hz, CH₂), 1.83–1.78 (2H, m, CH₂), 1.51–1.31 (6H, m, CH₂), 1.00–0.90 (3H, m, CH₃); $\delta_{\rm C}$ (75.6 MHz, CDCl₃) 147.5, 147.3, 146.2, 135.1, 134.9, 133.6, 133.3, 129.9, 129.4, 127.9, 126.8, 125.0, 124.8, 124.8, 124.3, 124.1, 123.6, 123.3, 121.7, 121.4, 31.7, 30.3, 28.9, 22.7, 14.2; *m/z* (EI) 543 (55, M⁺).

5.4. A representative procedure for the preparation of compound 12a (procedure C)

5.4.1. 9-Hexyl-3-(1-(3-hexyl-5-(4-hexyl-5-(1-(9-hexyl-9H-carbazol-3-yl)benzo[c]thiophen-3-yl)thiophen-2-yl)thiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**12a**)

To a stirred solution of **7b** (0.5 g, 0.91 mmol) in dry DCM (20 mL) was added FeCl₃ (0.29 g, 1.82 mmol) under N₂ atmosphere. The reaction mixture was stirred for 12 h at room temperature and quenched with dilute solution of N₂H₄·H₂O. Then, it was filtered through Celite, extracted with DCM, and dried (Na₂SO₄). Solvent was evaporated in vacuo to give the crude product, which was purified by column chromatography (100% Hexane) to give the title compound **12a** (0.30 g, 61%) as a red solid; mp 80 °C. [Found C, 78.6; H, 7.3; N, 2.7; S, 11.5. C₇₂H₇₆N₂S₄ requires: C, 78.78; H, 6.98; N, 2.55; S, 11.68%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 2911, 1600, 1510, 771 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 8.30 (2H, s, ArH), 8.05 (2H, d, J 7.8 Hz, ArH), 7.83-7.80 (2H, m, ArH), 7.67 (4H, t, J 8.4 Hz, ArH), 7.40-7.31 (6H, m, ArH), 7.18-7.00 (8H, m, ArH), 4.21 (4H, t, J 6.6 Hz, NCH₂), 2.62 (4H, t, J 7.5 Hz, CH₂), 1.82-1.78 (4H, m, CH₂), 1.62–1.53 (4H, m, CH₂), 1.35–1.15 (24H, m, CH₂), 0.80–0.74 (12H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 142.9, 141.0, 140.1, 137.8, 137.4, 137.0, 134.3, 127.8, 127.4, 126.1, 125.9, 124.7, 124.2, 123.9, 123.6, 123.4, 122.8, 121.8, 121.34, 121.2, 120.6, 119.2, 109.3, 109.0, 43.3, 31.7, 31.6, 30.9, 29.4, 29.2, 29.1, 27.1, 22.6, 22.5, 14.1, 14.0; m/z (EI) 1096 (13, M⁺).

5.4.2. 9-(2-Ethylhexyl)-3-(1-(5-(5-(1-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo[c]thiophen-3-yl)thiophen-2-yl)thiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**12b**)

Following the above-mentioned procedure (C), compound **12b** (0.25 g, 50%) was obtained using compound **7g** (0.5 g, 1.01 mmol) and FeCl₃ (0.33 g, 2.02 mmol) as a black solid; mp 112 °C. [Found: C, 77.8; H, 6.5; N, 3.0; S, 12.9. $C_{64}H_{60}N_2S_4$ requires: C, 78.00; H, 6.14; N, 2.84; S, 13.02%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 2875, 1596, 1505, 775 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.35 (2H, s, ArH), 8.14 (2H, d, *J* 7.8 Hz, ArH), 8.04 (2H, d, *J* 8.7 Hz, ArH), 7.89 (2H, d, *J* 8.7 Hz, ArH), 7.73 (2H, d, *J* 9.3 Hz, ArH), 7.53–7.36 (6H, m, ArH), 7.28–7.07 (10H, m, ArH), 4.21–4.16 (4H, m, NCH₂), 2.16–2.09 (2H, m, CH), 1.42–1.30 (14H, m, CH₂), 0.96–0.86 (14H, m, CH₂CH₃); δ_C (75.6 MHz, CDCl₃) 141.5, 140.6, 136.3, 136.0, 135.4, 135.3, 135.1, 127.2, 126.1, 125.6, 125.4, 124.8, 124.5, 124.1, 124.0, 123.5, 122.7, 121.8, 121.5, 121.1, 120.5, 119.2, 109.5, 109.3, 47.6, 39.5, 31.1, 28.9, 24.5, 23.1, 14.1, 10.9; m/z (EI) 984 (35, M⁺).

5.4.3. 9-Phenyl-3-(1-(5-(5-(1-(9-phenyl-9H-carbazol-3-yl)benzo-[c]thiophen-3-yl)thiophen-2-yl)thiophen-2-yl)benzo[c]thiophen-3-yl)-9H-carbazole (**12c**)

Following the above-mentioned procedure (C), compound **12c** (0.23 g, 47%) was obtained using compound **7j** (0.5 g, 1.09 mmol) and FeCl₃ (0.35 g, 2.19 mmol) as a red solid; mp 220 °C. [Found: C, 78.7; H, 4.2; N, 2.9; S, 14.3. $C_{60}H_{36}N_2S_4$ requires: C, 78.91; H, 3.97; N, 3.07; S, 14.05%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 1595, 1500, 762 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.37 (2H, s, ArH), 8.15 (2H, d, *J* 7.5 Hz, ArH), 7.96 (2H, d, *J* 8.4 Hz, ArH), 7.85 (2H, d, *J* 8.4 Hz, ArH), 7.63–7.52 (8H, m, ArH), 7.46–7.39 (8H, m, ArH), 7.32–7.26 (6H, m, ArH), 7.13–7.05 (6H, m, ArH); δ_C (75.6 MHz, CDCl₃) 141.5, 140.5, 137.5, 136.4, 135.5, 135.4, 135.1, 130.0, 127.9, 127.7, 127.6, 127.1, 126.5, 126.0, 125.8, 125.2, 125.1, 124.7, 124.2, 124.1, 123.3, 121.6, 121.5, 121.2, 120.6, 120.4, 110.4, 110.1; *m/z* (EI) 912 (33, M⁺).

5.4.4. 3-(1-(3-Hexyl-5-(4-hexyl-5-(1-(dibenzofuran-3-yl)benzo-[c]thiophen-3-yl)thiophen-2-yl)thiophen-2-yl)benzo[c]thiophen-3-yl)dibenzofuran (**12d**)

Following the above-mentioned procedure (C), compound **12d** (0.26 g, 52%) was obtained using compound **7o** (0.5 g, 1.07 mmol) and FeCl₃ (0.35 g, 2.14 mmol) as a red solid; mp 112 °C. [Found: C, 77.6; H, 5.2; S, 14.0. $C_{60}H_{50}O_2S_4$ requires: C, 77.38; H, 5.41; S, 13.77%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 2825, 1595, 1495, 762 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.27 (2H, s, ArH), 8.04 (2H, d, *J* 6.9 Hz, ArH), 7.89–7.64 (10H, m, ArH), 7.56–7.52 (m, 2H, ArH), 7.44–7.42 (2H, m, ArH), 7.19–7.17 (6H, m, ArH), 2.75–2.71 (4H, m, CH₂), 1.70–1.60 (4H, m, CH₂), 1.37–1.27 (12H, m, CH₂), 0.89–0.85 (6H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 156.8, 155.9, 143.1, 137.8, 137.2, 135.5, 134.7, 128.8, 128.7, 127.6, 127.4, 125.9, 125.2, 124.4, 124.3, 124.0, 123.0, 121.8, 121.4, 120.9, 112.2, 111.9, 31.6, 30.8, 29.4, 29.1, 22.6, 14.1; m/z (EI) 930 (55, M⁺).

5.4.5. 3-(1-(3-Hexyl-5-(4-hexyl-5-(1-(dibenzothiophen-3-yl)benzo-[c]thiophen-3-yl)thiophen-2-yl)thiophen-2-yl)benzo[c]thiophen-3-yl)dibenzothiophene (**12e**)

Following the above-mentioned procedure (C), compound **12e** (0.27 g, 55%) was obtained using compound **7q** (0.5 g, 1.04 mmol) and FeCl₃ (0.33 g, 2.07 mmol) as a red solid; mp 105 °C. [Found: C, 74.6; H, 5.1; S, 20.2. $C_{60}H_{50}S_6$ requires: C, 74.80; H, 5.23; S, 19.97%.] R_f (100% Hexane) 0.70; ν_{max} (KBr) 2911, 1596, 1505, 765 cm⁻¹; δ_H (300 MHz, CDCl₃) 8.34–8.33 (2H, m, ArH), 8.13–8.10 (2H, m, ArH), 7.87–7.77 (4H, m, ArH), 7.69–7.65 (4H, m, ArH), 7.40–7.37 (6H, m, ArH), 7.13–7.12 (2H, m, ArH), 7.07–7.04 (4H, m, ArH), 2.62 (4H, d, J 7.5 Hz, CH₂), 1.58–1.55 (4H, m, CH₂), 1.25–1.16 (12H, m, CH₂), 0.79–0.72 (6H, m, CH₃); δ_C (75.6 MHz, CDCl₃) 143.1, 140.0, 138.9, 137.9, 137.2, 136.4, 135.4, 135.3, 134.7, 130.5, 128.0, 127.4, 127.2, 126.0, 124.8, 124.6, 124.4, 123.4, 123.0, 122.1, 121.8, 120.9, 31.6, 30.8, 29.4, 29.1, 22.6, 14.1; m/z (EI) 962 (22, M⁺).

Acknowledgements

The authors thank DST, New Delhi (SR/S1/OC-37/2005) and UGC potential for excellence for a financial support. N.S.K. thanks DST for a fellowship. Authors thank DST-FIST for 300 MHz NMR facility.

References and notes

- (a) Bao, Z.; Dodabalapur, A.; Lovinger, A. J. *Appl. Phys. Lett.* **1996**, 69, 4108–4110;
 (b) Sirringhaus, H.; Tessler, N.; Friend, R. H. *Science* **1998**, 280, 1741–1744;
 (c) Li, X. C.; Sirringhaus, H.; Garnier, F.; Holmes, A. B.; Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.; Friend, R. H. *J. Am. Chem. Soc.* **1998**, 120, 2206–2207.
- (a) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. *Nature* **1990**, 347, 539–541; (b) Noda, T.; Ogawa, H.; Noma, N.; Shirota, Y. J. *Chem. Mater.* **1999**, *9*, 2177–2181.
- (a) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Prog. Polym. Sci. 2003, 28, 1297–1353; (b) Lu, X.-M.; Xu, J.; He, C. Org. Lett. 2005, 7, 2829–2832; (c) Fu, H.; Wu, H.; Hou, X.; Xiao, F.; Shao, B. Org. Electron. 2006, 156,

809-814; (d) Adhikari, R. M.; Mondal, R.; Shah, B. K.; Neckers, D. C. J. Org. Chem. 2007, 72, 4727-4732.

- 4. Lu, J.; Xia, P. F.; Lo, P. K.; Tao, Y.; Wong, M. S. Chem. Mater. 2006, 18, 6194–6203.
- 5. (a) Promarak, V.; Pankuvang, A.; Ruchirawa, S. Tetrahedron Lett. 2007, 48, 1151-1154; (b) Promarak, V.; Ruchirawa, S. *Tetrahedron* **2007**, 63, 1602–1609. 6. (a) Yu, H.; Zain, S. M.; Eigenbrot, I. V.; Phillips, D. Chem. Phys. Lett. **1993**, 202, 141–
- 143; (b) Howell, R.; Taylor, A. G.; Phillips, D. Chem. Phys. Lett. 1992, 188, 119-122. 7. (a) Lee, J.; Woo, H.; Kim, T.; Park, W. *Opt. Mater.* **2002**, *21*, 225–232; (b) Ding, J.;
- **2006**, *16*, 575–581.
- 8. Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. J. Am. Chem. Soc. 2006, 128, 5592-5593.
- 9. Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. J. Am. Chem. Soc. **2001**, 123, 9404–9411. 10. Guan, M.; Chen, Z.; Bian, Z.; Liu, Z.; Gong, G.; Baik, W.; Lee, H.; Huang, C. Org. Electron. 2006, 7, 330-336.

- Mitschke, U.; Bauerle, P. J. Chem. Soc., Perkin Trans. 1 2001, 740–753.
 (a) Vangeneugden, D. L.; Vanderzande, D. J. M.; Salbeck, J.; van Hal, P. A.; Janssen, R. A. J.; Hummelen, J. C.; Brabec, C. J.; Shaheen, S. E.; Sariciftci, N. S. J. Phys. Chem. B **2001**, 105, 11106–11113; (b) Hansel, H.; Zettl, H.; Krausch, G.; Kisselev, R.; Thelakkat, M.; Schmidt, H.-W. Adv. Mater. **2003**, 15, 2056– 2060.
- 13. Meek, S. T.; Nesterov, E. E.; Swager, T. M. Org. Lett. 2008, 10, 2991-2993.
- Meek, S. 1.; Nesterov, E. E.; Swager, I. M. Org. Lett. 2008, 10, 2991–2993.
 (a) Mohanakrishnan, A. K.; Lakshmikantham, M. V.; McDougal, C. D.; Cava,
 M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 3105–3112; (b)
 Mohanakrishnan, A. K.; Arul Clement, J.; Amaladass, P.; Thirunavukkarasu,
 V. S. Tetrahedron Lett. 2007, 48, 8715–8720; (c) Mohanakrishnan, A. K.; Senthil 14. Kumar, N.; Amaladass, P. *Tetrahedron Lett.* **2008**, 49, 4792–4795; (d) Amaladass, P.; Arul Clement, J.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2008, 3798-3810.