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Abstract
Chloramines are an important class of reagents, providing a convenient source of chlorine or electrophilic nitrogen. However, the

instability of these compounds is a problem which makes their isolation and handling difficult. To overcome these hazards, a con-

tinuous-flow approach is reported which generates and immediately reacts N-chloramines directly, avoiding purification and isola-

tion steps. 2-Chloramines were produced from the reaction of styrenes with N-alkyl-N-sulfonyl-N-chloramines, whilst N-alkyl or

N,N’-dialkyl-N-chloramines reacted with anisaldehyde in the presence of t-BuO2H oxidant to afford amides. Primary and second-

ary imines were produced under continuous conditions from the reaction of N-chloramines with base, with one example subse-

quently reduced under asymmetric conditions to produce a chiral amine in 94% ee.
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Introduction
N-Chloramines are versatile reagents, however, their availabili-

ty is restricted by their stability, so useful would be in situ

methods to produce and use them [1,2]. The continuous-flow

methodology is useful in this context, enabling control over

reaction exotherms and improved measures for containment. To

evaluate the use of N-chloramines in the laboratory requires

multiphase flow methods, and until recently these have been

limited by the availability of suitable equipment. Microreactors

have been used for mixing biphases and employ either static

mixers or shaped chambers and channels that repeatedly split

and mix the liquids [3-5]. These rely on flow rates within the

mixing zone that are sufficient to overcome phase separation

[6]. Actively mixed, multistage and variable residence time

(tres) continuous stirred tank reactors (CSTRs) allow much
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Figure 1: Continuous-flow process to produce and react N-chloramines.

lower flow rates and therefore longer tres for slow reactions

[7,8]. The use of CSTRs to carry out sequential or multistep

reactions has been exploited by Ley and others [9-11]. The

strategy is useful, since it has the potential to eliminate time-

consuming and costly product isolations. In these systems,

the reactants and products are fluids which are contacted

with solid-supported reagents that after some time require

regeneration, which is not convenient within chemical manufac-

ture.

Chloramine itself is unstable, though has been produced safely

at large scale using continuous-flow methods; in fact, chlor-

amine has been used as an intermediate in the manufacture of

hydrazine using the Raschig process [12,13]. N-Alkyl-N-chlor-

amines are equally unstable, yet have only been prepared in

batch via reaction of a primary or secondary amine with

Cl2 gas, N-chlorosuccinimide, chloramine-T or hypochlorite

salts [14,15]. Whilst Cl2 gas is atom efficient it is difficult to

handle, with associated toxicity, and the acid byproduct which

leads to N-chloramine hydrolysis [16]. On the other hand,

N-chlorosuccinimide or chloramine-T are commonly employed,

being commercially available, stable and straightforward to

handle, though both exhibit poor atom economy [17-21]. Sodi-

um hypochlorite (NaOCl) solutions are less widely used, yet

readily available, economic and provide an atom efficient

reagent for N-chloramine formation [22-24].

A continuous-flow process for the oxidation of alcohols using

NaOCl as a phase-transfer catalyst was recently reported [25].

We have published a communication that describes the continu-

ous mixing of aqueous NaOCl and an organic solution of sec-

ondary amine, using either a tubular reactor with in-line static

mixers or a single stage CSTR [26]. The reactor was selected to

provide a tres for optimal conversion. This was achieved accord-

ing to reaction kinetics and hydrophobicity of the amine, which

affects its partition between phases. Herein, we report improve-

ments to this process and the use of N-alkyl-N-chloramine in

subsequent continuous-flow reactions (Figure 1).

These reagents can be used as electrophilic or radical amination

agents in a wide range of reactions [14]. In the present study,

we opted to evaluate the addition of N-alkyl-N-chloramines

with (a) alkenes to produce amines, (b) aldehydes to give

amides, (c) reaction with a base to afford imines. Several

alkenes are known to react with N-haloamines to form

aziridines and other N-heterocycles. Typically, the reactions

require a catalyst (e.g., Cu, I2) [17,18,27], whilst more active

reagents such as chloramine-T with osmate catalysts have been

used to make 1,2-aminoalcohols and diamines [28-33]. Im-

proved methods for the formation of amides remain an impor-

tant goal for the pharma industry. In this regard, the reaction of

N-chloramine with aldehydes, t-BuO2H and iron or copper cata-

lysts to give secondary and tertiary amides was reported in

batch recently [33,34], though safety concerns upon scale-up

makes this a useful reaction to translate to flow. Likewise,

imines are an important class of compounds and are increas-

ingly used as precursors to optically active amines [35-39].

Whilst normally prepared via a corresponding carbonyl com-

pound, final dehydration can be problematic. The oxidation of a

racemic amine and subsequent chiral reduction may offer a

valuable alternative if coupled into a sequential flow protocol.

There are reports on the formation of imines from N-chlor-

amines using bases (e.g., NaOMe, KOt-Bu, NEt3 and NaOH)

[40-45], with one specific study using this technique to

racemise and resolve enantiopure tetrahydroquinolines [46,47],

and another accessing an intermediate to the drug telaprevir

[45]. Our study complements these findings, by supplying a

continuous-flow oxidation–reduction sequence which tele-

scopes both N-chloramine and imine intermediates to produce

chiral amines.
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Figure 2: Left: Laboratory scale CSTR developed by our group [8]. Right: 5-stage CSTR configuration using co-feeds of amine in toluene and
aqueous NaOCl.

Table 1: Continuous N-chloramine formation.

entry starting material product reactora (vol/mL) tres (min) conversion (%)b productivity (mol L−1 h−1)

1 1 5 SM (6) 20 89 1.3
2 1 5 CSTRc (50) 25 100 1.2
3 1 5 CSTRd (10) 5 94 5.6
4 2 6 CSTRd (10) 10 92 2.8
5 3 7 CSTRd (10) 30 93 0.9
6 4 8 CSTRd (10) 10 100 3.0

aSM = static mixer. bDetermined by 1H NMR spectroscopy. c1-Stage CSTR. d5-Stage CSTR.

Results and Discussion
N-Chloramine formation
N-(Di)alkyl-N-chloramines have been prepared in continuous

organic–aqueous biphasic flow using either static mixers or a

single-stage CSTR [26]. The choice of reactor and definition of

tres for this reaction is governed by both the thermodynamic

phase partition parameter of reactants and mixing efficiency

which control mass transfer between each phase (and thus, reac-

tion rate). We decided to exploit a multi-stage cascade CSTR

developed by our group recently [8], which enables efficient

mixing over long tres (Figure 2).

Using a 5-stage variant, various unsymmetrical N-chloramines

were produced with unprecedented productivities (Table 1).

The rapid nature of this chlorination step makes in situ genera-

tion and consumption feasible in flow mode. Comparing

Table 1, entries 1 and 3, the 5-stage CSTR, with one fifth the
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Table 2: Batch vs flow study of reaction of N-chloramine with styrene.

entry mode/substrate catalyst (mol %) temperature (°C) time (min) product conversion (%)a

1 batch/9 2 100 15 14 62
2 batch/9 2 80 15 14 98
3 batch/9 2 rt 60 14 50
4 batch/9 0 100 60 14 100
5b batch/9 0 100 60 14 0
6 batch/10 2 110 60 15 100
7c CSTR/9 0 100 30

60
75

14 12
73
76

8c CSTR/10 0 100 30
60
120

15 67
77
77

aConversion measured by 1H NMR spectroscopy. bReaction carried out in either air or presence of TEMPO (1 equiv) led to the same result. c1-Stage
CSTR, co-feed with styrene in toluene and substrate in toluene/diglyme 3:1.

volume of that in Table 1, entry 2, provides a much shorter

tres than the in-line static mixer (SM) with comparable conver-

sion of N-benzyl-N-methylamine (1) to the N-alkyl-N-chlor-

amine 5 at steady state, representing a productivity value of

5.6 mol L−1 h−1. The same reactor geometry was used to chlori-

nate primary, secondary acyclic and cyclic amines 2–4 in

conversions between 92–100%, with productivities ranging be-

tween 0.9–3 mol L−1 h−1 (Table 1, entries 4–6). In each case,

separation of the product-rich toluene phase avoided N-chlor-

amine isolation and allowed direct deployment in further reac-

tions.

Reaction of N-chloramine with alkene
Initially our study tested the reaction of N-chloromorpholine

(16) to styrene (13) varying Cu catalyst loading and a range of

temperatures. The anti-Markovnikov addition product was ob-

served with 10% CuI catalyst loading, at ambient temperature.

However, it required 24 hours (see Supporting Information

File 1, S1), and this slow reaction prevents sensible translation

of the process into continuous flow. Despite trying alternative

catalysts or other conditions no improvement was found.

Instead, the more electron-poor N-chloro-N-methyl-p-toluene-

sulfonamide (11) was investigated as substrate. Differential

scanning calorimetry (DSC) was used to assess the thermal

stability of 11, which melts at 78 °C and decomposes between

160–200 °C. This profile peaks at 188 °C, corresponding to an

enthalpy of decomposition of −84.7 kJ mol−1 (see Supporting

Information File 1, S2). A maximum safe operating tempera-

ture of 110 °C was implemented to avoid thermal decomposi-

tion and thermal runaway.

The direct reaction of N-chloramine 11, or the benzyl-substi-

tuted variant 12, led to a single regioisomer of the amine prod-

uct in a lower reaction time than the analogous reaction using

16 (15 minutes vs 24 hours in batch mode; Supporting Informa-

tion File 1, Table S1, entry 2 and Table 2, entries 1–5. The

products 14 and 15, prepared in batch, were isolated in 78 and

68% yield, respectively, and characterized (see Supporting

Information File 1, S4). These standards enabled monitoring of

the steady-state conversion in continuous flow by 1H NMR.

Following an optimization study, it was found that the Cu cata-

lyst could be omitted when operating at 100 °C for 1 hour reac-

tion time in batch, providing quantitative conversion to product

(Table 2, entry 4). Conducting the same reaction under an atmo-

sphere of air or in the presence of TEMPO, suppressed all prod-

uct formation (Table 2, entry 5). Due to the safety concerns of

scaling-up such a batch reaction, a heated single-stage CSTR

was evaluated to immediately quench the N-chloramine.

Flowing an aqueous solution of in situ generated 11 or 12 into a
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Table 3: Batch vs flow study of reaction of N-chloramine with an aldehyde.

entry mode FeCl3 (mol %) equiv 17/t-BuO2H time (min) conversion/yield (%)a

1b batch 0.15 5/3.6 300 77/54
2c batch 0.15 5/3.6 300 60
3 batch 15 5/3.6 60 100
4 batch 0 5/3.6 120 90
5 batch 15 5/0 120 10
6 batch 0 1/3.6 120 30
7 CSTR 0 5/5 100 70d

8 CSTR 5 5/5 100 96d

aConversion measured by gas chromatography as the average of three runs. bLiterature conditions quoted as 88% [34]. c[16] = 200 mM.
dConversion recorded at steady state.

stream of toluene containing styrene (13) enabled the continu-

ous production of alkylated amine products 14 and 15 (Table 2,

entries 7 and 8, respectively). In each case the tres was compa-

rable with batch (reaction of 11 = 75 minutes, 12 = 60 minutes),

with steady-state conversions or 76 and 77% observed, respec-

tively.

Reaction of N-chloramine with aldehyde
Reaction of N-chloramines with aromatic and aliphatic alde-

hydes to form amides has been reported by Porcheddu [34].

Under these literature conditions, FeCl3 catalyst (0.15 mol %),

t-BuO2H oxidant (3.6 equiv) and excess aldehyde 17 (5 equiv)

were employed to react with dilute N-chloramine 16 (0.064 M

in MeCN), delivering amide 18 in 77% conversion and

54% isolated yield. Our interests were to improve the produc-

tivity of this system, by exploiting higher concentrations of

N-chloramine produced in flow mode (200 mM). Table 3

summarizes a comparative study between batch and continuous

flow for this reaction.

Initial tests involving 200 mM substrate concentration afforded

amide 18 in 60% conversion (Table 3, entry 2). Increasing the

catalyst loading to 15 mol % led to a quantitative conversion of

18 within 1 hour reaction time. Unexpectedly, a control reac-

tion omitting the FeCl3 catalyst resulted in 90% conversion

following a two-hour reaction time (Table 3, entry 4).

Removing the t-BuO2H oxidant reduced the reaction rate signif-

icantly, leading to 10% conversion under otherwise identical

conditions (Table 3, entry 5), whilst fewer equivalents of alde-

hyde 17 led to 30% product formation (Table 3, entry 6).

Notably, other oxidants such as H2O2 and NaOCl failed to

Figure 3: Continuous-flow amide 18 formation using 1-stage CSTR.
Blue squares: FeCl3 included; red circles: FeCl3 not included.

produce any amide product. Likewise, attempts to couple

morpholine in place of its N-chloro derivative reached only

19% conversion.

Following the investigation of the batch reaction, it was trans-

ferred to a CSTR. Feeding 200 mM N-chloramine to meet a

separate solution of aldehyde 17 (5 equiv) and t-BuO2H

(5 equiv), a tres of 100 minutes afforded amide 18 in

70% conversion at steady state. Under analogous conditions,

FeCl3 (5 mol %) was included in the oxidant stream to give

96% steady-state conversion to 18 (Figure 3). This data repre-

sents productivities of 19 and 26 g L−1 h−1 for the uncatalysed

and FeCl3-catalyzed amide formation, respectively (Supporting

Information File 1, S4).
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Table 4: Batch optimization study of the dehydrochlorination of N-chloramines.

entry base catalyst solvent time (h) conversion (%)a

1 NEt3 (5 equiv) none toluene 42 92
2 KOt-Bu (5 equiv) none MeOH 15 90
3 NaOMe (2 equiv) none toluene/MeOH 1:1 2 100
4 NaOMe (10 equiv) none toluene/MeOH 1:1 1 100
5 NaOMe (1 equiv) none toluene/MeOH 1:1 1 47
6 NaOMe (5 equiv) none toluene 1 100
7 NaOH 25% aq TBABb toluene/water 1:1 1 83
8 NaOH 25% aq TBABb toluene/water 1:1 3 100
9 NaOH 40% aq TBABb toluene/water 1:1 1 50
10 NaOH 25% aq none toluene/MeOH (1%) 19 0
11 NaOH 25% aq none toluene/MeOH (20%) 19 0

aMeasured by 1H NMR spectroscopy. bReaction temperature = 60 °C.

Reaction of N-chloramine with base
The base-induced dehydrochlorination of N-chloramines is a

facile route to imines, which may be used for further functional-

ization. Our study began by examining a host of bases to

convert N-chloramine 5 to benzylidene(methyl)amine (19) as a

model reaction system (Table 4).

To achieve a complete conversion, NEt3 was required in large

excess (5 equiv) over 42 hours, which proved unsuitable for

continuous flow (Table 4, entry 1). Whilst KOt-Bu and NaOMe

bases allowed rapid imine formation (Table 4, entries 2–6),

though their low solubility in MeOH or toluene would require

slurry pumping in flow mode which is undesirable. In addition,

the isolation procedure is not straightforward, requiring multiple

unit operations. To avoid this, a phase-transfer catalyst (TBAB)

was used along with NaOH (Table 4, entries 7–9). This reagent,

in a toluene/water mixture, promoted full conversion to imine

19 (Table 4, entry 8). The separation of the toluene phase provi-

ded the imine product, which may be deployed directly in

further reactions.

To validate the batch protocol N-chloramines 5 and 7 under-

went smooth dehydrochlorination to produce imines 19 and 20

in 83 and 100% conversion after 1 hour (Table 5, entries 1 and

2). The cyclic N-chloramine 8 was converted in batch mode to

the corresponding imine 21, though required 18 hours to reach

84% conversion (Table 5, entry 3). The rapid nature of the

imine formation prompted us to investigate a fully continuous

protocol to both N-chlorinate and subsequently dehydrochlori-

nate amines, which would represent a mild and atom-efficient

alternative method of amine oxidation. A 5-stage cascade CSTR

was employed to link N-chloramine generation with base-

promoted imine formation. A 1 M stream of N-chloramine 5 in

toluene was mixed in the first CSTR with separate flows of

aqueous NaOH and TBAB (10 mol % relative to substrate) and

tres was adjusted by changing the number of subsequent CSTR

chambers (n) (Table 5, entry 1). It is noteworthy that attempts to

mix NaOH and TBAB solutions via a T-piece prior to the

mixing chamber were not successful, as a precipitate forms

from the mixture leading to reactor blockage. A quantitative

conversion of 5 to imine 19 was realized using the NaOH/

TBAB protocol with a tres of 2 hours with good productivity

(0.25 mol L−1 h−1, Table 5, entry 1). Under analogous condi-

tions, N-chloramine 7  was converted to imine 20  in

88% conversion, which could be improved to 99% conversion

by extending tres to 3 hours (Table 5, entry 2). However, the

same conditions proved only able to convert 19% of the

N-chloramine 8 at steady state with tres of 2 h (Table 5, entry 3).

To achieve a higher conversion an impractical tres would

be required if the same batch conditions were used.

In this regard, the use of heated CSTRs would be useful to

explore.

The formation of both imines 20 and 21 are of interest as an

asymmetric reduction would give an optically pure amine. To

demonstrate this, imine 20, formed in situ, underwent asym-

metric-transfer hydrogenation in both batch and flow modes,

using [IrCp*Cl2]2 as catalyst with the ligand (R,R)-TsDPEN,

using the hydrogen-donor reagent formic acid/triethylamine

(Scheme 1).
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Table 5: Batch vs flow study of the dehydrochlorination step.

entry product mode tres (h) conversion (%)a

1
19

batch
flow

1
2

83
100

2

20

batch
flow
flow

1
2
3

100
88
99

3

21

batch
flow

18
2

84
19

aMeasured by 1H NMR spectroscopy.

Scheme 1: Continuous-flow transfer hydrogenation of in situ generated imines.

Under batch conditions, a tres of 120 minutes gave quantitative

reduction of the imine, affording the R-isomer in 86% ee.

Translating the procedure to continuous flow, a fresh solution of

imine 20 and catalyst mixture were pumped into a heated CSTR

over a 30-minutes tres, affording chiral amine 22 in 94% ee with

complete conversion. It is unclear why a higher optical activity

was seen using continuous flow. However, it is known that

[IrCp*Cl2]2 can slowly racemise this amine which may be more

of a problem in batch with the longer reaction time [48].

Conclusion
A continuous-flow approach to prepare and handle unstable

N-chloramines is reported. The method exploits the superior

mixing of a CSTR compared with classical batch, to enable fast

N-chlorination of amines under biphasic conditions. By virtue

of a flowing solution, the in situ generated chloramines may be

transferred directly into new reaction media, with examples of

(i) addition to an alkene to form a new C–N and C–Cl bond,

(ii) reaction with aldehyde to produce amides, and (iii) dehy-
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drochlorination with a base to afford imines reported within our

study. Of these examples, the latter was further explored by

immediate asymmetric-transfer hydrogenation of an in situ

formed imine under continuous-flow conditions, as a poten-

tially productive route to chiral amines.

Supporting Information
Supporting Information File 1
Details of reactor assembly, NaOCl titration and NMR

spectra.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-14-196-S1.pdf]
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