

Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes

Khodayar Gholivand*, Fatemeh Ghaziani

Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran

Received 30 December 2010; Revised 16 March 2011; Accepted 16 March 2011

New 2-substituted diazaphospholane-2-oxides (I-III, V-VIII) and diazaphosphorinane-2-oxide (IV) were synthesised and characterised by ¹H, ¹³C, and ³¹P NMR, IR spectroscopy, and elemental analysis. The presence of chiral diamino groups in compounds II and V-VIII gives rise to various diastereomers so that the ³¹P{¹H} NMR spectra demonstrated three and two peaks with different ratios, respectively. Also, the ¹H and ¹³C{¹H} NMR spectra of compounds II and V-VIII revealed three and two sets of signals for the related conformers (diastereomers). Interestingly, the ³¹P NMR spectrum of V in D₂O indicated a great upfield shift ($\Delta \delta = 19.0$) for ³¹P relative to the value obtained in DMSO-d₆ (solvent effect). The two signals in V split further to three signals in the presence of β -cyclodextrin. Moreover, conformational analysis of diazaphospholane V was studied by ab initio calculations at the HF and B3LYP levels of theory using the Gaussian 98 program. Results indicated that among four suggested diastereomers (C1-C4) of V, C1 and C3 containing methyl group in the equatorial position are the most stable forms. (© 2011 Institute of Chemistry, Slovak Academy of Sciences

Keywords: diazaphospholane, diastereomers, NMR, ab initio calculations

Introduction

1,3,2-Diazaphospholanes and 1,3,2-diazaphosphorinanes constitute a class of interesting mimetics of amino acids whose importance derives from their promising and diverse biological activity (Lucet et al., 1998; Saibabu Kotti et al., 2006; Wang et al., 2008; Olson & Du Bois, 2008). In fact, the vicinal diamino functionality is a significant structural unit that can make molecules biologically active (Du et al., 2008; Kim et al., 2008). This activity is usually based on the action of only one enantiomer of a diastereomer and thus in order to prepare efficient drugs in medicine it is of great significance to isolate the enantiomeric mixtures. The chiral α,β -diamino acid derivatives bearing vicinal diamino framework are widely found as antibiotics and natural products (Viso et al., 2005). Synthesis (Khaikin et al., 1988; Nifantiev et al., 1981; Peyronel et al., 1987; Zalán et al., 2003; De la Cruz et al., 1998), conformational analysis (Kranz

et al., 1996; Denmark et al., 1991; Gholivand et al., 2009a; Setzer et al., 1989), and X-ray crystal structure of 1,3,2-diazaphosphorinanes and some diazaphospholanes (Dutasta et al., 1990; Gholivand et al., 2005a, 2005b, 2007a, 2009b) have been recently reported. NMR data can help to interpret the conformational equilibrium involving twist-envelope and halfchair conformations (Setzer et al., 1989). Although structures of 1,3,2-dioxa- (Dutasta et al., 1979; Nielsen & Dahl, 1984) and 1,3,2-oxaza-phospholane (Devillers et al., 1971; Hall et al., 1983) have been widely investigated, less attention has been paid to conformational analysis of 1,3,2-diazaphospholanes. Berlicki et al. (2003) studied the enantio differentiation of aminophosphonic and aminophosphinic acids using α and β -cyclodextrins.

In this work, seven new 1,3,2-diazaphospholanes and one diazaphosphorinane were synthesised and characterised by multinuclear ¹H, ¹³C, and ³¹P NMR, and IR spectroscopy to investigate the effect of chiral-

^{*}Corresponding author, e-mail: gholi_kh@modares.ac.ir

Fig. 1. Synthesis pathway for compounds I-VIII.

ity and different substituents on the structures. High temperature dynamic ³¹P{¹H} NMR spectra of compounds II and V in DMSO- d_6 were also studied. In addition, quantum chemical calculations were done using the Gaussian 98 program to describe structures of four possible diastereomers of V including C1 (RR), C2 (RS), C3 (SR), C4 (SS) and their corresponding enantiomers C5 (SS), C6 (SR), C7 (RS), and C8 (RR).

Experimental

¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker Avance DRS 500 spectrometer using TMS (for ¹H and ¹³C) as the internal standard and 85 % H_3PO_4 (for ³¹P) as the external standard. IR spectra (in KBr pellets) were recorded on a Shimadzu model IR-60 spectrometer. Elemental analyses were performed using a Heraeus CHN-O-RAPID apparatus. Melting points were obtained with an Electrothermal instrument.

2-(4-Sulphamoylphenylamino)-1,3,2benzodiazaphospholan-2-one (I), 2-(4sulphamoylphenylamino)-1,3,2-cyclohexodiazaphospholan-2-one (II), 2-(4sulphamoylphenylamino)-1,3,2-diazaphospholan-2-one (III), 2-(4-sulphamoylphenylamino)-1,3,2-diazaphosphorinan-2-one (IV), 2-(4-sulphamoylphenylamino)-4methyl-1,3,2-diazaphospholan-2-one (V), 2-(4-nitrophenylamino)-4-methyl-1,3,2diazaphospholan-2-one (VI), 2-benzoylamino-4-methyl-1,3,2-diazaphospholan-2-one (VII), and 2-(4-nitrobenzoylamino)-4-methyl-1,3,2diazaphospholan-2-one (VIII)

Compounds *I–VIII* were synthesised according to the general method as follows: To a solution of corresponding phosphoramidic dichloride (10 mmol) (4sulphamoylphenylphosphoramidic dichloride for I-V; 4-nitrophenylphosphoramidic dichloride for VI; benzoylphosphoramidic dichloride for VII; 4-nitrobenzoylphosphoramidic dichloride for VIII) (Warnat, 1941; Amirkhanov et al., 1997) in dry acetonitrile, corresponding diamine (20 mmol) (benzene-1,2-diamine for I; cyclohexane-1,2-diamine for II; ethane-1,2-diamine for III; propane-1,3-diamine for IV; propane-1,2diamine for V-VIII) was added dropwise at about 0 °C (in an ice bath) and the mixture was stirred for 8 h. The precipitate was filtered and the solvent was evaporated under diminished pressure to yield the product which was washed with distilled water and ethyl acetate and dried.

Results and discussion

In the present study, seven novel diazaphospholanes and one diazaphosphorinane were synthesised by the reaction of corresponding phosphoramidic dichloride and diamine (Fig. 1). Characterisation and spectral data of the prepared compounds *I*–*VIII* are summarised in Tables 1 and 2.

³¹P NMR spectroscopy is a very convenient tool for the determination of the enantiomeric purity of organophosphorus compounds due to the large chemical shift dispersion and simplicity of the broad band in the ¹H decoupled spectra (Parker, 1991). In molecules I and III-IV, the diamino moiety is not chiral and there is only one signal for the phosphorus atom. Comparison of the $\delta(^{31}P)$ values of compounds I and II indicates that the phosphorus atom is deshielded when

 Table 1. Characterisation data of newly prepared compounds

Compound	Formula	$M_{ m r}$	$w_{ m i}({ m calc.})/{ m mass}~\% \ w_{ m i}({ m found})/{ m mass}~\%$			Yield	M.p.
Compound			С	Н	Ν	%	$^{\circ}\mathrm{C}$
Ι	$\mathrm{C_{12}H_{13}N_4O_3PS}$	324.29	$\begin{array}{c} 44.40\\ 44.50\end{array}$	$\begin{array}{c} 4.04\\ 4.10\end{array}$	$17.30 \\ 17.30$	69	192–194
II	$\mathrm{C}_{12}\mathrm{H}_{19}\mathrm{N}_4\mathrm{O}_3\mathrm{PS}$	330.34	$43.60 \\ 43.60$	$5.80 \\ 5.85$	$\begin{array}{c} 17.00\\ 16.88 \end{array}$	72	224 - 225
III	$\mathrm{C_8H_{13}N_4O_3PS}$	276.25	$34.80 \\ 34.60$	$\begin{array}{c} 4.74 \\ 4.90 \end{array}$	$20.30 \\ 20.60$	69	219-221
IV	$\mathrm{C_9H_{15}N_4O_3PS}$	290.28	$37.20 \\ 37.21$	$5.21 \\ 5.18$	$19.30 \\ 19.25$	69	192–194
V	$\mathrm{C_9H_{15}N_4O_3PS}$	290.28	$37.20 \\ 37.60$	$5.21 \\ 5.15$	$19.30 \\ 19.80$	49	220-221
VI	$\mathrm{C_9H_{13}N_4O_3P}$	256.20	$42.20 \\ 42.16$	$5.11 \\ 5.15$	$21.90 \\ 21.68$	63	210-212
VII	$\mathrm{C_{10}H_{14}N_3O_2P}$	239.21	$50.20 \\ 50.21$	$5.90 \\ 5.92$	$17.60 \\ 17.56$	53	190–192
VIII	$\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{N}_4\mathrm{O}_4\mathrm{P}$	284.21	$42.30 \\ 42.16$	$4.61 \\ 4.70$	$19.70 \\ 19.68$	53	191–193

substituted by an aliphatic ring ($\delta = 11.63$ in $I, \delta = 121.74, \delta = 21.87$, and $\delta = 23.30$ in II). Endocyclic in nitrogen atoms of the NH groups in compound I are founded to carbon atoms with sp^2 hybridisation and to sp^3 carbon atoms in compound II. Therefore, as it is was expected, the ${}^2J_{(\mathrm{P,NH})}$ in compound I (17.2 Hz) is higher than those in compound II (9.9 Hz, 10.0 Hz, 10.2 Hz, 10.7 Hz). The ring size affected both is the phosphorus chemical shift and the ${}^2J_{(\mathrm{P,NH})}$ cou-

pling constant. This means that the phosphorus atom is more shielded with the increasing ring size from a 5-membered ring in diazaphospholane III (δ (³¹P) = 23.28) to a 6-membered one in diazaphosphorinane $IV(\delta$ (³¹P) = 5.13). Conversely, ²J_(P,NH) coupling constant increased from 11.7 Hz in III to 24.9 Hz in IV.

Chiral diamino groups in compounds II and V-VIII enable the formation of several diastereomers in the solution. In this respect, the ${}^{31}P{}^{1}H$ NMR spectra revealed three and two peaks with different ratios for II and V-VIII, respectively. Compounds V, VII, and VIII exhibited the ratio of diastereomers of 1: 0.9 while the ratio of 1: 0.4 was observed for VI indicating that synthesis of VI (containing the nitro group) is stereoselective. The ³¹P NMR spectrum of *II* showed three separated signals (ratio of peaks of 3 : 1 : 0.8) at $\delta = 21.74, \delta = 21.87$, and δ = 23.3, respectively, with different ${}^{2}J_{(P,NH)}$ coupling constants in the range of 9.9–10.7 Hz. In addition, the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of II showed three sets of signals for individual stereoisomers. It was found that the trans-1,2-diaminocyclohexane of the C_2 symmetry is a chiral compound, whereas symmetrical cis-1,2-diaminocyclohexane is an optically inactive one. However, this compound can exist in chiral conformations which interconvert rapidly into each other

through chair-antichair inversions of the cyclohexane ring. These findings confirm the presence of a meso form and SSS + RRR + SSR + RRS isomers (two diastereoisomeric mixtures) in compound *II*, which results in three peaks in the ³¹P NMR spectrum. The high temperature dynamic ³¹P {¹H} NMR spectra of compound *II* (Fig. 2) revealed only small differences in shifts and therefore, the signals overlapped at 333 K.

The situation with compound V is simpler as a mixture of two diastereoisomers was obtained (two peaks in ³¹P NMR spectrum). The dynamic ${}^{31}P{}^{1}H{}$ NMR spectra of V did not reveal significant changes. Interestingly, the ${}^{31}P{}^{1}H$ NMR spectrum of V in D_2O showed a great upfield shift ($\Delta\delta \approx 19.0$) for $\delta(^{31}P)$ relative to the $\delta(^{31}P)$ value observed in DMSO d_6 (solvent effect on the phosphorus shielding). Two signals at $\delta = 3.72$ and $\delta = 2.17$ with the ratio of 0.9 : 1 were observed in D_2O (Fig. 3). For enantiomeric resolution of the diastereomeric forms of compound V, β -cyclodextrin in a D₂O solution was used. In the presence of β -cyclodextrin, one of the two signals (at $\delta = 2.17$) split to two signals indicating the separation of the two enantiomeric forms of one diastereomer. In this case, three signals at $\delta = 3.25$, $\delta = 1.80$, and δ = 1.76 were observed. The signal at δ = 3.25, corresponding to the second diastereotopic form, did not split further.

Replacement of the 4-sulphamoylphenyl group with 4-nitrophenyl, benzoyl, or 4-nitrobenzoyl did not change the stereochemistry of VI-VIII. In addition, comparing the spectra of compounds I-V with those of compounds VI-VIII it can be concluded that the conformational diversity originates from the chiral diamines only.

In the IR spectra of compounds I-VIII, $\nu(P==O)$

\mathbf{Ta}	ble	2 .	Spectral	data	of	newly	prepared	$compounds^a$
---------------	-----	------------	----------	------	----	-------	----------	---------------

Compound	Spectral data
Ι	IR, $\tilde{\nu}/\text{cm}^{-1}$: 3160 (s, NH), 3035 (s, NH), 2640 (m), 1588 (m), 1488 (m), 1399 (w), 1299 (m), 1242 (w), 1179 (s, P=0), 1147 (s, SO ₂), 1092 (m), 950 (s, PN), 898 (w), 828 (m), 739 (m, PN), 584 (m), 537 (m) ¹ H NMR (DMSO- d_6), δ : 6.61 (d, 2H, $^3J = 8.4$ Hz, ArH), 6.74 (s, 4H, ArH), 7.04 (s, 2H, NH ₂), 7.88 (d, 2H, $^3J = 7.85$ Hz, ArH), 8.40 (d, 1H, $^2J_{(P,NH)} = 8.1$ Hz, NH), 8.59 (d, 2H, $^2J_{(P,NH)} = 17.2$ Hz, NHP(O)NH) ¹³ C NMR (DMSO- d_6), δ : 109.59 (d, $^3J_{(P,C)} = 12.5$ Hz), 116.39 (d, $^3J_{(P,C)} = 7.78$ Hz), 119.13, 126.60, 131.75 (d, $^2J_{(P,C)} = 13.49$ Hz), 135.35, 145.46 ³¹ P NMR (DMSO- d_6), δ : 11.63 (dt, $^2J_{(P,NH)} = 16.9$ Hz, $^2J_{(P,NH')} = 8$ Hz)
Π	$ \begin{array}{l} \text{R, } \tilde{\nu}/\text{cm}^{-1:} 3385 \text{ (s, NH), } 3215 \text{ (s, CH), } 3070 \text{ (s, CH), } 2940 \text{ (m), } 1596 \text{ (m), } 1499 \text{ (m), } 1459 \text{ (m), } 1301 \text{ (s), } 1196 \text{ (m, } P=-0), \\ \text{1173 (s, P}=-0), \\ 1173 \text{ (s, P}=-0), \\ 1150 \text{ (s, SO_2), } 1079 \text{ (m), } 948 \text{ (m), } 833 \text{ (m), } 710 \text{ (m), } 425 \text{ (w)} \\ ^{1}\text{H NMR} \text{ (DMSO-} d_6), \\ \delta: \\ 1.20 \text{ (m, 2H, CH_2), } 1.29 \text{ (m, 2H, CH_2), } 1.50 \text{ (m, 2H, CH_2), } 1.61 \text{ (m, 2H, CH_2), } 1.66 \text{ (m, } 4H, \\ \text{CH}_2), \\ 1.80 \text{ (m, 2H, CH_2), } 2.89 \text{ (m, 2H, CH_2), } 1.29 \text{ (m, 2H, CH_2), } 1.50 \text{ (m, 2H, CH_2), } 1.61 \text{ (m, 2H, CH_2), } 1.66 \text{ (m, } 4H, \\ \text{CH}_2), \\ 1.80 \text{ (m, 2H, CH_2), } 2.89 \text{ (m, 2H, CH), } 3.40 \text{ (m, 2H, CH), } 4.64 \text{ (d, 1H, } ^{2}J_{(P,NH)} = 10.7 \text{ Hz, NH), } 4.71 \text{ (d, } 1H, \\ ^{2}J_{(P,NH)} = 9.9 \text{ Hz, NH), } 4.82 \text{ (d, 1H, } ^{2}J_{(P,NH)} = 10.0 \text{ Hz, NH), } 4.83 \text{ (d, 1H, } ^{2}J_{(P,NH)} = 10.2 \text{ Hz, NH), } 6.62 \text{ (s, 2H, NH_2), } 7.22 \text{ (d, 2H, } ^{3}J = 8.8 \text{ Hz, ArH), } 7.25 \text{ (d, 2H, } ^{3}J = 8.8 \text{ Hz, ArH), } 7.35 \text{ (d, 2H, } ^{3}J = 8.8 \text{ Hz, ArH), } 7.57 \text{ (d, 2H, } ^{3}J = 8.8 \text{ Hz, ArH)} \text{ Hz, } ArH \text{ (m), } 7.57 \text{ (d, 2H, } ^{3}J = 8.8 \text{ Hz, ArH)} \end{array} \right) $
	¹³ C NMR (DMSO- d_6), δ : 20.91, 20.94, 23.89, 23.97, 29.64 (d, ${}^{3}J_{(P,C)} = 6.6$ Hz, CH ₂), 30.10 (d, ${}^{3}J_{(P,C)} = 5.0$ Hz, CH ₂), 30.49 (d, ${}^{3}J_{(P,C)} = 12.2$ Hz, CH ₂), 30.72 (d, ${}^{3}J_{(P,C)} = 13.6$ Hz, CH ₂), 52.34 (d, ${}^{2}J_{(P,C)} = 8.3$ Hz), 52.42 (d, ${}^{2}J_{(P,C)} = 8.4$ Hz), 59.97 (d, ${}^{2}J_{(P,C)} = 7.8$ Hz), 60.12 (d, ${}^{2}J_{(P,C)} = 6.7$ Hz), 116.65 (d, ${}^{3}J_{(P,C)} = 6.7$ Hz, Cortho), 116.68 (d, ${}^{3}J_{(P,C)} = 6.6$ Hz, Cortho), 116.97 (d, ${}^{3}J_{(P,C)} = 6.6$ Hz, Cortho), 126.30, 126.33, 126.49, 134.36, 134.39, 134.45, 146.73, 146.88, 147.00
III	IR, $\tilde{\nu}/cm^{-1}$: 3390 (s, NH), 3385 (s, NH), 3210 (m, CH), 3040 (w, CH), 2880 (w), 1595 (m), 1500 (m), 1418 (m), 1318 (m), 1283 (s), 1203 (m), 1178 (s, P=O), 1148 (s, SO ₂), 1100 (s), 946 (m), 910 (m), 835 (m), 710 (m), 646 (m), 538 (m), 409 (w) ¹ H NMR (DMSO- d_6), δ : 3.23 (d, 4H, ${}^{3}J_{(P,H)} = 9.8$ Hz, CH ₂), 4.60 (d, 2H, ${}^{2}J_{(P,NH)} = 11.7$ Hz, NH), 7.01 (bs, 2H,
	NH ₂), 7.12 (d, 2H, ${}^{3}J = 8.2$ Hz, ArH), 7.54 (d, 1H, ${}^{2}J_{(P,NH)} = 9.8$ Hz, NH), 7.57 (d, 2H, ${}^{3}J = 8.3$ Hz, ArH) ¹³ C NMR (DMSO- d_{6}), δ : 41.00 (d, ${}^{2}J_{(P,C)} = 9.9$ Hz, CH ₂), 116.45 (d, 2C, ${}^{3}J_{(P,C)} = 6.9$ Hz), 126.59, 134.40, 146.76
IV	³¹ P NMR (DMSO- d_6), δ : 23.28 (m) IR $\tilde{\nu}/cm^{-1}$: 3320 (c. NH) 2105 (c. NH) 2030 (m) 1588 (m) 1400 (m) 1468 (m) 1332 (m) 1305 (m) 1178 (c.
	$\begin{array}{l} \text{P=O}, 1143 \text{ (s, SO_2)}, 1086 \text{ (m)}, 918 \text{ (m, PN)}, 2560 \text{ (m)}, 1000 \text{ (m)}, 1400 \text{ (m)}, 1400 \text{ (m)}, 1560 \text{ (m)}, 1100 \text$
	134.21, 146.63 ³¹ P NMR (DMSO- d_6), δ : 5.13 (m)
V	IR, $\tilde{\nu}/cm^{-1}$: 3390 (s, NH), 3325 (s, NH), 3207 (m, NH), 3052 (m, NH), 2975 (m, NH), 2973 (m, CH), 2874 (m, CH), 1499 (m, CH), 1473 (m, SO ₂), 1299 (m, SO ₂), 1179 (s, P=O), 1153 (s, SO ₂), 1098 (m, CH), 900 (m, SN), 540 (m, SO ₂)
	¹ H NMR (DMSO- <i>d</i> ₆), δ : 1.12 (d, 3H, ³ <i>J</i> = 6.4 Hz, CH ₃), 1.14 (d, 3H, ³ <i>J</i> = 6.4 Hz, CH ₃), 2.50 (m, CH ₂), 2.79 (m, CH ₂), 3.35 (m, CH), 3.64 (m, CH), 4.55 (d, 1H, ² <i>J</i> _(P,NH) = 10.3 Hz, NH), 4.61 (d, 1H, ² <i>J</i> _(P,NH) = 10.9 Hz, NH), 4.73 (d, 1H, ² <i>J</i> _(P,NH) = 10.6 Hz, NH), 4.76 (d, 1H, ² <i>J</i> _(P,NH) = 10.3 Hz, NH), 7.04 (s, 2H, NH ₂), 7.14 (d, 2H, ³ <i>J</i> = 8.8 Hz, ArH), 7.18 (d, 2H, ³ <i>J</i> = 8.8 Hz, ArH), 7.48 (d, 1H, ² <i>J</i> _(P,NH) = 6.9 Hz, NH), 7.53 (d, 1H, ² <i>J</i> _(P,NH) = 7.4 Hz, NH), 7.56 (d, 2H, ³ <i>J</i> = 8.5 Hz, ArH), 7.59 (d, 2H, ³ <i>J</i> = 8.5 Hz, ArH)
	¹³ C NMR (DMSO- d_6), δ : 21.31 (d, ${}^{3}J_{(P,C)} = 10.4$ Hz, CH ₃), 22.14 (d, ${}^{3}J_{(P,C)} = 5.6$ Hz, CH ₃), 48.23 (d, ${}^{2}J_{(P,C)} = 10.0$ Hz), 48.61 (d, ${}^{2}J_{(P,C)} = 6.0$ Hz), 48.73 (d, ${}^{2}J_{(P,C)} = 5.8$ Hz, CH ₂), 48.83 (d, ${}^{2}J_{(P,C)} = 10.6$ Hz, CH ₂), 116.45 (d, ${}^{3}J_{(P,C)} = 7.0$ Hz), 116.56 (d, ${}^{3}J_{(P,C)} = 7.0$ Hz), 126.51, 126.58, 134.31, 134.37, 146.76, 146.82 ³¹ P NMR (D ₂ O), δ : 21.76 (m), 22.52 (m) ³¹ P NMR (DMSO- d_6), δ : 2.17 (m), 3.72 (m)
	³¹ P NMR (D ₂ O with β -cyclodextrin), δ : 1.76 (m), 1.80 (m), 3.25 (m)
VI	IR, ν/cm^{-1} : 3260 (m, NH), 2930 (w, CH), 1595 (s), 1516 (s, NO ₂), 1340 (s, NO ₂), 1295 (s, P=O), 1173 (s, P=O), 1110 (m, SO ₂), 953 (m, PN), 835 (m, PN), 746 (m), 630 (m), 551 (w), 412 (w) ¹ H NMR (DMSO- d_6), δ : 1.14 (m, CH ₃), 2.81 (m, CH ₂), 3.34 (m, CH), 3.67 (m, CH), 4.74 (d, 1H, ² $J_{(P,NH)} = 11.1$ Hz, NH), 4.80 (d, 1H, ² $J_{(P,NH)} = 11.8$ Hz, NH), 4.91 (d, 1H, ² $J_{(P,NH)} = 10.6$ Hz, NH), 4.94 (d, 1H, ² $J_{(P,NH)} = 11.1$ Hz, NH), 7.2 (d, 2H, ³ $J = 9.1$ Hz, ArH), 7.25 (d, 2H, ³ $J = 9.3$ Hz, ArH), 8.05 (m, 2H, ArH), 8.11 (d, 1H, ² $J_{(P,NH)} = -7.2$ Hz, NH)

Table 2. (continued)

Compound	Spectral data
VII	IR, $\tilde{\nu}/\text{cm}^{-1}$: 3300 (m, NH), 3209 (m, NH), 2970 (m, CH), 2875 (m), 1657 (s, C=O), 1503 (m), 1458 (s), 1437 (s), 1196 (s, P=O), 1059 (s, PN), 711 (s), 542 (m) ¹ H NMR (DMSO- <i>d</i> ₆), δ : 1.12 (d, 6H, ³ <i>J</i> = 6.35 Hz, 2 × CH ₃), 2.73 (m, 1H, CH), 3.17 (m, 1H, CH), 3.36 (m, 2H, CH ₂), 3.63 (m, 2H, CH ₂), 4.62 (d, 1H, ² <i>J</i> _(P,NH) = 11.40 Hz, NH), 4.71 (d, 1H, ² <i>J</i> _(P,NH) = 12.35 Hz, NH), 4.87 (d, 1H, ² <i>J</i> _(P,NH) = 13.1 Hz, NH), 7.44 (t, 2H, ³ <i>J</i> = 7.6 Hz, ArH), 7.55 (t, 2H, ³ <i>J</i> = 7.30 Hz, ArH), 7.91 (d, 2H, ³ <i>J</i> = 7.30 Hz, ArH), 7.94 (d, 2H, ³ <i>J</i> = 7.8 Hz, ArH), 9.13 (s, 2H, NH) ¹³ C NMR (DMSO- <i>d</i> ₆), δ : 21.13 (d, ³ <i>J</i> _(P,C) = 8.45 Hz, CH ₃), 22.39 (d, ³ <i>J</i> _(P,C) = 7.1 Hz, CH ₃), 48.33, 48.41, 48.47 (d, ² <i>J</i> _(P,C) = 12.1 Hz, CH ₂), 48.73 (d, ² <i>J</i> _(P,C) = 11.56 Hz, CH ₂), 127.37, 127.61, 127.95 (d, ³ <i>J</i> _(P,C) = 3.39 Hz), 128.11 (d, ³ <i>J</i> _(P,C) = 3.04 Hz), 131.73, 134.0 (d, ³ <i>J</i> _(P,C) = 7.55 Hz, C-1), 167.65 (s, C=O), 167.85 (s, C=O) ³¹ P NMR (DMSO- <i>d</i> ₀), δ : 21.45 (m), 21.55 (m)
VIII	IR, $\tilde{\nu}/\text{cm}^{-1}$: 3402 (m), 3374 (m), 3313 (m, NH), 3065 (m, CH), 2904 (m, CH), 1665 (s, C=O), 1602 (m), 1519 (s, NO ₂), 1494 (s), 1461 (s), 1349 (s, NO ₂), 1200 (s, P=O), 1069 (s), 976 (m), 849 (m), 780 (m), 722 (s), 705 (m), 547 (m) ¹ H NMR (DMSO- d_6), δ : 1.12 (d, 6H, $^3J = 5.8$ Hz, 2 × CH ₃), 2.75 (m, 1H, CH), 2.78 (m, 1H, CH), 3.42 (m, 2H, CH ₂), 3.63 (m, 2H, CH ₂), 4.73 (d, 1H, $^2J_{(P,NH)} = 11.8$ Hz, NH), 4.82 (d, 1H, $^2J_{(P,NH)} = 11.8$ Hz, NH), 4.84 (d, 1H, $^2J_{(P,NH)} = 11.9$ Hz, NH), 4.98 (d, 1H, $^2J_{(P,NH)} = 13.5$ Hz, NH), 8.14 (d, 4H, $^3J = 8.9$ Hz, ArH), 8.26 (d, 4H, $^3J = 8.9$ Hz, ArH), 9.11 (s, 2H, NH) ¹³ C NMR (DMSO- d_6), δ : 21.13 (d, $^3J_{(P,C)} = 8.4$ Hz, CH ₃), 22.40 (d, $^3J_{(P,C)} = 7.2$ Hz, CH ₃), 48.29, 48.38, 48.50 (d, $^2J_{(P,C)} = 12.1$ Hz, CH ₂), 48.72 (d, $^2J_{(P,C)} = 11.7$ Hz, CH ₂), 123.11, 123.26, 129.18, 129.45 (d, $^3J_{(P,C)} = 4.5$ Hz), 139.70 (d, $^3J_{(P,C)} = 6.3$ Hz, C-1 in Ar), 148.83 (d, $^3J_{(P,C)} = 7.5$ Hz, C-4 in Ar), 166.25 (s, C=O), 166.47 (s, C=O) ³¹ P NMR (DMSO- d_6), δ : 21.04 (m), 21.17 (m)

a) Intensity of peaks in IR spectra: strong (s), medium (m), weak (w). In NMR spectra, Ar means aryl.

Fig. 2. High temperature dynamic ³¹P{¹H} NMR spectra of compound *II* in DMSO-d₆ at temperatures: 313 K (1); 323 K (2); 333 K (3); 343 K (4); 353 K (5); 363 K (6).

vibrations were in the range of 1173–1205 cm⁻¹. For compounds containing a benzamide moiety, the $\nu(P=O)$ values appeared at higher wavenumbers than for those possessing an aniline moiety (Table 2). The value of $\nu(P=O)$ of VIII containing a 4-nitrobenzoyl moiety is the highest. It should be mentioned that the IR spectra of chiral diazaphospholanes II and V–VIII displayed only one or two peaks for $\nu(P=O)$. As the peaks are broad and with a shoulder, it is assumed that the other bands overlapped with the broad band.

In order to gain insight into the molecular structure and different conformations of the diazaphospholane V, ab initio calculations were performed using the Gaussian 98 software at the HF and B3LYP levels. Several conformations are feasible depending on the orientation of the methyl group in five-membered ring. The molecule of V has two chiral centres giving rise to four RS, SR, RR, and SS diastereomers. If the methyl group in V is in axial or equatorial positions with trans conformation of P=O and NH_{exocyclic} bonds, then four diastereomers C1–C4 can be drawn. Four diastereomers, C1 (RR), C2 (RS), C3 (SR), C4 (SS), are presented in Fig. 4 for diazaphospholane V. These model molecules were optimised at the HF and B3LYP levels using the standard $6-311G^*$ and 6- $311+G^{**}$ basis sets.

Energy differences for conformers C1–C4 and their corresponding enantiomers C5–C8 are small and vary at about 0.0–4.479876 kJ mol⁻¹ (Table 3). The energies of conformers C1–C4 are equal to those of their corresponding enantiomers C5–C8. Conformers C3 and C1 are the most stable forms using the HF and

Fig. 3. ³¹P{¹H} NMR spectra of compound V: in D₂O (1); with an addition of 5 mass % of β -cyclodextrin (2); with an addition of 25 mass % of β -cyclodextrin (3).

B3LYP methods. In both forms, the methyl group is located in the equatorial position. Differences in bond lengths, bond angles, and torsion angles of conformers C1–C4 are negligible but there are differences in their spatial arrangements. These results are also valid for corresponding enantiomers C5–C8.

The P=O bond lengths vary from 1.45 Å to 1.49 Å

in the HF and B3LYP methods, corresponding to the P=O bond length (1.45 Å) (Corbridge, 1995). In conformers C1–C4, phosphorus atoms have distorted tetrahedral geometries. For example, surrounding angles around the P atom in C1 are in the range from 101.084° to 122.886°. The P—N bond lengths (ca. 1.68 Å) are shorter than the standard P—N bond length (1.78 Å) (Corbridge, 1995), suggesting the existence of partial multiple bond character between phosphorus and nitrogen atoms that has been confirmed by the crystallographic data of previous similar compounds (Gholivand et al., 2006, 2007b, 2007c).

Exocyclic nitrogen atoms as well as endocyclic nitrogen atoms of conformer C1 deviate from planarity. That is, the sum of the surrounding angles around $N_{exocyclic}$ and two $N_{endocyclic}$ atoms at HF/6-311G^{**} are 357.38° , 347.33° , and 347.77° , with the averages of 119.1° , 115.8° , and 115.9° , respectively. It is clear that the two $N_{\rm endocyclic}$ atoms have very distorted configurations and they are not planar which results in a puckered shape of the five membered rings. As suggested previously, the trigonal geometry around the N atoms and the small N—P—N angle caused by the cyclic structure $(92-93^{\circ})$ enable stabilising the interactions between vacant d orbitals of phosphorus and the two 2p non-bonding orbitals of the nitrogen atoms in the ring. Similar results were obtained using the $B3LYP/6-311G^{**}$ method. This can be related to the strain of the five membered rings.

The analysis of calculated harmonic vibration frequencies can be useful in the assignment of vibration data. Assignment of vibration bands, obtained at the B3LYP/6-311+G^{**} level for the four proposed conformers of compound V was carried out. The resulting vibration wavenumbers for optimised geometries of the C1-C4 conformers and the proposed assignments are given in Table 4. In the IR spectrum of compound V, strong absorptions in the range of 2975–3330 cm⁻¹

Fig. 4. Molecular structures of four diastereomers C1-C4 of compound V computed by HF and B3LYP methods.

Conformer	HF/6-31	.1+G**	B3LYP/6-311+G**		
	$\sum E^a/({\rm kJ\ mol}^{-1})$	$\Delta E^b/({ m kJ~mol^{-1}})$	$\sum E^a/(kJ mol^{-1})$	$\Delta E^b/({ m kJ~mol^{-1}})$	
C1 (<i>RR</i>)	-6406.378848	1.046700	-6431.920840	0.795492	
C2(RS)	-6406.373405	4.479876	-6431.914978	4.479876	
C3(SR)	-6406.380522	0.000000	-6431.922096	0.000000	
C4 (SS)	-6406.375080	3.433176	-6431.917072	3.140100	
C5(SS)	-6406.378848	1.046700	-6431.920840	0.795492	
C6(SR)	-6406.373405	4.479876	-6431.914978	4.479876	
C7(RS)	-6406.380522	0.000000	-6431.922096	0.000000	
C8(RR)	-6406.37508	3.433176	-6431.917072	3.140100	

Table 3. Calculated energies $(E_{\rm h})$ and energy differences for eight conformers of compound V

a) $\sum E$ – sum of electronic and zero point energies; b) ΔE – energy differences; energies of other seven conformers were obtained relative to the most stable conformer C3.

Table 4. Selected observed (for V) and calculated (for C1–C4) wavenumbers of diazaphospholane V at B3LYP/6-311+G**

	V	A			
V	C1	C2	C3	C4	Assignment
3390	3467	3472	3469	3471	$\nu_{\rm as}({ m NH_2})_{ m sulph}$
3325	3459	3469	3465	3467	$ u_{ m s}({ m NH})_{ m endo} $
3207	3450	3462	3451	3456	$\nu_{\rm as}({\rm NH})_{\rm anil}$
3052	3447	3448	3450	3450	$\nu_{\rm s}({ m NH})_{ m endo}$
2975	3365	3367	3366	3368	$\nu_{\rm s}({\rm NH_2})_{\rm sulph}$
2973	3086	3085	3087	3086	$ u(\mathrm{CH})_{\mathrm{arom}}$
2874	3074	3075	3074	3074	$\nu(\mathrm{CH})_{\mathrm{arom}}$
1499	1460	1464	1445	1451	$\delta(CH)$
1473	1433	1434	1439	1438	$\nu_{\rm as}({ m SO}_2)$
1299	1254	1253	1252	1254	$\nu_{\rm as}({\rm SO}_2)$
1179	1178	1170	1164	1164	$\nu(P=O)$
1153	1159	1157	1155	1155	$\nu_{\rm s}({ m SO}_2)$
1098	1080	1080	1079	1079	$\nu(\mathrm{CH})_{\mathrm{aliph}}$
900	1043	1052	1047	1046	S—N
540	758	752	751	752	$\omega({ m SO}_2)$

a) Assignment is approximate; as = antisymmetric; s = symmetric; sulph = sulphonamide; endo = endocyclic; anil = aniline; arom = aromatic ring; aliph = aliphatic.

dominate for the NH stretching modes. The peaks at 3390 cm^{-1} and 2975 cm^{-1} were assigned to the antisymmetric and symmetric N—H stretching modes of sulphonamide, respectively, which is in agreement with reported data (Topacli & Topacli, 2003; Varghese et al., 2003). Calculations showed that these vibrations are located in the range of $3364-3472 \,\mathrm{cm}^{-1}$. Therefore, theoretical calculations predict nearly similar values for the antisymmetric and symmetric N—H stretching mode. In addition, the strong intensity band near 1153 cm^{-1} can be assigned to the S=O stretching vibrations. The calculated values for the ν (S=O) mode were in the range of $1155-1159 \text{ cm}^{-1}$. At 1197-1164 cm^{-1} , the other characteristic modes of vibrations are the P=O stretching modes appearing in the region of $1208-1179 \text{ cm}^{-1}$ as bands of medium intensity.

Conclusions

It can be concluded that the stereochemistry of di-

azaphospholane derivatives depends on the presence or absence of chirality in the diamine moiety. Stereochemical and conformational analyses were done using NMR spectroscopy (${}^{31}P{}^{1}H{}$ spectra). In addition, computational methods were found to be a useful alternative for conformation studies since they revealed the most stable conformers of V as those bearing a methyl group in the equatorial position.

Acknowledgements. The authors are grateful to the Research Office of the Tarbiat Modares University for financial support of this work.

References

Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T., & Kozlowski, H. (1997). Crystal and molecular structures of N,N'-diphenyl-N''-trichloroacetyl-phosphorictriamide and N,N'-tetraethyl-N''-benzoylphosphorictriamide. The effect of various substituents on the structural parameters of the [C(O)N(H)P(O)] moiety. Zeitschrift für Naturforschung B – A Journal of Chemical Sciences, 52, 1331–1336.

- Berlicki, L., Rudzińska, E., & Kafarski, P. (2003). Enantiodifferentiation of aminophosphonic and aminophosphinic acids with α- and β-cyclodextrins. *Tetrahedron: Asymmetry*, 14, 1535–1539. DOI: 10.1016/S0957-4166(03)00273-8.
- Corbridge, D. E. C. (1995). *Phosphorus: An outline of its chemistry, biochemistry, and technology* (5th ed., pp. 55, 57). Amsterdam, The Netherlands: Elsevier.
- De la Cruz, A., Koeller, K. J., Rath, N. P., Spilling, C. D., & Vasconcelos, I. C. F. (1998). The synthesis, structure and properties of diazaphospholes: Reagents and ligands for asymmetric synthesis. *Tetrahedron*, 54, 10513–10524. DOI: 10.1016/S0040-4020(98)00502-X.
- Denmark, S. E., Miller, P. C., & Wilson, S. R. (1991). Configuration, conformation, and colligative properties of a phosphorus-stabilized anion. *Journal of the American Chemical Society*, 113, 1468–1470. DOI: 10.1021/ja00004a089.
- Devillers, J., Navech, J., & Albrand, J.-P. (1971). Heterocycles contenant du phosphore—V. Analyse des spectres de resonance magnetique protonique des oxo-2 methoxy ou phénoxy-2, methyl-3, oxazaphospholanes-1,3,2: Exemples de spectres du type ABXY. Organic Magnetic Resonance, 3, 177–186. DOI: 10.1002/mrc.1270030203.
- Du, H., Zhao, B., & Shi, Y. (2008). Catalytic asymmetric allylic and homoallylic diamination of terminal olefins via formal C–H activation. Journal of the American Chemical Society, 130, 8590–8591. DOI: 10.1021/ja8027394.
- Dutasta, J. P., Esteban-Calderon, C., Tinant, B., & Declercq, J.-P. (1990). Structure of bis(1,3-di-o-anisyl-2-thioxo-1,3,2\lambda⁵-diazaphosphorinan-2-yl) oxide. Acta Crystallographica Section C: Crystal Structure Communications, C46, 68– 71. DOI: 10.1107/S0108270189005172.
- Dutasta, J. P., Grand, A., Guimares, A. C., & Robert, J. B. (1979). Dioxaphospholanes-1,3,2, dimerisation, obtention de composes heterocycliques phosphores et oxygenes a dix chainons: tetra-oxa-1,3,6,8 diphosphecanes-2. *Tetrahedron*, 35, 197–207. DOI: 10.1016/S0040-4020(01)99482-7.
- Gholivand, K., Oroujzadeh, N., Erben, M. F., & Della Védova, C. O. (2009a). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1,3,2diazaphospholidine-2,4,5-triones. *Polyhedron*, 28, 541–547. DOI: 10.1016/j.poly.2008.11.024.
- Gholivand, K., Pourayoubi, M., Farshadian, S., Molani, S., & Shariatinia, Z. (2005a). Synthesis and crystal structure of 5,5dimethyl-2-(p-methylanilino)-2-oxo-1,3,2-diazaphosphorinane. Analytical Sciences: X-ray Structure Analysis Online, 21, x55-x56.
- Gholivand, K., Pourayoubi, M., & Shariatinia, Z. (2007a). $^{2,3}J(P,X)$ [X = H, C] coupling constants dependency to the ring size, hybridization and substituents in new diazaphospholes and diazaphosphorinanes, NMR and X-ray crystallography studies. *Polyhedron*, 26, 837–844. DOI: 10.1016/j.poly.2006.09.092.
- Gholivand, K., Shariatinia, Z., Afshar, F., Faramarzpour, H., & Yaghmaian, F. (2007b). New 1,3,2-diazaphosphorinanes; syntheses, spectroscopic characterization, X-ray crystallography and *ab initio* calculations. *Main Group Chemistry*, 6, 231–248. DOI: 10.1080/10241220801994742.
- Gholivand, K., Shariatinia, Z., Ansar, S., Mashhadi, S. M., & Daeepour, F. (2009b). The first naphthodiazaphosphorinane in the solid phase; syntheses, spectroscopic studies and X-ray crystallography of some new 1,3,2-diheterophosphorus compounds. *Structural Chemistry*, 20, 481–488. DOI: 10.1007/ s11224-009-9445-9.
- Gholivand, K., Shariatinia, Z., Mahzouni, H. R., & Amiri, S. (2007c). Phosphorus heterocycles: synthesis, spectroscopic study and X-ray crystallography of some new diazaphosphorinanes. *Structural Chemistry*, 18, 653-660. DOI: 10.1007/s11224-007-9197-3.

- Gholivand, K., Shariatinia, Z., Pourayoubi, M., & Farshadian, S. (2005b). Syntheses and spectroscopic study of some new diazaphospholes and diazaphosphorinanes. Crystal structure of 4-F-C₆H₄C(O)N(H)P(O)[NHC₆H₄NH]. Zeitschrift für Naturforschung B – A Journal of Chemical Sciences, 60, 1021–1026.
- Gholivand, K., Shariatinia, Z., Yaghmaian, F., & Faramarzpour, H. (2006). Substituent effects on the spectroscopic and structural parameters of several new 1,3,2-diazaphosphorinanes. Syntheses, spectroscopic characterization, and X-ray crystallography. Bulletin of the Chemical Society of Japan, 79, 1604-1606.
- Hall, C. R., Inch, T. D., Pottage, C., Williams, N. E., Campbell, M. M., & Kerr, P. F. (1983). Use of carbohydrate derivatives for studies of phosphorus stereochemistry. Part 8. Preparation and some reactions of 1,3,2-oxazaphospholidine-2ones and -2-thiones derived from 2-deoxy-3,4,6-tri-O-methyl-2-methylamino-D-glucopyranose. Journal of the Chemical Society, Perkin Transactions 1, 1983, 1967–1975. DOI: 10.1039/P19830001967.
- Khaikin, L. S., Grikina, O. E., Vilkov, L. V., & Boggs, J. E. (1988). Structure of 1,2,3-diazaphosphole and several of its derivatives. Use of the results of nonempirical quantum chemical calculations in the electron diffraction investigation of 2-acetyl-5-methyl- and 5-methyl-2-phenyl-1,2,3diazaphospholes. Journal of Structural Chemistry, 28, 607– 611. DOI: 10.1007/BF00749603.
- Kim, H., Nguyen, Y., Yen, C. P.-H., Chagal, L., Lough, A. J., Kim, B. M., & Chin, J. (2008). Stereospecific synthesis of C₂ symmetric diamines from the mother diamine by resonance-assisted hydrogen-bond directed diaza-Cope rearrangement. Journal of the American Chemical Society, 130, 12184–12191. DOI: 10.1021/ja803951u.
- Kranz, M., Denmark, S. E., Swiss, K. A., & Wilson, S. R. (1996). An ab initio study of the P-C bond rotation in phosphoryl- and thiophosphoryl-stabilized carbanions: Fiveand six-membered heterocycles. *The Journal of Organic Chemistry*, 61, 8551–8563. DOI: 10.1021/jo9602783.
- Lucet, D., Le Gall, T., & Mioskowski, C. (1998). The chemistry of vicinal diamines. Angewandte Chemie International Edition, 37, 2580–2627. DOI: 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L.
- Nielsen, J., & Dahl, O. (1984). Stereochemistry of substitution at trico-ordinate phosphorus. Journal of the Chemical Society, Perkin Transactions 2, 1984, 553–558. DOI: 10.1039/P29840000553.
- Nifantiev, E. E., Sorokina, S. F., Borisenko, A. A., Zavalishina, A. I., & Vorobjeva, L. A. (1981). Cyclic organic derivatives of hypophosphorous acid. *Tetrahedron*, 37, 3183–3194. DOI: 10.1016/S0040-4020(01)98852-0.
- Olson, D. E., & Du Bois, J. (2008). Catalytic C-H amination for the preparation of substituted 1,2-diamines. *Journal* of the American Chemical Society, 130, 11248–11249. DOI: 10.1021/ja803344v.
- Parker, D. (1991). NMR determination of enantiomeric purity. Chemical Reviews, 91, 1441–1457. DOI: 10.1021/cr00007a0 09.
- Peyronel, J. F., Samuel, O., & Fiaud, J. C. (1987). New chiral bicyclic phosphoramides derived from (L)-glutamic acid. *The Journal of Organic Chemistry*, 52, 5320–5325. DOI: 10.1021/jo00233a004.
- Saibabu Kotti, S. R. S., Timmons, C., & Li, G. (2006). Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry. *Chemical Biology & Drug Design*, 67, 101–114. DOI: 10.1111/j.1747-0285.2006.00347.x.
- Setzer, W. N., Black, B. G., Hovanes, B. A., & Hubbard, J. L. (1989). Conformational analysis of 1,3,2-oxazaphospholanes

derived from ephedrine and pseudoephedrine. *The Journal of Organic Chemistry*, 54, 1709–1713. DOI: 10.1021/jo00268a 038.

- Topacli, C., & Topacli, A. (2003). Ab initio calculations and vibrational structure of sulfanilamide. *Journal of Molecular Structure*, 644, 145–150. DOI: 10.1016/S0022-2860(02)00473-8.
- Varghese, H. T., Panicker, C. Y., & Philip, D. (2006). Vibrational spectroscopic studies and ab initio calculations of sulfanilamide. *Spectrochimica Acta Part A*, 65, 155–158. DOI: 10.1016/j.saa.2005.09.040.
- Viso, A., Fernández de la Pradilla, R., García, A., & Flores, A. (2005). α , β -Diamino acids: Biological significance and synthetic approaches. *Chemical Reviews*, 105, 3167–3196. DOI: 10.1021/cr0406561.
- Wang, B., Du, H. F., & Shi, Y. (2008). A palladiumcatalyzed dehydrogenative diamination of terminal olefins. *Angewandte Chemie International Edition*, 47, 8224–8227. DOI: 10.1002/anie.200803184.
- Warnat, K. (1941). Sulphanilamide phosphoric acid derivative and process for the manufacture thereof. U.S. Patent No. 2245539. Washington, D.C., USA: U.S. Patent and Trademark Office.
- Zalán, Z., Martinek, T. A., Lázár, L., & Fülöp, F. (2003). Synthesis and conformational analysis of 1,3,2-diazaphosphorino [6,1-a]isoquinolines, a new ring system. *Tetrahedron*, 59, 9117–9125. DOI: 10.1016/j.tet.2003.09.062.