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Expanding the Boundary of Water Tolerant Frustrated Lewis Pair 
Hydrogenation: Enhanced Back Strain in the Lewis Acid Enables 
the Reductive Amination of Carbonyls  
Éva Dorkó[a], Márk Szabó[b], Bianka Kótai[a], Imre Pápai[a], Attila Domján[b] and Tibor Soós*[a] 

 

Abstract: We report here the development of a boron/nitrogen 
centered frustrated Lewis pair (FLP) with remarkable high water 
tolerant property. As systematic steric tuning of the boron-based 
Lewis acid (LA) component revealed, the enhanced back-strain 
engenders water binding increasingly reversible in the presence of 
relatively strong base. This advance allows to expand the limit of 
FLP’s hydrogenation as demonstrated by the FLP reductive amina-
tion of carbonyls. This metal-free catalytic variant displays a notable 
broad chemoselectivity and generality.  

Frustrated Lewis pairs (FLP) chemistry is a discrete activa-
tion mode that can be utilized for metal-free catalysis.[1]  One of 
these applications, the FLP hydrogenation[2,3], has sparked 
scientific upheaval with a promise to develop metal-free hydro-
genation technology. Since the inception of this new paradigm, 
the scope and utility of the FLP hydrogenation have been con-
tinually expanded and several key limitations have been solved. 
This is aptly exemplified by the FLP reduction of carbonyl com-
pounds and the water tolerant hydrogenation of various ketones 
and aldehydes.[4] Despite the progress in FLP hydrogenation, 
water tolerance is still limited to boron/oxygen centered FLPs, 
and the currently used boron-based Lewis acids (LA) 
are,incompatible with water if more basic Lewis bases (LB), 
such as amines or phosphines are incorporated into the FLP 
hydrogenation catalyst.[5]  This restrain is not merely a technical 
concern, but it represents a major obstacle to expand the utility 
of FLP hydrogenation toward hydrogenation-condensation tan-
dem reactions.[4f, 6] Herein, we show that it is possible to tackle 
this constrain via developing a structurally well-designed boron-
based LA for FLP chemistry. The resulting FLP not only fulfilled 
the premise of water tolerant boron/nitrogen centered FLP hy-
drogenation catalyst, but also enabled us to develop metal-free 
FLP reductive amination of carbonyls[7] with hydrogen. 

From the appearance of the FLP hydrogenation, the catalytic 
procedures were overwhelmingly accomplished with B(C6F5)3 as 
a sterically overcrowed LA combined with nitrogen, phosphorous 
or oxygen centered LBs. The high oxophilicity of the boron cen-
ter, however, renders these hydrogenation catalysts extremely 

sensitive toward moisture. The catalyst deactivation by water, 
however, is more than an interaction of water and the LA, it is 
actually an FLP reaction. Thus, the strength of the water binding 
to boron center can be significantly enhanced by deprotonation 
of the added LBs, (the Brønsted acidity of H2O-B(C6F5)3

[8]
 is 

comparable to HCl (pKa=8.4 (MeCN)).  

This leveraging effect of LBs is well illustrated by the obser-
vation that the archetypal LA, B(C6F5)3 can only form a water 
tolerant FLP hydrogenation catalyst as long as a rather weakly 
basic solvent, such as 1,4–dioxane is applied as an LB.[4e] Thus, 
in the presence of a stronger LB, even such as THF, the 
B(C6F5)3 LA is irreversible inhibited. To minimize the limiting 
interference of water in the presence of more basic oxygen- 
centered LB, the deliberate combination of steric and electronic 
tuning for the Lewis acidic component are required. The em-
ployed enhanced steric shielding around the LA center serves to 
prevent or retard the complexation ability with LBs (including 
water),[9] while retaining the capacity of cleavage of the small 
hydrogen molecule with oxygen-centered LBs.[4d,f]  

There have been also efforts to push the water-tolerance 
limit of nitrogen-centered FLPs through the development of LAs. 
One of the possible solutions is the change of the boron center 
in FLPs into a heavier element to result in a still strong but softer 
Lewis acid, as has been demonstrated by Ashley and co-
workers.[5]. Other noteworthy advance in the boron series is the 
recent development of a non-fluorinated boron LA B(3,5-
Cl2C6H3)3 for FLP promoted reductive amination of carbonyls 
with silanes. As Fasano and Ingleson has recently recog-
nized,,[6d] the electronic tuning alone afforded a weaker LA that 
can tolerate water even in presence of alkyl amines. Albeit an 
important step forward, the applicability of this boron/nitrogen 
centered FLP catalyst appears to be limited, the cumulative 
LA/LB strength was efficient for silane activation, but not for H2 

heterolysis. Consequently, the issue of water tolerant bo-
ron/nitrogen centered FLP hydrogenation, which can be used in 
hydrogenation-condensation tandem reactions, has remained 
unresolved. 

Based on the above, it seems that the electronic tuning in 
borane series reached its limit and we anticipated that the steric 
effects could be considered as a major factor to improve further 
the water tolerance of boron-centered Lewis acids. However, the 
efficiency of any structural modifications is hampered by the 
gaps of understanding how the varying front- and back-strain[10] 
affect the LAs strength and reactivity. We thus attempted to 
achieve an insight via screening a series of boranes with gradu-
ally different local steric environments around the boron atom. 
We selected tris(2-chloro-6-fluoroaryl)borane I, as a starting 
point for this study and devised to enhance its front- and back-
strain by the stepwise exchange of fluorine to chlorine atoms. 
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For the synthesis of these asymmetrically substituted boranes (I, 
II and III, see Scheme 1.) a scalable procedure was developed 
based on previously described method.[4d] 

   
Scheme 1. Synthesis of halogenated boranes. Conditons: a) 1.1 eq. BuLi in 
THF; b) 1,5 eq. Br2; c) 1.1 eq. BuLi in THF, -78°C; d) 2 eq. B(OMe)3; e) 1.4 eq. 
1M HCl, 0°C; f) 4 eq. KHF2 in MeOH/H2O. 

As LA strength is situation dependent and likely not possible 
to determine on an absolute sense, we used multiple methods to 
gain detailed knowledge about the synthesized boranes. First, 
we performed a cyclic voltammetry (CV) study of I-III to gauge 
the electronic consequences of the successive replacement of 
fluorine atom with chlorine (Table 1, entry 1). These reduction 
potentials can be considered as the approximate electrophilicity 
of the boron centers in absence of the steric effect, as previous 
electrochemical studies on sterically congested boranes sug-
gested.[11] From this study, an additive relationship was observ-
able, the reduction potential of boranes was found to shift to less 
negative potentials and the voltammetry became more reversi-
ble as the number of chlorine substituents increased around the 
boron center. This tendency is consistent with the greater elec-
tron-withdrawing capacity and steric demand of chlorine. 

Next, Gutmann-Beckett method[12] was used to assess the 
relative Lewis acidity of I-III boranes (entry 2). This empirical 
method gave a reverse order within the series, so the most 
fluorinated borane I formed the strongest dative adduct. Thus, 
the increasing sterical strain (both front- and back-strain) engen-
dered by the fluorine-chlorine exchange counters the gains 
made by the increasing electron-withdrawing power of more 
chlorine substituents. 

Table 1. Evaluation of relative Lewis acidity of boranes I-III. 

Entry Method I II III 

1 Cyclic Voltammetry[a] -2.1 V -2.0 V -1.9 V 

2 Gutmann-Beckett[b] 77% 5% 4% 

3 Relative hydricity[c] 
-15.3 

kcal/mol 
-16.0 

kcal/mol 
-17.2 

kcal/mol 

[a] Reduction potentials (in V) measured by CV, for borane I only the Eox can 
be determined. [b] Relative %, the 0% and 100% reference points are the 31P 
NMR chemical shift of Et3P=O and its adduct with B(C6F5)3.  [c] Gibbs free 

energy of isodesmic reaction LAH- + B(C6F5)3 → LA + B(C6F5)3H-. Lower 
energy value refers to weaker Lewis acidity as compared to B(C6F5)3.  

Perhaps more surprising is the finding that the trend within 
the series is not linear and even one chlorine-fluorine replace-
ment exerts such a cumulative steric penalty in Lewis acid II that 
it practically impedes the dative adduct formation with Et3P=O 
probe. In an effort to distinguish between the two steric factors, 
we computed the relative thermodynamic hydricity[13] of boranes 
I-III via DFT calculations taking the archetypal LA B(C6F5)3 as a 
reference compound (entry 3).[14] As hydride anion (H–) is the 
smallest possible LB, the steric penalty to reach the boron cen-
ter (front-strain) is minimal. Therefore, the strength of hydride 
binding is determined by the electronic effect and the steric 
penalty emerging upon the pyramidalization of the boron, the 
back-strain. The computational data indicate that the relative 
hydricity decreases only slightly within the series and no such a 
drastic drop can be observed as in the acidity scale measured 
by the Gutmann-Beckett method. Consequently, the difference 
in acidity trends is due to front-strain that serves to traverse the 
complexation of a larger LB. An additional way to interpret the 
above data (entry 1 and entry 3) is to view these bulky boranes 
as a structurally “spring-loaded” system. Whereas each F–Cl 
replacement increases the electrophilicity of the borane, the 
increment of electrophilicity is counterweighted as the gradually 
growing back-strain increasingly strives to push back the boron 
center into the original sp2 state 

A final evaluation of these boranes was the study of their 
water complexation ability in the presence of a relatively strong 
aliphatic amine base. In these NMR studies DABCO was used 
as a non-coordinating base and conclusions rest upon 1H, 10B, 
19F, DOSY, NOESY and EXSY NMR results. First, detailed 
structural information were obtained by means of 1H single-pulse, 
DOSY and NOESY experiments about BAr3-H2O-DABCO com-
plexes (See the Supporting Information). The NMR studies 
indicate that DABCO and water form a 1:1:1 complex with all I-III 
boranes.  

 
Figure 1. a) 10B NMR of the boranes I–III in DABCO/H2O/borane I–III com-
plexes at 45°C (signals at 5.0 ppm are dative complexes). b) 1H NMR signal of 
DABCO in the same ternary aqua complexes at 45°C and the free DABCO 
(signal at 2.09 ppm is due to solvent). 

Further and more significant structural dynamics of ternary 
aqua complexes is revealed from 1H and 10B NMR studies at 
45°C (Figure 1). Whereas DABCO/H2O/borane I adduct remains 
intact at this temperature, the other two ternary aqua complexes 
considerably dissociate to free borane II and III (45% and 60% 
respectively). Accordingly, these borane II or III/DABCO pairs 
can be used for FLP activations in presence of equimolar water, 
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as free borane and DABCO are available for hydrogen cleavage.  
To gain further insight, 2D EXSY NMR spectroscopy[15] was 
used to explore quantitatively the dynamic behaviour of water 
dissociation. This method enabled us to determine rate con-
stants and activation parameters of the dissociation of the ter-
nary aqua complexes of boranes II and III (see Supporting In-
formation). Whereas the stability of the DABCO/H2O/borane II 
and III complexes is similar, there is a significant difference in 
kinetics as the exchange rate is nearly 20 times higher for the 
aqua complex of borane III (11.0 vs. 0.57 s-1 at 35oC, see in 
Supporting Information). This can be correlated with the in-
creased steric profile of III, especially, the enhanced back-strain 
may play a key role.  

After identifying borane/amine FLPs with water tolerance, 
we conducted some preliminary experiments to ascertain their 
utility in FLP hydrogenations. First, the metal-free reduction of 
tert-butylbenzaldimine (1) to tert-butylbenzylamine (2) was 
probed under inert conditions. Gratifyingly, all I–III boranes were 
found to be amenable to promote the reduction at 80°C with 
DABCO base (Table 2, entry 1), however, there was a difference 
at room temperature reductions (entry 2). This result is con-
sistent with the sterical accessibility and hydricity of the applied 
LAs. 

Next, our major objective, the prospect of water tolerant 
FLP hydrogenation was probed in reductive amination reaction. 
The reaction of benzaldehyde (3) with benzylamine (4) was 
selected as a test reaction using 10 mol% borane catalysts in 
the presence of molecular sieves. To our delight, the desired 
catalytic reduction could be performed selectively, no competing 
reduction to benzylalcohol occurred and water was compatible 
with boranes at 80°C. As expected, the presence of water had a 
significant impact on the FLP catalysts’ performance, the reac-
tions slowed down and a reverse order in efficiency was ob-
served (entry 3). Notably, the application of catalyst III allowed to 
run the reaction at lower temperature (55°C, entry 4) and, most 
importantly, without water-scavenger (entry 5). Thus, borane 
catalyst III is a superior catalyst to I and II, it can tolerate even 
10 equivalents of water in FLP promoted reductive amination. 
Finally, it is important to note that the presence of water might 
be advantageous as the borane-water adduct can function as a 
Bronsted acid catalyst in an auto-tandem hydrogenation pro-
cess.

[4f]    

Table 2. Conversions of FLP reduction of imine 1 and FLP reductive amination 
with borane I-III. 

Entry T [°C] t[h] I. II. III. 

1[a] 80°C 
24h 

99% 99% 
99% 

2[a] r.t. 24h 62% 21% 0% 

3[b] 80°C 72h 78% 99% 99% 

4[b] 55°C 72h 0% 0% 14% 

5[b][c] 80°C 72h - 44% 99% 

[a] Reaction condition: 0.25 mmol tBu-benzaldimine (1), 4 bar H2, 10 mol% 
borane, 10 mol% DABCO, toluene, 24h. [b] Reaction condition: 0.25 mmol 
benzaldehyde (3) and 0.25 mmol benzylamine, 20 bar H2, 10 mol% borane, 
toluene, 100 mg molecular sieves. [c] Reactions run without molecular sieves. 

 
Scheme 2. FLP reductive amination of carbonyl compounds using borane 

III as a catalyst. The applied reaction condition: 80°C, 72 h, toluene, 20 bar H2, 
isolated yields and (conversions).  

Having identified borane III as a competent, as well as water 
tolerant LA for FLP reductive amination, we next focused on 
exploring its scope and limitation. We were pleased to find that a 
wide array of amines and carbonyls can undergo FLP promoted 
reductive amination with high selectivity, no side reactions, 
especially no carbonyl reduction to alcohol, could be detected. 
This can be correlated with the renewable borohydride character 
of the catalyst. As shown in Scheme 2, both aliphatic and aro-
matic amines can be used as LB in the reductive coupling (6, 7) 
the developed FLP is highly tolerant of a wide range of function-
al groups, thus ether (8, 9) and ester (10), as well as heteroaro-
matic rings (11-13) do not irreversible inhibit the catalysis. More-
over, the method displays high chemoselectivity, it tolerates 
several functionalities that are prone to reduction, including 
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chlorine (14, 15), bromine (16), cyclopropyl (18), olefin (19, 21, 
22) and acetylene (20). The reduction of imines of sterically 
hindered amines such as tert-butylamine and diisopropyl-amine 
are slower; therefore these products (24, 28) can be isolated 
with only moderate yields. As a further proof for versatility, we 
found that chiral secondary amines can be used in this protocol, 
as only negligible racemization was observed in 1-phenylethyl 
products 29 and 30. It was expected and then observed that the 
steric demand of the reducing agent affects the outcomes of the 
reductions. Thus, cinnamaldehyde can be chemoselectively 
reduced to allylamine derivative 22 without the saturation of the 
olefinic group. Furthermore, 4-tBu-cyclohexanone was trans-
formed selectively to the corresponding cis-amino derivative 32, 
so the transiently formed bulky borohydride attacks the corre-
sponding imine equatorially. We also assumed that the steric 
contribution of the reducing agent could be used to secure dia-
stereoselectivity in chirality transfer reactions. Thus, the reduc-
tive amination of methyl-ethylketone with enantiopure 1-
phenylethylamines was probed. Despite the moderate diastere-
omeric ratio, 2:1, it is a promising result for substrates having 
such a small steric difference (33, 34). Finally, the double meth-
ylation of primary amine was accomplished using formaldehyde 
(35). Notably, the water tolerance of the developed FLP allowed 
using 37% aqueous solution of formaldehyde. Thus, even aque-
ous two-phase (water-toluene) reaction can be performed with 
high conversion. 

In conclusion, as the systematic steric tunings revealed, the 
modulation of back-strain is an important design element to 
tackle one of key constrains of B/N centered FLP hydrogenation, 
the water inhibition. The enhanced back-strain of LA upon com-
plexation makes water binding increasingly reversible. In this 
way, we can maintain the preferential hydrogen activation ability 
while suppressing the interference of the water with FLP. The 
utility of this structurally fine-tuned FLP catalyst was demon-
strated in reductive amination of carbonyls. This novel metal-free 
method displays a notable broad chemoselectivity and generality.  
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