Accepted Manuscript

Transition-metal-free direct trifluoromethylthiolation of electron-rich aromatics using CF_3SO_2Na in the presence of PhPCl_2 $\,$

Xia Zhao, Xiancai Zheng, Miaomiao Tian, Jianqiao Sheng, Yifan Tong, Kui Lu

PII: S0040-4020(17)31155-9

DOI: 10.1016/j.tet.2017.11.019

Reference: TET 29099

To appear in: Tetrahedron

- Received Date: 28 August 2017
- Revised Date: 4 November 2017

Accepted Date: 7 November 2017

Please cite this article as: Zhao X, Zheng X, Tian M, Sheng J, Tong Y, Lu K, Transition-metal-free direct trifluoromethylthiolation of electron-rich aromatics using CF₃SO₂Na in the presence of PhPCl₂, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.11.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Transition-Metal-Free Direct Trifluoromethylthiolation of Electron-rich	Leave this area blank for abstract info.				
Aromatics Using CF ₃ SO ₂ Na in the Presence of PhPCl ₂					
Xia Zhao,* Xiancai Zheng, Miaomiao Tian, Jianqiao Sheng, Yifan Tong, and Kui Lu*					
$CF_3SO_2Na, 1.4 \in$	$\frac{SCF_3}{4}$				
$R_{1} \stackrel{\text{fi}}{\underline{U}} \qquad R_{3} \stackrel{\text{PhPCI}_{2}, 1.4 \text{ eq}}{\underline{H}}$	$\rightarrow R_1 \prod R_3$				
N 1,4-dioxane	N				
Γ_2 70 °C	R ₂				
	1370-9170				
	\sim				
χ					

Tetrahedron journal homepage: www.elsevier.com

Transition-Metal-Free Direct Trifluoromethylthiolation of Electron-rich Aromatics Using CF₃SO₂Na in the Presence of PhPCl₂

Xia Zhao^{a,} *, Xiancai Zheng^a, Miaomiao Tian^a, Jianqiao Sheng^a, Yifan Tong^a and Kui Lu^{b,} *

^a College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China ^b College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Trifluoromethylthiolation CF₃SO₂Na PhPCl₂ Indole Electron-rich aromatics

ABSTRACT

A novel transition metal-free route for the direct trifluoromethylthiolation of electron-rich aromatics using CF_3SO_2Na in the presence of $PhPCl_2$ was developed. More specifically, $PhPCl_2$ was used as both a reducing and a chlorinating reagent for the first time in this CF_3SO_2Na -based trifluoromethylthiolation reaction. The absence of transition metals and the use of cheap and readily available reagents render this method an alternative and practical strategy for the trifluoromethylthiolation of electron-rich aromatics.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

The trifluoromethylthio (SCF₃) group is an important pharmacophore that is present in many pharmaceutical and agrochemical products, including cefazaflur, tiflorex, toltrazuril, and vaniliprole.¹ Indeed, the incorporation of an SCF₃ group into pharmaceuticals is known to greatly improve their metabolic stabilities² and cell membrane permeabilities.³ As such, the incorporation of SCF₃ groups into small molecules is an active research area in synthetic chemistry. Indeed, great progress has recently been made in the electrophilic trifluoromethylthiolation of aromatic compounds, and a series of shelf-stable electrophilic SCF₃ reagents have been developed (compounds 1–9, Scheme 1).^{4–13}

In this context, sodium trifluoromethanesulfinate (CF₃SO₂Na, **10**), otherwise known as the Langlois reagent, is an essentially odourless, readily accessible solid, which has been employed as a trifluoromethylation reagent.¹⁴ In addition, Yi and Zhang reported a CuCl-mediated trifluoromethylthiolation of $C(sp^2)$ -H bonds using a CF₃SO₂Na/ diethyl phosphonate ((EtO)₂P(O)H) system (Scheme 2, equation 1).¹⁵ Furthermore, the Cai group recently reported the trifluoromethylthiolation of indoles using a CF₃SO₂Na/triphenylphosphine (PPh₃)/*N*-chlorophthalimide system, while the Yi and Zhang group reported a similar transformation using a

 $CF_3SO_2Na/(EtO)_2P(O)H/chlorotrimethylsilane (TMSCl) system (Scheme 2, equations 2 and 3).¹⁶ In these two protocols, PPh₃ and (EtO)₂P(O)H were used as reductants, while$ *N* $-chlorophthalimide and TMSCl were employed as the chlorination reagents. However, the above mentioned <math>CF_3SO_2Na$ -based trifluoromethylthiolation reaction also required the use of transition metal catalysis.

Scheme 1 Thiolation of indolizines and *N*-methylindoles using sulfonyl chlorides as sulfenylation reagents

^{*} Xia Zhao. E-mail: hxxyzhx@mail.tjnu.edu.cn

^{*} Kui Lu. E-mail: lukui@tust.edu.cn

addition, both our group and the Liu group recently M In CF₃SO₂Na-based independently reported the trifluoromethylthiolation of electron-rich aromatics in the presence of PCl₃, which was employed both as a reductant and as a chlorination reagent (Scheme 2, equation 4).¹⁷ In our protocol, the slow addition of PCl₃ was carried out using a syringe pump, as this reagent reacted rapidly with indole. Thus, as we are interested in developing efficient methods to construct C-S bonds,^{13c, 17b, 18} we herein report the development of a CF₃SO₂Nabased transition metal-free trifluoromethylthiolation of electronrich aromatics in the presence of dichloro(phenyl)phosphane (PhPCl₂), as the latter is less electrophilic than PCl₃, and so is expected to react less rapidly with indole (Scheme 2, equation 5).

Scheme 2 Trifluoromethylthiolation of indole using CF₃SO₂Na as an SCF₃ source

2. Results and discussion

To probe the trifluoromethylthiolation of electron-rich aromatics using our CF₃SO₂Na/PhPCl₂ system, we treated indole 11a with CF₃SO₂Na (10) in the presence of PhPCl₂ in acetonitrile (CH₃CN) at 60 °C over 0.5 h to yield the desired product 12a in 39% yield. Optimisation of the reaction conditions was then carried out to enhance this yield. Initially, the effect of the reaction solvent was investigated using toluene, 1,4-dioxane, and 1,2-dichloroethane (DCE) (Table 1, entries 2-4), with 1,4dioxane giving the optimal yield (i.e., 65%, entry 3). The effect of the reaction temperature was then examined between 50 and 80 °C. Upon decreasing the reaction temperature to 50 °C, the yield of 12a decreased to 60% (entry 5), while increasing the temperature to 70 °C increased the yield to 70% (entry 6). However, further increasing the reaction temperature to 80 °C led to a diminished yield (i.e., 58%, entry 7). Finally, the reaction concentration and stoichiometry were investigated (entries 8-14). More specifically, upon increasing the concentration of 11a from 0.167 to 0.5 M, the yield of 12a increased from 70 to 80% (entries 8-10), while a further increase in the concentration of 11a had a detrimental effect (i.e., 66%, entry 11). In addition, upon increasing the loading of 10 and PhPCl₂ from 1.2 to 1.4 equiv., the yield increased from 80 to 89% (entries 10, 12, and 13), although a further increase to 1.5 equiv. had little effect on the obtained yield (i.e., 90%, entry 14). The optimised reaction conditions for this transformation were therefore confirmed to be as follows: 11a (0.5 mmol), 10 (0.7 mmol), PhPCl₂ (0.7 mmol), and 1,4-dioxane (1 mL) at 70 °C over 0.5 h.

Table 1 Optimisation of the trifluoromethylthiolation of 11a

with **10** in the presence of $PhPCl_2^a$

	+ 1.0 eq. 11a	P CF ₃ SO ₂ Na <u>1</u> Sr 1.2 eq. 10	hPCb 2 eq. olvent N H 12a	3
Entry	Solvent	Volume (mL)	Temperature (°C)	Yield (%)
1	CH ₃ CN	3.0	60	39
2	Toluene	3.0	60	59
3	1,4-Dioxane	3.0	60	65
4	DCE	3.0	60	50
5	1,4-Dioxane	3.0	50	60
6	1,4-Dioxane	3.0	70	70
7	1,4-Dioxane	3.0	80	58
8	1,4-Dioxane	3.0	70	70
9	1,4-Dioxane	2.0	70	75
10	1,4-Dioxane	1.0	70	80
11	1,4-Dioxane	0.5	70	66
12	1,4-Dioxane	1.0	70	84^b
13	1,4-Dioxane	1.0	70	89 ^c
14	1,4-Dioxane	1.0	70	90^d

^{*a*} Reaction conditions: **11a** (0.5 mmol), **10** (0.6 mmol), PhPCl₂ (0.6 mmol), 0.5 h. ^{*b*} **10** (0.65 mmol) and PhPCl₂ (0.65 mmol) were used. ^{*c*} **10** (0.7 mmol) and PhPCl₂ (0.7 mmol) were used. ^{*d*} **10** (0.75 mmol) and PhPCl₂ (0.75 mmol) were used.

With the optimised conditions in hand, the substrate scope of the trifluoromethylthiolation reaction was examined using a series of indole derivatives (Table 2).

 Table 2
 Scope of trifluoromethylthiolation of indole derivatives^a

^a Reaction conditions: **11** (0.5 mmol), **10** (0.7 mmol), PhPCl₂ (0.7 mmol), 1,4-dioxane (1.0 mL) at 70 °C. ^b **10** (1.0 mmol) and PhPCl₂ (1.0 mmol) were used. ^c **10** (0.9 mmol) and PhPCl₂ (0.9 mmol) were used for 12 h.

ACCEPTED M mechanism, the desired product 12a was obtained in 89% and

As indicated, both electron-donating and electron-withdrawing substituents were well tolerated in the 2, 4, 5, 6, and 7 positions (**11b, 11c, 11e–11o**), as were *N*-substituted indoles (**11p–11r**), with the desired products being obtained in moderate to good yields. However, when 4-hydroxylindole (**11d**) and 3-methylindole (**11s**) were employed as substrates, relatively low yields of the desired products were obtained (i.e., 36 and 15%, respectively). Notably, when indoles bearing electron-withdrawing substituents (**11h** and **11i**) were employed, it was necessary to increase the number of equivalents of **10** and PhPCl₂ to obtain acceptable yields (i.e., 65 and 35%, respectively).

Encouraged by these results, the use of other electron-rich aromatics and alkene, such as pyrrole (13a–13c), indolizine (13d–13g), 5-methyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one (13h), 1,3,5-trimethoxybenzene (13i) and methyl (E)-3-(benzylamino)but-2-enoate (13j) was examined under the optimised conditions. Indeed, we found that these substrates could be smoothly transformed into the desired products (14a–14j) in moderate yields (i.e., 40–68%, Scheme 3).

 a Reaction conditions: 13~(0.5 mmol), 10~(0.7 mmol), PhPCl_2 (0.7 mmol), 1,4-dioxane (1.0 mL) at 70 °C for 0.5 h. b the reaction was allowed to proceed for 3 h. c CH_3CN (1.0 mL) was used.

 $Scheme \ 3 \ Trifluoromethylthiolation \ of \ other \ aromatics \ with \ 10 \ in \ the \ presence \ of \ PhPCl_2$

Based on previous literature,^{17b} a plausible reaction mechanism for this reaction was then proposed (Scheme 4). More specifically, CF_3SO_2Na (10) can initially react with PhPCl₂ to form intermediate **A**, which reacts twice with indole-based substrates to afford 13 in addition to intermediate (**B**). Intermediate (**B**) then reacts with PhPCl₂ to generate PhP(OH)Cl (**C**), and subsequent reduction of 13 by PhPCl₂ and (**C**) affords the corresponding indole trifluoromethylthioethers 12.

Scheme 4 Proposed reaction mechanism

To confirm this mechanism, 3-((trifluoromethyl)sulfinyl)-1Hindole (**13a**) was treated with either PhPCl₂ (1.0 equiv.) or chloro(hydroxy)(phenyl)phosphane (PhP(OH)Cl) (1.0 equiv.), generated *in situ* from PhPCl₂ (1.0 equiv.) and H₂O (1.0 equiv.), in 1,4-dioxane at 70 °C. As expected based on our proposed 98% yields, respectively (Scheme 5).

Scheme 5 Reduction of 13a to 12a by PhPCl2 or PhP(OH)Cl

Finally, to demonstrate the practical application of this method, the gram-scale trifluoromethylthiolation of indole was carried out to give the desired product **12a** in 84% yield (Scheme 6).

3. Experimental Section

1) General methods and material

All solvents were distilled prior to use. Unless otherwise noted, chemicals were used as received without further purification. For chromatography, 200–300 mesh silica gel was employed. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz respectively. Chemical shifts are reported in ppm using tetramethylsilane as internal standard. HRMS was performed on an FTMS mass instrument. Melting points are reported as uncorrected.

2) General procedure for trifluoromethylthiolation of electron-rich aromatic by CF_3SO_2Na in the presence of PhPCl₂:

To a flame-dried Schlenk tube was added electron-rich aromatic (0.5 mmol), CF₃SO₂Na (118 mg, 0.7 mmol) dry 1,4-dioxane or CH₃CN (1 mL). The mixture was heated to 60 °C by a preheated oil bath. PhPCl₂ (125 mg, 0.7 mmoL) was added. The reaction mixture was stirred at 70 °C for the indicated time. Then the reaction mixture was cooled to room temperature. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to afford the pure product.

3-((*trifluoromethyl*)*thio*)-1*H*-*indole* (12a):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12a** was isolated as a pale yellow solid (97 mg, 89%); R_f (PE : EA = 10 : 1) = 0.21; mp (melting point) = 52–53 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 7.82-7.79 (m, 1H), 7.52 (d, J = 2.7 Hz, 1H), 7.40-7.44 (m, 1H), 7.32-7.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 136.0, 132.8, 129.5 (q, J = 308.2 Hz, 1C), 129.4, 123.4, 121.6, 119.3, 111.7, 95.5 (q, J = 2.4 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.59 (s, 3F).

4-methoxy-3-((trifluoromethyl)thio)-1H-indole (12b):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12b** was isolated as a yellow solid (95 mg, 77%); R_f (PE : EA = 10 : 1) = 0.20; mp (melting point) = 61-63 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 1H), 7.40 (d, J = 2.4 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.01 (dd, J = 8.0 Hz, 0.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 137.9, 132.3, 129.4 (q, J = 307.5 Hz, 1C), 124.3, 118.6, 104.8, 102.1, 94.5 (q, J = 2.6 Hz, 1C), 55.5 (q, J = 2.0 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -45.48 (s, 3F).

4-methyl-3-((*trifluoromethyl*)*thio*)-*1H-indole* (*12c*):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12c** was isolated as a pink solid (105 mg, 91%); R_f (PE : EA = 10 : 1) = 0.24; mp (melting point) = 63–65 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 7.51 (d, *J* = 2.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.16 (t, *J* = 7.7 Hz, 1H), 6.99 (d, *J*)

= 6.8 Hz, 1H), 2.83 (s, 3H); ¹³C NMR (100^AMHz, CDCl₃); δ M 136.4, 134.0, 131.6, 129.2 (q, J = 307.5 Hz, 1C), 126.7, 123.4, 123.4, 109.7, 95.1 (q, J = 2.6 Hz, 1C), 19.31; ¹⁹F NMR (376 MHz, CDCl₃); δ -45.88 (s, 3F).

3-((*trifluoromethyl*)*thio*)-*1H-indol-4-ol* (*12d*):^{13c} After purification by silica gel column chromatography (PE : EA =5 : 1), compound **12d** was isolated as a white solid (42 mg, 36%); R_f (PE : EA = 5 : 1) = 0.30; mp (melting point) = 120–122 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 7.45 (d, *J* = 2.8 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.72 (s, 1H), 6.71 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 137.7, 132.7, 128.3 (q, *J* = 310 Hz, 1C), 125.1, 116.5, 107.1, 104.4, 91.6 (q, *J* = 2.3Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ –45.75 (s, 3F).

5-chloro-3-((trifluoromethyl)thio)-1H-indole (12e):^{13c} After purification by silica gel column chromatography (PE : EA = 7 : 1), compound **12e** was isolated as a brown solid (98 mg, 78%); R_f (PE : EA = 5 : 1) = 0.27; mp (melting point) = 57–59 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.55 (d, J = 2.8 Hz, 1H), 7.34 (dd, J = 8.4 Hz, 0.3 Hz, 1H), 7.24 (dd, J = 8.4 Hz, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 134.4, 133.9, 130.7, 129.3 (q, J = 308.1 Hz, 1C), 127.7, 124.0, 118.9, 112.8, 95.5 (q, J = 2.6 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.53 (s, 3F).

5-bromo-3-((trifluoromethyl)thio)-1H-indole (12f):^{13c} After purification by silica gel column chromatography (PE : EA = 5 : 1), compound **12f** was isolated as a pink solid (115 mg, 78%); R_f (PE : EA = 5 : 1) = 0.21; mp (melting point) = 53–55 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (s, 1H), 7.93 (d, J = 1.3 Hz, 1H), 7.54 (d, J = 2.8 Hz, 1H), 7.38 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 134.7, 133.8 (d, J = 10 Hz, 1C), 131.2, 129.2 (q, J = 308.3 Hz, 1C), 126.6, 122.0, 115.2, 113.1, 95.5 (q, J = 2.4 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.50 (s, 3F).

5-fluoro-3-((trifluoromethyl)thio)-1H-indole (12g):^{13c} After purification by silica gel column chromatography (PE : EA = 7 ; 1), compound **12g** was isolated as a brown solid (101 mg, 86%); R_f (PE : EA = 5 : 1) = 0.30; mp (melting point) = 52–54 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (s, 1H), 7.57 (d, J = 2.8 Hz, 1H), 7.44 (dd, J = 9.2 Hz, 2.4 Hz, 1H), 7.36 (dd, J = 8.8 Hz, 4.0 Hz, 1H), 7.04 (td, J = 9.2 Hz, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.1 (d, J = 236.4 Hz, 1C), 134.3, 132.5, 130.4 (d, J = 9.0 Hz, 1C), 129.3 (q, J = 308.0 Hz, 1C), 112.6 (d, J = 9.0 Hz, 1C), 112.2 (d, J = 26.4 Hz, 1C), 104.6 (d, J = 24.5 Hz, 1C), 95.8 (q, J = 2.2 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.62 (s, 3F), -121.59(s, 1F).

methyl3-((trifluoromethyl)thio)-1H-indole-5-carboxylate(12h): 13c After purification by silica gel column chromatography(PE : EA = 3 : 1), compound 12h was isolated as a white solid(89 mg, 65%); mp (melting point) = 177–179 °C; R_f (PE : EA =2 : 1) = 0.40; 1 H NMR (400 MHz, d6-DMSO): δ 12.4 (s, 1H),8.30 (s, 1H), 8.12 (d, J = 2.8 Hz, 1H), 7.87 (dd, J = 8.6 Hz, 1.6Hz, 1H), 7.62 (dd, J = 8.6 Hz, 0.4 Hz, 1H), 3.88 (s, 3H); 13 CNMR (100 MHz, DMSO): δ 166.7, 139.0, 137.0, 129.3 (q, J =308.2 Hz, 1C), 128.6, 123.4, 122.6, 120.2, 112.8, 92.8 (q, J = 2.2Hz, 1C), 51.9; 19 F NMR (376 MHz, CDCl₃): δ -44.11 (s, 3F)5-nitro-3-((trifluoromethyl)thio)-1H-indole

5-nitro-3-((trifluoromethyl)thio)-1H-indole (12i):^{13c} After purification by silica gel column chromatography (PE : EA = 3 : 1), compound **12i** was isolated as a yellow solid (46 mg, 35%); R_f (PE : EA = 2 : 1) = 0.35; mp (melting point) = 170–172 °C; ¹H NMR (400 MHz, d6-DMSO): δ 12.7 (s, 1H), 8.48 (d, *J* = 2.0 Hz, 1H), 8.25 (d, *J* = 2.4 Hz, 1H), 8.12 (dd, *J* = 9.2 Hz, 2.4 Hz, 1H), 7.71 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, d6-DMSO): δ 142.3, 139.6, 139.0, 129.2 (q, *J* = 308.1 Hz, 1C), 128.5, 117.9, 114.6, 113.6, 94.3 (q, *J* = 2.4 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -43.97 (s, 3F).

6-fluoro-3-((trifluoromethyl)thio)-1H-indole (12j):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12j** was isolated as a brown solid (103 mg, 88%); R_f (PE : EA = 10 : 1) = 0.21; mp (melting point) = 60–61 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 7.71 (dd, J = 8.8 Hz, 5.2 Hz, 1H), 7.51 (d, J = 2.8 Hz, 1H), 7.10 (dd, J = 9.2 Hz, 2.4 Hz, 1H), 7.04 (td, J = 9.2 Hz, 2.2 Hz, 0.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6 (d, J = 238.8 Hz, 1C), 136.0 (d, J = 12.5 Hz, 1C), 133.1, 129.4 (q, J = 308.1 Hz, 1C), 127.8, 120.4 (d, J = 10.1 Hz, 1C), 110.6 (d, J = 24.4 Hz, 1C), 98.1 (d, J = 27.0 Hz, 1C), 96.1 (q, J = 3.0 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.54 (s, 3F), -119.06 (s, 1F).

6-chloro-3-((trifluoromethyl)thio)-1H-indole (12k):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12k** was isolated as a brown solid (88 mg, 70%); R_f (PE : EA = 10 : 1) = 0.21; mp (melting point) = 55–58 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 7.70 (d, *J* = 8.5 Hz, 1H), 7.53 (d, *J* = 2.8 Hz, 1H), 7.42 (d, *J* = 1.6 Hz, 1H), 7.24 (dd, *J* = 8.5 Hz, *J* = 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.4, 133.3, 129.6, 129.3 (q, *J* = 308.0 Hz, 1C), 128.0, 122.5, 120.4, 111.6, 96.2 (q, *J* = 2.3 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.46 (s, 3F).

6-methoxy-3-((trifluoromethyl)thio)-1H-indole (121):^{13c} After purification by silica gel column chromatography (PE : EA = 5 : 1), compound 12l was isolated as a pale yellow solid (94 mg, 76%); R_f (PE : EA = 5 : 1) = 0.20; mp (melting point) = 161– 163 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (s, 1H), 7.65 (d, *J* = 8.7 Hz, 1H), 7.42 (d, *J* = 2.7 Hz, 1H), 6.95 (dd, *J* = 8.7 Hz, 2.2 Hz, 1H), 6.89 (d, *J* = 2.1 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 136.9, 131.6, 129.4 (q, *J* = 308.1 Hz, 1C), 123.7, 120.0, 111.7, 95.7 (q, *J* = 2.3 Hz, 1C), 95.0, 55.7 (q, *J* = 1.8 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.63 (s, 3F).

7-methyl-3-((trifluoromethyl)thio)-1H-indole (12m):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12m** was isolated as a pale yellow solid (102 mg, 88%); R_f (PE : EA = 10 : 1) = 0.24; mp (melting point) = 176-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 2.8 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.1 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 135.6, 132.4, 129.4 (q, *J* = 308.2 Hz, 1C), 129.1, 124.0, 121.8, 120.8, 117.0, 96.2 (q, *J* = 2.5 Hz, 1C), 16.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.57 (s, 3F).

2-methyl-3-((*trifluoromethyl*)*thio*)-*1H-indole* (*12n*):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12n** was isolated as a pink solid (88 mg, 76%); R_f (PE : EA = 10 : 1) = 0.24; mp (melting point) = 58-60 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.71-7.69 (m, 1H), 7.31-7.28 (m, 1H), 7.24-7.19 (m, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 135.0, 130.6, 129.8 (q, *J* = 309.0 Hz, 1C), 122.6, 121.3, 118.6, 110.8, 92.4 (q, *J* = 2.2 Hz, 1C), 11.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.46 (s, 3F).

2-phenyl-3-((trifluoromethyl)thio)-1H-indole (120):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **120** was isolated as a brown solid (101 mg, 69%); R_f (PE : EA = 10 : 1) = 0.27; mp (melting point) = 83–85 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 7.86-7.84 (m, 1H), 7.78-7.76 (m, 2H), 7.54-7.47 (m, 3H), 7.45-7.41 (m, 1H), 7.33-7.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 135.3, 131.4, 130.6, 129.7 (q, *J* = 309.4 Hz, 1C), 129.2, 128.8, 128.7, 123.7, 121.8, 119.8, 111.2, 92.6 (q, *J* = 2.3 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -43.43 (s, 3F).

1-methyl-3-((trifluoromethyl)thio)-1H-indole (12p):^{13c} After purification by silica gel column chromatography (PE : EA = 20 : 1), compound **12p** was isolated as a pale yellow solid (103 mg, 89%); R_f (PE : EA = 10 : 1) = 0.50; mp (melting point) = 58– 59 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.38-7.35 (m, 2H), 7.31 (td, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.27 (td, *J* = 7.3 Hz, 1.6 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.2, 136.9, 130.2, 129.4 (q, *J* = 308.2 Hz, 1C), 122.9, 121.3, 119.4, 109.8, 93.1 (q, *J* = 2.3 Hz, 1C), 33.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.95 (s, 3F).

1,2-dimethyl-3-((trifluoromethyl)thio)-1H-indole (12q):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **12q** was isolated as a pale yellow solid (100 mg,

82%); R_f (PE : EA = 10 : 1) = 0.50; mp (melting point) = 114. M 116 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.71 (m, 1H), 7.33-7.31 (m, 1H), 7.28-7.21 (m, 2H), 3.74 (s, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.1, 136.9, 130.1, 129.8 (q, *J* = 309.1 Hz, 1C), 122.2, 121.1, 118.7, 109.2, 91.2 (q, *J* = 2.2 Hz, 1C), 30.3, 10.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.92 (s, 3F).

1-phenyl-3-((*trifluoromethyl*)*thio*)-*1H-indole* (*12r*):^{13c} After purification by silica gel column chromatography (PE), compound **12r** was isolated as a white solid (70 mg, 48%); R_f (PE) = 0.67; mp (melting point) = 53–55 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 1H), 7.65 (s, 1H), 7.56-7.48 (m, 5H), 7.45-7.41 (m, 1H), 7.34-7.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.5, 136.7, 135.9, 130.6, 129.8, 129.4 (q, *J* = 308.3 Hz, 1C), 127.7, 124.7, 123.7, 122.1, 119.7, 111.1, 96.3 (q, *J* = 2.3 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.31 (s, 3F).

3-methyl-2-((trifluoromethyl)thio)-1H-indole (12s):^{13c} After purification by silica gel column chromatography (PE : EA = 20 : 1), compound **12s** was isolated as a pale yellow solid (17 mg, 15%); R_f (PE : EA = 10 : 1) = 0.33; mp (melting point) = 92– 94 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H), 7.54 (dd, *J* = 8.0 Hz, 0.6 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.25-7.21 (m, 1H), 7.11-7.07 (m, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 128.7 (q, *J* = 309.8 Hz, 1C), 127.9, 124.8, 123.7, 120.1, 120.0, 113.0 (q, *J* = 2.2 Hz, 1C), 111.1, 9.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -43.08 (s, 3F).

ethyl 2,4-dimethyl-5-((*trifluoromethyl*)thio)-1H-pyrrole-3carboxylate (14a):^{13c} After purification by silica gel column chromatography (PE : EA = 10 : 1), compound 13a was isolated as a brown solid (87 mg, 65%); R_f (PE : EA = 10 : 1) = 0.37; mp (melting point) = 142–145 °C; ¹H NMR (400 MHz, CDCl₃): δ 12.04 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 140.2, 132.1, 128.5 (q, J = 310.3 Hz, 1C), 112.0, 102.9 (q, J = 2.3 Hz, 1C), 58.8, 14.2, 13.5 (q, J = 1.2 Hz, 1C), 11.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.48 (s, 3F).

2,5-dimethyl-1-phenyl-3-((trifluoromethyl)thio)-1H-pyrrole

(14b)^{13c} After purification by silica gel column chromatography (PE), compound 13b was isolated as a brown solid (79 mg, 58%); Rf (PE) = 0.47; mp (melting point) = 62–64 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.42 (m, 3H), 7.21-7.18 (m, 2H), 6.12 (s, 1H), 2.10 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.31, 136.57, 129.78 (q, *J* = 307.5 Hz, 1C), 129.47, 129.36, 128.46, 128.04, 112.62, 97.61 (q, *J* = 2.2 Hz, 1C), 12.70, 11.10; ¹⁹F NMR (376 MHz, CDCl₃): δ -45.31 (s, 3F).

2-(4-(trifluoromethyl)phenyl)-5-((trifluoromethyl)thio)-1H-

pyrrole (14c)^{4f} After purification by silica gel column chromatography (PE : EA = 20 : 1), compound 13c was isolated as a white solid (82 mg, 53%); Rf (PE : EA = 20 : 1) = 0.47; mp (melting point) = 40–45 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 6.74 (t, J = 3.2 Hz, 1H), 6.66 (t, J = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 134.5, 129.4 (q, J = 32 Hz, 1C), 128.3 (q, J = 309 Hz, 1C), 126.1 (q, J = 4 Hz, 1C), 124.4, 124.0 (q, J = 271 Hz, 1C), 123.2, 110.0 (q, J = 2 Hz, 1C), 109.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.77 (s, 3F), - 62.57 (s, 3F).

3-((trifluoromethyl)thio)indolizine-1-carbonitrile (14d): After purification by silica gel column chromatography (PE : EA = 10 : 1), compound **13d** was isolated as a yellow solid (75 mg, 62%); R_f (PE : EA = 10 : 1) = 0.36; mp (melting point) = 109–110 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 7.0 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.51 (s, 1H), 7.33 (ddd, *J* = 8.8 Hz, 6.8 Hz, 0.8 Hz, 1H), 7.03 (td, *J* = 7.0 Hz, 10 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 129.5, 128.1 (q, *J* = 311.9 Hz, 1C), 125.3, 124.9, 118.1, 115.0, 114.5, 103.5 (q, *J* = 2.9 Hz, 1C), 84.5; ¹⁹F NMR (376 MHz, CDCl₃): δ -44.06 (s); HRMS (ESI) *m/e* calcd for C₁₀H₆F₃N₂S⁺ (M+H)⁺ 243.0198, found 243.0198.

3-((*trifluoromethyl*)*thio*)*indolizine-1-carbonitrile* (*14e*) After purification by silica gel column chromatography (PE : EA = 15 : 1), compound **13e** was isolated as a white solid (77 mg, 56%); Rf (PE : EA = 10 : 1) = 0.41; mp (melting point) = 85-87 °C; ¹H

NMR (400 MHz, CDCl₃): δ 8.55 (d, J = 7.2 Hz, 1H), 7.49 (d, J= 7.2 Hz, 1H), 7.08 (s, 1H), 6.97-7.01 (m, 1H), 6.83-6.86 (m, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 136.4, 128.3 (q, J = 311 Hz), 127.4, 124.1, 121.7, 120.3, 113.9, 104.7, 102.1, 51.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -43.56 (s, 3F); HRMS (ESI) m/e calcd for $C_{11}H_8F_3NO_2S^+$ (M+H)⁺ 276.0301, found 276.0300. 6-bromo-3-((trifluoromethyl)thio)indolizine-1-carboxylate (14f) After purification by silica gel column chromatography (PE : EA = 30: 1), compound **13f** was isolated as a white solid (112 mg, 63%); Rf (PE : EA = 30 : 1) = 0.26; mp (melting point) = 129-131 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 8.20 (d, J =9.6 Hz, 1H), 7.69 (s, 1H), 7.32 (d, J = 9.6 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 137.6, 129.4, 128.5, 128.3 (q, J = 312 Hz), 124.8, 120.7, 109.3, 106.8, 103.4, 51.5 (q, J = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -44.10 (s, 3F); HRMS (ESI) m/e calcd for $C_{11}H_7BrF_3NO_2S^+$ (M+H)⁺ 352.9328, found 352.9329.

dimethyl 7-methyl-3-((trifluoromethyl)thio)indolizine-1,2dicarboxylate (14g) After purification by silica gel column chromatography (PE : EA = 10 : 1), compound 13g was isolated as a white solid (128 mg, 68%); Rf (PE : EA = 10 : 1) = 0.27; mp (melting point) = 66–68 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 7.2 Hz, 1H), 8.11 (s, 1H), 6.86 (dd, *J* = 7.2Hz, 1.6 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 2.45 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 162.8, 139.9, 137.6, 134.7, 128.2 (q, J = 313 Hz), 123.8, 118.8, 117.4, 102.5, 100.6, 61.9, 60.2, 21.4, 14.3, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -43.30 (s, 3F); HRMS (ESI) m/e calcd for $C_{16}H_{16}F_3NO_4S^+$ (M+H)⁺, 376.0825, found 376.0828. 1,3-dimethyl-4-((trifluoromethyl)thio)-1H-pyrazol-5-ol (14h)After purification by silica gel column chromatography (DCM : MeOH = 10:1), compound 13h was isolated as a white solid (42) mg, 40%); R_f (DCM : MeOH = 10 : 1) = 0.48; mp (melting point) = 190–192 °C; ¹H NMR (400 MHz, d6-DMSO): δ 12.0 (s, 1H), 3.46 (s, 3H), 2.10 (s, 3H); ^{13}C NMR (100 MHz, d6-DMSO); δ 19 F 157.2, 150.7, 129.5 (q, J = 309 Hz, 1C), 77.8, 33.1, 11.9; NMR (376 MHz, d6-DMSO): δ -45.50 (s, 3F); HRMS (ESI) m/e calcd for $C_6H_8F_3N_2OS^+(M+H)^+$ 213.0304, found 213.0304.

(*trifluoromethyl*)(2,4,6-*trimethoxyphenyl*)*sulfane* (14*i*)^{13c} After purification by silica gel column chromatography (PE : EA = 30 : 1), compound **13i** was isolated as a white solid (87 mg, 65%); R_f (PE : EA = 10 : 1) = 0.38; mp (melting point) = 76–77 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.16 (s, 2H), 3.88 (s, 6H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 163.5, 129.5 (q, *J* = 308.7 Hz, 1C), 91.9 (q, *J* = 1.4 Hz, 1C), 91.1, 56.2 (q, *J* = 2.2 Hz, 1C), 55.4 (q, *J* = 1.9 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃): δ -43.50 (s, 3F).

ethyl (*E*)-3-(*benzylamino*)-2-((*trifluoromethyl*)*thio*)*but-2-enoate* (*14j*) After purification by silica gel column chromatography (PE : EA = 20 : 1), compound **13j** was isolated as a yellow oil (99 mg, 62%); R_f (PE : EA = 20 : 1) = 0.34; ¹H NMR (400 MHz, CDCl₃): δ 10.78 (s, 1H), 7.38-7.24 (m, 5H), 4.51 (d, *J* = 5.6 Hz, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.8, 136.8, 130.0 (q, *J* = 310 Hz, 1C), 129.0, 127.8, 126.8, 76.6 (q, *J* = 2.1 Hz), 60.1, 48.3, 17.7, 14.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -47.31 (s, 3F). HRMS (ESI) *m/e* calcd for C₁₄H₁₇F₃NO₂S⁺ (M+H)⁺ 320.0927, found 320.0926.

4. Conclusion

In conclusion, we successfully developed a novel transition metal-free method for the direct trifluoromethylthiolation of electron-rich aromatics using CF_3SO_2Na in the presence of PhPCl₂. In this protocol, PhPCl₂ was employed as both a reducing and a chlorinating reagent of CF_3SO_2Na . Thus, the absence of transition metal-containing reagents from this procedure, in addition to the use of cheap and readily available

trifluoromethylthiolation of electron-rich aromatics.

Acknowledgments

The authors sincerely thank the financial support from National Science Foundation of China (Grants 21572158).

References and notes

- (a) Silverstone, T.; Fincham, J.; Plumley, J. Br. J. Clin. Pharmacol. 1979, 7, 353-356. (b) Aswapokee, N.; Neu, H. C. Antimicrob. Agents Chemother. 1979, 15, 444-446. (c) Pommier, P.; Keïta, A.; Wessel-Robert, S.; Dellac, B.; Mundt, H. C. Rev. Med. Vet. 2003, 154, 41-46. (d) Islam, R.; Lynch, J. W. Br. J. Pharmacol. 2012, 165, 2707-2720.
- 2. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.
- (a) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827-856. (b) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880-921.
- (a) Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. 2000, 30, 2847-2854. (b) Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856-12859. (c) Rueping, M.; Liu, X.; Bootwicha, T.; Pluta, R.; Merkens, C. Chem. Commun. 2014, 50, 2508-2511. (d) Xiao, Q.; He, Q.; Li, J.; Wang, J. Org. Lett. 2015, 17, 6090-6093. (f) Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047-8051.
- Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. J. Org. Chem. 2008, 73, 9362-9365.
- (a) Xu, C.; Ma, B.; Shen, Q. Angew. Chem. Int. Ed. 2014, 53, 9316-9320. (b) Wang, Q.; Qi, Z.; Xie, F.; Li, X. Adv. Synth. Catal. 2015, 357, 355-360.
- (a) Alazet, S.; Zimmer, L.; Billard, T. Chem. Eur. J. 2014, 20, 8589-8593. (b) Alazet, S.; Billard, T. Synlett 2015, 26, 76-78.
- (a) Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457-3460. (b) Shao, X.; Xu, C.; Lu, L.; Shen, Q. J. Org. Chem. 2015, 80, 3012-3021.
- Vinogradova, E. V.; Muller, P.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 3125-3128.
- (a) Yang, Y. D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro. M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782-8785. (b) Huang, Z.; Yang, Y. D.; Tokunaga, E.; Shibata, N. Org. Lett. 2015, 17, 1094-1097.
- 11. Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227-1236.
- Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y. Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486-7509.
- (a) Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467-2470. (b) Jiang, L.; Yi, W.; Liu, Q. Adv. Synth. Catal. 2016, 358, 3700-3705. (c) .Lu, K.; Deng, Z.; Li, M.; Li T.; Zhao, X. Org. Biomol. Chem. 2017, 15, 1254-1260. (d) Chachignon, H.; Cahard, D. J. Fluorine Chem. 2017, 198, 82-88.
- For selected examples see: (a) Langlois, B. R.; Laurent, E.; Roidot, N. *Tetrahedron Lett.* **1991**, *32*, 7525-7528. (b) Langlois, B. R.; Montkgre, D.; Roidot, N.; *J. Fluorine Chem.* **1994**, *68*, 63-66. (c) Billard, T.; Roques, N.; Langlois, B. R. *J. Org. Chem.* **1999**, 64, 3813-3820. (d) Y. D. Yang, K. Iwamoto, E. Tokunaga, N. Shibata, *Chem. Commun.* **2013**, *49*, 5510-5512; (e) Hang, Z.; Li, Z.; Liu, Z.-Q. Org. Lett. **2014**, *16*, 3648-3651. (f) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei A. Org. Lett. **2015**, *17*, 6034-6037. (g) Zhu, L.; Wang, L.-S.; Li, B.; Fu, B.; Zhang, C.-P.; Li, W. Chem. Commun. **2016**, *52*, 6371-6374. (h) Liu, Z.-Q.; Liu, D. J. Org. Chem. **2017**, *82*, 1649-1656.
- 15. Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965-14969.
- (a) Bu, M.-J.; Lu, G.-P.; Cai, C. Org. Chem. Front. 2017, 4, 266-270. (b) Yan, Q.; Jiang, L.; Yi, W.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, DOI: 10.1002/adsc.201700270
- (a) Sun, D-.W.; Jiang, X.; Jiang, M.; Lin, Y.; Liu, J-.T. Eur. J. Org. Chem. 2017, DOI: 10.1002/ejoc.201700661. (b) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, DOI: 10.1021/acs.joc.7b01226.
- (a) Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121-13123. (b) Zhao, X.; Zhang, L.; Lu, X.; Li, T.; Lu, K. J. Org. Chem. 2015, 80, 2918-2924. (c) Zhao, X.; Deng, Z.; Wei, A.; Li, B.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304-7312. (d) Zhao, X.; Li, T.; Zhang, L.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131-1137. (e) Zhao, X.; Lu, X.; Wei, A.; Jia, X.; Chen, J.; Lu, K. Tetrahedron Lett. 2016, 57, 5330-5333. (f) Zhao, X.; Wei, A.; Li, T.; Su, Z.; Chen, J.; Lu, K. Org. Chem. Front,