Reference Data

¹³C Nuclear Magnetic Resonance Studies on 1,3-Diphenylprop-2-enones

V. S. PARMAR (to whom correspondence should be addressed), SUNIL SHARMA, J. S. RATHORE, MEENU GARG. SANDHYA GUPTA, SUNITA MAL-HOTRA, V. K. SHARMA and SUDDHAM SINGH Department of Chemistry, University of Delhi, Delhi-110 007, India P. M. BOLL Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

The ¹³C NMR spectra of 48 differently substituted chalcones (1,3-diphenylprop-2 enones) have been recorded and the results are discussed. The data will be useful in the identification of new/natural chalcones.

KEY WORDS Chalcones 1,3-Diphenylprop-2- enones ¹³C NMR chemical shifts

INTRODUCTION

Chalcones (1,3-diphenylprop-2- enones) constitute an important group of natural products and some have been found to possess a wide range of biological activities.¹⁻⁶ They are useful in the production of nematic liquid crystals⁷ and photosensitive polymers⁸ and in the biosynthesis and synthesis of different classes of flavonoids. The ¹³C NMR spectra of some chalcones have been studied previously,⁹⁻¹⁷ but no detailed discussion has been provided; in addition, they were of compounds that are not analogues of naturally occurring chalcones. The object of this work was to extend this range, and we now report on the structures and chemical shifts of 48 differently substituted chalcones of which some are found in nature. Chalcones often occur in minute amounts in nature, and it is important to provide comparable data in one solvent ($CDCl_3$) from which it is easy to recover the chalcone.

EXPERIMENTAL

Chalcones 1-48 (Table 1) were synthesized by the base-catalysed Claisen-Schmidt reaction of the appropriate benzaldehyde and acetophenone. The purities of all the compounds were checked from their melting points and spectral data. The ¹³C NMR spectra were recorded on a Bruker AM-250 FT NMR spectrometer. The conditions were as follows: 297 K, 5-mm tube, 8% solution in CDCl₃ with TMS as internal standard, deuteriated solvent as internal lock, $90^{\circ}/3.8 \ \mu s$ pulse, 2-s repetition time, 1000-5000 transients, 32K data points used in each measurement, 142 85 Hz spectral width and 0.9 Hz per point digital resolution. Both ¹³C proton-coupled and decoupled spectra were measured.

RESULTS AND DISCUSSION

The carbon chemical shifts in chalcones 1-48 (Table 1) are summarized in Tables 2 and 3. The proton noise decoupled spectra show the carbonyl carbon resonance in the range δ 186.95-193.86 ppm (Table 3), identifiable by its characteristic peak; C- α absorbs between δ 117.65 and 130.45 ppm and C- β between δ 137.90 and 145.77 ppm (Table 3). The low-field shift of C- β compared with that of C- α in all the compounds may be due to the electron-withdrawing benzoyl group attached to the neighbouring carbon atom.

The effect of oxygenated functions (-OH, -OCH₃, -OCH₂O-, -OCH₂C₆H₅) on the aromatic rings is characteristic in that the resulting quaternary carbon moves $ca \ 20-35$ ppm downfield. The carbon atoms *ortho* or *para* to the oxygenated carbon move upfield (by 5-15 ppm) whereas those at *meta* positions do not show any appreciable change.

The C-1' signal in 1-25, having C-2' oxygenation, appeared between δ 105.80 and 123.92 ppm; the large difference in these C-1' δ values is due to the different oxygenation patterns in ring A. The C-1' signal in 26-48, lacking a substituent at C-2' and having substituents at C-3' and C-4', appeared between δ 130.54 and 133.42 ppm. The C-5' signal in 1 was at δ 123.03 ppm and in 2-5, having only C-2' and C-4' oxygenation, at δ 105.07-107.63 ppm. Compounds 11-16, having C-2', C-4' and C-6' oxygenation, had a C-5' signal between δ 91.04 and 91.93 ppm. In 6-10 (having a C-2, C-3' and C-4' oxygenation pattern), however, the C-5' signal appeared between δ 102.46 and 104.55 ppm. In 22 (having a C-2', C-3', C-4' and C-6' oxygenation pattern), the signal was upfield at δ 87.22 ppm, and in 26-48 (having a C-3' and C-4' oxygenation pattern) was between δ 106.49 and 113.62 ppm. The C-6' signal in 1-10, which lacked a C-6' substituent, appeared between δ 125.43 and 132.67 ppm and in 26-48 between δ 110.61 and 124.23 ppm. In 17 and 18, lacking substitution at C-6' but having oxygenated substituents at C-2', C-4' and C-5', C-6' absorbed at δ 112.64 and 110.98 ppm, respectively.

C-1 in compounds lacking a substituent at C-2 absorbed between δ 126.65 and 135.44 ppm and in **35–37** and **45–47**, having a C-2 and C-3 oxygenation pattern, in the range δ 121.28–129.53 ppm. In compounds having only C-2 and C-4 substituents, the C-1 signal was between δ 116.91 and 117.69 ppm. The C-6 signal was in the range δ 113.46–132.48 ppm; the large difference in its chemical shift in these compounds is due to the different oxygenation patterns in ring B.

Appropriate chemical shift values for the methoxy, methylenedioxy and benzylic carbons can be found in Table 2.

Table 1. Structures of the chalcones studied^a R3 R² R⁴ R^{3'} R^{2'} В R4' ·R⁵ IB Α 6 R^{5'} α **6**′ || 0 R₂ R₃ R4 R_{4′} R₆ R₅ Compound R_{2′} R_{3'} R₅ ОН н н н Н н он OCH3 Н 1 н 2 OH н OCH3 н н н H н 3 ОН н OCH3 Н Н н OCH₃ OCH3 Н -0CH20-4 OH н OCH3 н Н н н -0CH₂0---5 OCH3 Н OCH3 Н Н н Н OCH₃ OCH3 6 OH OCH3 н н н н н 7 ОН OCH3 OBz н н н -0CH20--н __о́сн,о__ OCH₃ 8 ОН н Н н Н Н OCH3 н --0CH20---OCH₃ 9 OH н н н ОСН₃ OCH₃ 10 ОН OCH₃ OCH₃ Н н н Н OCH₃ 11 OH н OCH3 н н н H. н OCH3 12 ОН н он OCH3 OCH3 Н Н н OCH3 OCH3 OCH₃ OCH3 н н 13 OH н н 14 OH Н OCH3 Н OCH3 Н Н OCH₃ Н OCH₃ OCH₃ OCH3 OCH, н 15 OH н н н --0CH₂O---16 ОН Н OCH₃ Н OCH₃ Η н OCH₃ н ОСН3 17 ОН н OCH₃ OCH₃ н н OCH3 -OCH20-18 OH н OCH3 н н н OCH₃ OCH3 OCH₃ 19 ОН н н н н н OCH₃ ОСН₃ OCH₃ н н 20 OH н OCH3 OBz он н OCH₃ OBz OCH₃ н OCH₃ OBz Н 21 OCH3 22 OH OCH₃ OCH₃ н OCH₃ н н н OCH3 OCH3 23 он OCH₃ OCH₃ Н Н Η Η OCH₃ OCH₃ OCH₃ н н н 24 н OCH₃ OH 25 OCH3 OCH3 OCH3 OCH3 OCH3 Н Η Н н OBz н н 26 OBz н н н н н 27 н OBz OBz Η Н н Н OCH3 н н OCH₃ н 28 н OBz OBz Н н Н н OCH₃ OCH₃ 29 н OBz OBz н н н OCH₃ 30 Н OBz OBz Н Н Н OBz Н --0CH₂O---31 H OBz OBz н н н н 32 Н OBz OBz н н OCH₃ н OCH₃ Н OCH₃ OBz 33 н OBz н н н OB₇ н 34 Н OBz OBz н Н OBz OBz Н Н OCH3 35 Н OBz OBz н Н OH н H. 36 н OBz OBz н н OCH₃ OCH₃ н н 37 н OBz Н OBz OCH₃ н Н OBz н OCH₃ 38 н OBz OBz н н OCH₃ н н 39 -OCH_Oн н Н н н н н OCH3 н н 40 н -0CH20--н н н 41 -0CH_0-OCH₃ OBz н Н н Н Н -0CH20-42 Н н н н -0CH₂O--н 43 н -0CH20--Н Η OCH₃ OCH3 н н OCH3 44 Н -OCH2O--н н н OBz н 45 н -OCH,O---Н Н OCH₃ OCH₃ Н Н OCH₃ 46 -0CH₂0--н OBz н н Н н 47 н -0CH20---Н н ОН OCH₃ Н н OCH3 --OCH20--Н Н н OCH3 48 Н н

* $Bz = OCH_2C_6H_5$.

Reference Data

t abie 2.	the chalcone	s studied	ne cai dun a	IIIII UIII		the metho.	ry, wulyioxy air	a meenyiene	uori groups m
. .		0.5	• •			0.5	001	-0	
Compound	C-1	C-2	C-3	C-4	C-5	C-6	-OCH3	_0´CH2	−0CH₂C ₆ H₅
1	128.23	113.37	147.12	150.41	111.84	118.79	56.16		
2	134.79	128.94	128.48	130.63	128.48	128.92	55.60		
3	127.90	110.48	149.35	151.67	111.26	123.29	55.60, 55.02,		
٨	120.06	107 62	1/8 50	150.01	108 73	125 36	55.02 55.57	101 71	
5	129.50	107.02	140.50	149 27	108.73	125.30	55 64 55 40	98 55	
6	127.65	130.39	114 60	162.03	114 60	130.39	55 43 56 16	30.00	
Ŭ	127.00	100.00	114.00	102.00	114.00	100.00	60.59		
7	128.56	108.60	148.36	150.02	106.56	125.41	60.48		70.63
8	127.26	130.33	114.38	163.91	114.38	130.33	55.31	101.51	
9	127.58	110.25	148.01	149.27	111.13	123.38	55.95, 55.95	101.55	
10	116.91	161.61	98.74	163.04	105.82	131.31	55.55, 56.19,		
							55.69, 60.66		
11	134.63	128.87	128.35	129.65	128.35	128.87	55.57, 55.89		
12	117.37	160.55	98.44	163.43	106.30	130.51	55.20, 55.41,		
							55.60		
13	117.69	160.13	98.30	162.36	105.38	130.32	55.35, 55.35,		
							55.35, 55.60		
14	128.74	130.04	114.38	166.05	114.38	130.04	55.37, 55.37,		
							55.76		
15	129.28	111.47	149.84	151.77	111.97	122.92	55.66, 55.97.		
							56.21, 56.21		
16	130.17	106.45	148.10	150.69	106.71	124.91	55.50, 55.83	101.54	
17	128.19	111.45	149.70	152.10	111.74	123.05	56.14, 56.14,		
17	120.10	111.40	140.70	102.10		120.00	56 31 57 61		
18	129 21	106 66	148 38	149 99	106.63	125 34	56 09 56 91	100 71	
10	135 14	128 94	128 42	130.24	128 42	128.94	56.09 61.22	100.71	
15	100.44	120.04	120.42	100.24	120.42	120.04	61.87		
20	128.27	109.33	150.33	153.50	112.35	122.51	55.98, 55.98		64.28
-	400.05	440.07	4 4 0 0 0	150.00	140.00	104.00	61.92		70.00
21	120.00	110.67	149.33	150.62	112.23	124.02	55.89, 55.89		70.80
~~	400.00	400.47		404 50	444.00	100 17	61.9U		70.80
22	128.22	130.17	114.38	101.50	114.38	130.17	55.37, 50.02		
	405.07	400.07	400 55	400 50	400 FF	100.07	50.02, 60.70		
23	135.37	129.07	128.55	130.50	128.55	129.07	61.02, 61.35		
							61.61, 62.13		
24	134.4/	128.94	128.61	130.63	128.61	128.94	61.15, 61.35		
		400 75		400.45	400.00	400 75	62.00, 62.26		
25	134.42	128.75	128.39	130.45	128.39	128.75	62.00, 62.00		
							61.30, 61.50		-
26	134.94	128.77	128.22	130.20	128.22	128.77			/1.09
									70.72
27	127.65	129.97	114.24	161.39	114.24	129.97	55.25		71.09, 70.72
28	130.13	158.58	114.27	128.95	120.61	122.37	55.39		71.05, 70.70
29	128.01	114.53	149.28	151.34	113.10	121.32	56.00, 56.00		71.31, 70.90
30	128.51	113.09	149.83	150.46	111.00	123.21	56.11		71.27, 70.88
31	129.39	108.46	149.83	150.46	106.45	123.00		101.43	71.09. 70.72
32	117.16	162.73	98.31	160.16	105.24	130.60	55.31. 55.37		71.07. 70.72
33	117 27	161 78	99.11	160.04	105 97	130 48	55.29		70.93 70.58
	11/.21	101.70	00.11	100.04	100.07	100.40	00.20		69.97
34	11761	161 50	100 41	159 /6	106 39	132 49			70 91 70 70
	117.01	101.00	100.41	100.40	100.00	102.40			70 43 70 09
35	121 22	146 70	145.61	131 60	111.65	122 26	55 99		70 97 70 67
36	120.20	162.00	149.01	1221/	114 27	120.00	55 64 60 92		71 00 70 62
37	120.04	152.00	149.01	123.14	113.89	124.03	55 76		75 20 70 97
	120.00	100.10	1-0.01	120.20	110.00	124.10	00.70		70.65

Table 2. ¹³C chemical shifts of the carbon atoms of ring B and of the methoxy, benzyloxy and methylenedioxy groups in

Table 2. (Continued)

.

Table 2. (Co	ontinued)							-o	
Compound	C-1	C-2	C-3	C-4	C-5	C-6	-OCH3	о́сн₂	-0 <i>C</i> H ₂ C ₆ H ₅
38	124.49	153.30	112.23	116.68	148.54	113.59	55.59, 55.86		70.96, 70.59
39	134.74	128.69	128.14	130.16	128.14	128.69		101.65	
40	127.46	129.90	114.15	161.33	114.15	129.90	55.14	101.60	
41	128.08	113.23	150.23	151.29	110.54	122.54	55.82	101.69	70.59
42	129.32	108.50	148.12	151.43	108.26	124.35		101.47	
43	117.05	162.76	98.29	160.18	105.24	130.78	55.31, 55.37	101.58	
44	117.27	161.86	99.18	160.14	106.01	130.71	55.37	101.57	70.05
45	128.91	152.98	148.65	122.99	113.87	124.44	55.64, 61.05	101.63	
46	129.31	153.03	151.25	123.24	113.88	124.22	55.59	101.55	75.10
47	121.31	151.37	146.75	121.77	111.72	124.58	56.13	101.67	
48	124.32	153.20	112.12	116.69	152.95	113.46	55.45, 55.74	101.55	

Table 3. ¹³C chemical shifts of the carbon atoms of ring A and the α,β -unsaturated carbonyl moiety of the chalcones studied

Compound	C-1′	C-2′	C-3′	C-4'	C-5′	C-6′	C-α	С- <i>β</i>	C - (O)
1	114.67	163.72	118.67	136.14	123.03	129.63	118.52	145.42	192.23
2	114.12	165.98	101.12	166.70	107.63	131.21	120.30	144.28	191.78
3	114.19	166.14	101.12	166.63	107.56	131.15	118.09	144.58	191.73
4	114.19	165.99	101.12	166.70	106.78	131.15	118.35	144.28	191.70
5	121.05	163.95	101.35	164.05	105.07	132.67	124.63	141.60	190.26
6	115.89	158.51	137.26	158.41	103.08	125.82	118.03	144.57	187.33
7	115.66	158.48	136.21	157.45	104.55	125.52	118.04	144.45	192.21
8	117.22	161.83	134.57	153.75	102.46	125.43	117.65	144.70	192.58
9	117.30	153.82	127.58	151.68	102.52	125.47	117.93	145.06	192.54
10	115.68	158.10	137.36	160.63	102.91	125.80	118.63	140.54	186.95
11	106.71	162.71	93.97	168.45	91.93	166.31	127.18	142.26	191.00
12	105.80	163.57	96.37	168.36	91.51	164.91	125.34	137.90	192.85
13	106.40	162.70	93.72	168.22	91.04	165.69	125.28	138.14	192.93
14	106.29	161.43	93.97	168.39	91.25	162.54	125.23	142.39	192.63
15	106.90	162.71	94.40	168.82	91.64	166.54	126.06	142.87	188.02
16	106.60	162.53	93.98	168.38	91.25	166.05	124.78	142.32	188.39
17	112.38	161.99	101.11	156.31	142.13	112.64	118.58	144.67	188.41
18	111.73	161.65	101.61	156.93	141.66	110.98	118.23	144.28	191.28
19	108.79	162.80	96.64	160.26	128.42	155.07	126.60	143.11	192.90
20	109.09	162.71	96.54	160.07	128.22	155.24	122.78	143.59	192.11
21	111.07	162.70	96.54	160.33	128.23	153.50	124.31	143.42	190.78
22	106.91	158.25	130.95	158.57	87.22	159.42	125.11	142.78	193.27
23	111.31	151.04	128.55	138.62	137.45	155.07	126.73	143.69	193.86
24	113.60	163.03	135.14	137.00	137.63	157.83	128.61	145.77	192.30
25	123.92	153.84	142.99	143.21	140.08	143.27	130.45	142.69	
26	131.47	114.25	148.67	152.99	112.89	121.69	123.19	143.81	
27	131.75	114.24	148.62	152.79	112.91	119.26	123.01	143.67	188.43
28	131.39	111.08	148.61	152.76	110.97	122.99	123.15	139.38	188.98
29	131.91	111.20	148.85	153.03	110.31	119.71	122.94	144.16	188.60
30	131.89	114.48	148.84	153.00	113.62	119.83	122.65	144.05	188.51
31	131.65	114.28	148.84	153.00	112.93	110.61	124.86	143.59	188.18
32	132.13	114.31	148.58	152.58	112.94	122.97	119.91	139.50	189.03
33	131.99	114.14	148.49	152.50	112.79	122.92	119.87	139.32	188.86
34	132.02	113.91	148.61	152.45	112.87	122.95	120.57	139.87	188.87
35	131.69	114.17	148.53	152.77	112.81	123.20	122.95	139.13	189.03
36	130.54	113.91	148.71	152.88	112.88	119.44	123.89	138.54	188.50
37	131.50	114.04	152.72	153.07	112.81	120.11	123.33	139.18	188.73
38	131.62	114.15	152.74	153.04	112.78	122.50	123.13	139.06	188.77
39	132.69	108.16	148.05	151.47	107.66	121.43	124.44	143.93	187.88
40	132.98	108.15	147.99	151.28	107.62	119.08	124.23	143.79	187.93
41	132.92	108.15	149.53	147.99	107.62	119.46	124.27	144.08	187.92
42	133.00	107.73	148.25	151.44	106.49	119.58	124.91	143.92	187.93
43	133.42	108.30	147.95	151.11	107.65	124.22	119.85	139.78	188.72
44	133.39	108.29	147.95	151.12	107.50	124.23	119.96	139.70	188.67
45	132.84	108.18	148.04	151.41	107.67	119.33	123. 9 5	138.75	188.25
46	132.74	108.14	147.94	147.21	107.53	120.05	124.44	139.34	188.37
47	133.18	108.43	145.67	148.08	107.75	119.58	123.18	139.44	188.84
48	132.86	108.15	147.91	151.23	107.53	122.23	124.23	139.14	188.25

Reference Data

References

- O. G. deLima, J. F. deMello, J. S. C. deCoelho, F. D. deLyra, M. H. F. deAlbuquerque, G. B. Marini-Bettolo, G. D. Monache and F. D. Monache, *Farmaco, Ed. Sci.* **30**, 326 (1975); *Chem. Abstr.* **83**, 91495 (1975).
- K. Kyogoku, K. Hatayama, S. Yokomori and T. Seki, *Jpn. Kokai* 75140430 (1975); *Chem. Abstr.* 84, 121467 (1976).
- M. Sasajima, S. Nakane, R. Saziki, H. Saotome, K. Hatayama, K. Kyogoku and I. Tanaka, *Nippon Yakurigaku Zasshi* 74, 897 (1978); *Chem. Abstr.* 90 197536 (1979).
- K. Kyogoku, K. Hatayama, S. Yokomori, R. Saziki, S. Nakane, M. Sasajima, J. Sawada, M. Ohzeki and T.

Tanaka, Chem. Pharm. Bull. 27, 2943 (1979).

- V. S. Kamat, F. Y. Chou, I. Kubo and K. Nakanishi, *Heterocycles* 15, 1163 (1981).
- D. S. Bhakuni and R. Chaturvedi, J. Nat. Prod. (Lloydia) 47, 585 (1984).
- K. Hanemann, H. Schubert, D. Demus and G. Pelzl, *East Ger. Pat.* 115283 (1975); *Chem. Abstr.* 87, 76418 (1977).
- M. Kato, M. Hasegawa and T. Ichijyo, US Pat. 3873500 (1975); Chem. Abstr. 83, 29065 (1975).
- E. Solčániová, Š. Toma and S. Gronowitz, Org. Magn. Reson. 8, 439 (1976).
- 10. F. Membrey and J. P. Doucet, J. Chim. Phys. Chim. Biol. 73, 1024 (1976).
- 11. K. R. Markham and B. Ternai, Tetrahedron 32, 2607 (1976).

- A. Pelter, R. S. Ward and T. I. Gray, J. *Chem. Soc.*, *Perkin Trans*, 1 2475 (1976).
- 13. G. Musumarra and F. P. Ballistreri, Org. Magn. Reson. 14, 384 (1980).
- 14. G. Musumarra, S. Wold and S. Gronowitz, Org. Magn. Reson. 17, 118 (1981).
- Á. Patra, A. K. Mitra, A. Bhattacharya and N. Additya-Chaudhury, Org. Magn. Reson. 18, 241 (1982).
- 16. M. Szajda, *Magn. Reson. Chem.* 27, 399 (1989).
- K. Hayamizu, M. Yanagisawa, T. Ishii, A. Yabe, O. Yamomoto, M. Nakayama and A. Hayashi, *Magn. Reson. Chem.* 27, 899 (1989).

Received 20 September 1989; accepted (revised) 30 January 1990