assayed for HVA levels by HPLC. Amine 7b or its saline vehicle was administered to the rat ip. Dialysate samples were collected for 4 h following the injection. Each rat received both saline vehicle and 7b injections on separate days. Average, preinjection dialysate HVA levels were assigned the value of "100% base line", and changes in dialysate HVA levels following injection were compared to these levels.

Acknowledgment. We thank Kenneth W. Perry and Harold D. Snoddy for the brain neurochemical and serum corticosterone measurements, E. Barry Smalstig for prolactin and rat turning data, Lee A. Phebus for in vivo dialysis work, Richard D. Marsh and Penny Threlkeld for measurement of binding affinities, J. David Leander for pigeon stereotypy work, and John Schaus for helpful discussions.

Registry No. (±)-7a, 121867-66-1; (±)-7a (free base), 121867-55-8; (±)-7b, 121867-67-2; (±)-7b (free base), 121867-56-9; (\pm) -7c, 121867-68-3; (\pm) -7c (free base), 121867-57-0; (\pm) -7d, 121867-69-4; (±)-7d (free base), 121867-58-1; (±)-7e, 121867-70-7; (\pm) -7e (free base), 121867-59-2; (\pm) -7f, 121867-71-8; (\pm) -7f (free base), 121867-60-5; (±)-7g, 121867-72-9; (±)-7g (free base), 121867-61-6; (±)-7h, 121867-73-0; (±)-7h (free base), 121867-62-7; (±)-7i, 121867-74-1; (±)-7i (free base), 121867-63-8; (±)-7j, 121867-75-2; (±)-7j (free base), 121867-64-9; (±)-7k, 121867-76-3; (\pm) -7k (free base), 121867-65-0; (\pm) -10a, 121868-03-9; (\pm) -10a (free base), 121867-98-9; (±)-10b, 121868-04-0; (±)-10b (free base), $121867-99-0; (\pm)-10c, 121868-05-1; (\pm)-10c$ (free base), 121868-00-6; (\pm) -10d, 121868-06-2; (\pm) -10d (free base), 121868-02-8; (\pm) -11, 74197-16-3; (\pm) -12a, 74197-10-7; (\pm) -12b, 121867-51-4; (\pm) -12b-2HCl, 121867-77-4; (±)-12c, 121867-52-5; (±)-12d, 121867-53-6; (\pm) -12e, 121867-54-7; (\pm) -13, 121867-78-5; (\pm) -14a, 121867-79-6; (±)-14b, 121867-80-9; (±)-14c, 121867-81-0; (±)-14d, 121867-82-1; (\pm) -14e, 121867-83-2; (\pm) -14f, 121867-84-3; (\pm) -14g, 121867-85-4; (\pm) -14h, 121867-86-5; (\pm) -14i, 121867-87-6; (\pm) -(E)-14j, 121867-88-7; (\pm) -(Z)-14j, 121958-22-3; (\pm) -14k, 121867-89-8; (\pm) -16a, 121867-90-1; (±)-16b, 121886-90-6; (±)-16c, 121867-91-2; (±)-16d, 121867-92-3; (±)-16e, 121867-96-7; (±)-17a, 121867-93-4; (±)-17b, $121867-94-5; (\pm)-17c, 121867-95-6; (\pm)-17d, 121868-01-7; (\pm)-17e,$ 121867-97-8; butyryl chloride, 141-75-3; phenylacetyl chloride, 103-80-0; 2-thienylacetyl chloride, 39098-97-0; 3-(mercaptomethyl)propionyl chloride, 7031-23-4; butyraldehyde, 123-72-8; phenylacetaldehyde, 122-78-1; propionaldehyde, 123-38-6; propionyl chloride, 79-03-8.

Quantitative Structure-Activity Relationships in Dihydropteroate Synthase Inhibition by Multisubstituted Sulfones. Design and Synthesis of Some New Derivatives with Improved Potency[†]

Pier G. De Benedetti,*.[‡] Dario Iarossi,[‡] Ugo Folli,[‡] Chiara Frassineti,[§] Maria Cristina Menziani,[‡] and Carlo Cennamo[§]

Dipartimento di Chimica and Istituto di Chimica Biologica, Università di Modena, Via Campi 183, 41100 Modena, Italy. Received December 1, 1988

On the bases of the linear correlation existing for a training set of homomultisubstituted 4-aminodiphenyl sulfones between the computed (INDO) electronic net charges of the SO_2 group and the enzymic inhibition data on dihydropteroate synthase from Escherichia coli, seven new heteromultisubstituted derivatives were designed, synthesized, and tested for their inhibition potencies. These compounds were found to be from 5-11 times more effective than 4,4'-diaminodiphenyl sulfone. The implications of the results in the drug design and in the model for the enzyme-inhibitors interaction are discussed.

The diaryl sulfone derivatives (SO), like sulfanilamides (SA), exert their biological action by inhibiting the enzyme dihydropteroate synthase (DHPS) competitively with respect to the substrate 4-aminobenzoate.¹ The important role of these compounds as antibacterial,¹ antimalarial,² and antileprotic³ agents is well-recognized. Moreover, the urgent need for potent antimalarials,² the increased incidence of the so-called atypical mycobacterial infections,³ and the representative role assumed by SO and SA in the development of some aspects of quantitative structureactivity relationship (QSAR) methodologies¹ have led to a renewed interest in this class of drugs.

On the basis of QSAR analysis of a large series of SO using both empirical and quantum chemical descriptors of the molecular structure, we concluded^{4,5} that, like in the case of SA, the electronic structure of the common moiety $4-NH_2C_6H_4SO_2$, modulated by the substituents, is the determining factor connected with inhibitory potency. In particular, the more electron-rich the common moiety is, the more active the compounds are. This situation is at its best realized by the design and synthesis of multisubstituted SO bearing electron-donor substituents, the most efficient one being the hydroxy group, which can dissociate, giving the hydroxylate anion.

In the present work, the inhibitory effect exerted by some newly synthesized 2',4'- and 2',4',6'-substituted SO on the enzymic activity has been studied and correlated with theoretical electronic features of the SO_2 group. The 2'-CH₃, 4'-OH; 2',6'-(CH₃)₂, 4'-OH; and 2'-Cl, 4'-OH derivatives are about 1 order of magnitude more effective than the 4,4'-diaminodiphenyl sulfone (DDS). The equations found allow us, on a simple basis, to design multisubstituted SO and predict their biological activity prior to synthesis.

Results and Discussion

Table I reports the measured ap_E values, giving the inhibitory effect on DHPS from E. coli of 11 new SO derivatives (compounds 14-24), together with the previously

- Wiese, M.; Seydel, J. K.; Pieper, H.; Krüger, G.; Noll, K. R.; Keck, J. Quant. Struct.-Act. Relat. 1987, 6, 164.
- (3) Hooper, M. Chem. Soc. Rev. 1987, 16, 437.
 (4) De Benedetti, P. G.; Frassineti, C. Theochem 1983, 92, 191.

Frassineti, C.; Cennamo, C. J. Med. Chem. 1987, 30, 459.

[†]Partly presented at the 7th European Symposium on Quantitative Structure-Activity Relationships, Interlaken, Switzerland, September 1988.

[‡]Dipartimento di Chimica.

[§] Istituto di Chimica Biologica.

De Benedetti, P. G. Adv Drug Res; Testa, B., Ed.; Academic (1)Press: London and New York, 1987; Vol. 16, pp 227-279 and references therein.

De Benedetti, P. G.; Iarossi, D.; Menziani, M. C.; Caiolfa, V.;

Table I. Experimental and Theoretical Descriptors of Sulfones

ap _E										
no.	substituents	EII ₅₀ ^a	obsd ^b	calcd	$pK_{a_1}^{d}$	$pK_{a_2}^{\ \ d}$	% A ^{-e}	$q(\mathrm{SO}_2)^f$		
1	4'-NH ₂ (DDS)	2.64 (±0.76)	-0.42	-0.44				-0.5603		
2	$2',4'-(NO_2)_2$	36.31 (±13.72)	-1.56	-1.28				-0.5204		
3	$2',4'-(CH_3)_2$	$1.89 (\pm 0.54)$	-0.28	-0.31				-0.5668		
4	$2',4'-(Cl)_2$	$2.24 (\pm 0.60)$	-0.35	-0.36				-0.5356		
5	$2',4'-(NH_2)_2$	$1.59 (\pm 0.20)$	-0.20	-0.52				-0.5567		
6	$2',4'-(OCH_3)_2$	$3.21 (\pm 1.13)$	-0.51	-0.72				-0.5472		
7	2',4'-(OH) ₂	$0.71 (\pm 0.17)$	0.15	8	7.67	10.14		-0.5480		
8	2'-OH, 4'-O-	$0.51 (\pm 0.14)$	0.29 ^h	0.22			77.2	-0.5921		
9	2',4',6'-(CH ₃) ₃	$1.69 (\pm 0.55)$	-0.23	-0.09				-0.5772		
10	2',4',6'-(Cl) ₃	$3.31 (\pm 1.18)$	-0.52	-0.68				-0.5204		
11	2',4',6'-(OCH ₃) ₃	$12.88 (\pm 4.57)$	-1.11	-0.90				-0.5382		
12	2',4',6'-(OH) ₃	1.91 (±0.34)	-0.28	_8	7.69	9.62		-0.5397		
13	2',6'-(OH) ₂ , 4'-O ⁻	$1.46 (\pm 0.27)$	-0.16^{h}	0.01			76.4	-0.5824		
14	2'-CH ₃ , 4'-OCH ₃	$1.77 (\pm 0.63)$	-0.25	-0.33				-0.5658		
15	2'-CH ₃ , 4'-OH	$0.34 (\pm 0.32)$	0.47	_8	7.94			-0.5659		
16	2′-CH ₃ , 4′-O ⁻	$0.23 (\pm 0.21)$	0.66 ^h	0.55			64.5	-0.6083		
17	2'-Cl, 4'-OH	$0.26 (\pm 0.01)$	0.58	_8	6.70			-0.5423		
18	2'-Cl, 4'-O ⁻	$0.26 (\pm 0.01)$	0.59 ^h	0.76			96.9	-0.5895		
19	2',4'-(CH ₃) ₂ , 6'-OCH ₃	$3.02 (\pm 0.10)$	-0.48	-0.48				-0.5588		
20	2',4'-(CH ₃) ₂ , 6'-OH	1.78 (±0.08)	-0.25	_ <i>8</i>	8.	61		-0.5596		
21	2',4'-(CH ₃) ₂ , 6'-O ⁻	0.50 (±0.02)	0.30 ^h	0.11			28.0	-0.5871		
22	2',6'-(CH ₃) ₂ , 4'-OCH ₃	$1.77 (\pm 0.15)$	-0.25	-0.13				-0.5755		
23	2',6'-(CH ₃) ₂ , 4'-OH	0.51 (±0.09)	0.29	_8	8.20			-0.5757		
24	2',6'-(CH ₃) ₂ , 4'-O ⁻	$0.25 (\pm 0.05)$	0.59 ^h	0.69			50.0	-0.6149		

^aEnzyme inhibition index values: SO concentration giving 50% inhibition of enzyme activity divided by 4-aminobenzoate concentration.⁵ Standard deviations are given in parentheses. ^bap_E = log $(1/\text{EII}_{50})$. ^cCalculated with eq 3. ^dAcidic dissociation constants of the hydroxy substituents. ^ePercentage of monoanionic forms. ^fElectronic total net charges computed in the INDO approximation.¹⁰ ^dSee the corresponding anionic forms: 8, 13, 16, 18, 21, and 24. ^hBy ascribing the whole inhibitory effect of the acidic compounds to their monoanionic forms only,⁵ the ap_E values measured for compounds 7, 12, 15, 17, 20, and 23 were corrected to obtain the values assigned to the anionic forms 8, 13, 16, 18, 21, and 24.

measured⁵ ap_E values of the 4'-NH₂ substituted (DDS) and 2',4'-, and 2',4',6'-substituted SO (compounds 1-13), for comparison. Table I also reports the pK_a values of SO bearing acidic hydroxy substituents, the percentage of the monoanionic forms, and the total net charges of the SO₂ group computed in the INDO approximation.

The following equation summarizes the results of QSAR analysis for the training set (compounds 1-3, 5, 6, 8, 9, 11, and 13):

$$ap_{E} = -22.8 \ (\pm 5.8)q(SO_{2}) - 13.3 \ (\pm 3.2)$$
 (1)

$$n = 9$$
 $r = 0.940$ $s = 0.195$ $F = 49.2$

where n represents the number of SO considered, r is the correlation coefficient, s is the standard deviation from the regression, F is the significance F test, and the values in parentheses give the 95% confidence intervals.

The above equation clearly indicates that the more electron-rich (nucleophilic) the SO_2 group is, the more active the compounds are.

Based upon previous results^{2,4-6} and eq 1, some di- and trisubstituted derivatives, designed to increase the electronic charge on the SO₂ group, and, in general, on all the common moiety, were synthesized and tested (compounds 14–24). By including compounds 14, 16, 19, 21, 22, and 24 in the regression, we obtain the following equation:

$$ap_E = -22.1 \ (\pm 3.1)q(SO_2) - 12.8 \ (\pm 1.8)$$
 (2)

$$= 15$$
 $r = 0.958$ $s = 0.166$ $F = 146$

which shows an improvement of the statistical significance. In this correlation the anionic forms of the acidic compounds have been considered.⁵

n

The chloro derivatives were discarded from eq 2 because of their large deviations from linearity. However, as suggested by Seydel and co-workers,² the use of an indicator variable I (I = 1 when the 2'-Cl substituent is present, and I = 0 in all the other cases) allows us to include these compounds in the regression, obtaining the following equation:

$$ap_{\rm E} = -20.8 \ (\pm 2.8)q({\rm SO}_2) + 0.60 \ (\pm 0.20)I - 12.1 \ (\pm 1.6)$$
(3)

$$n = 18$$
 $r = 0.958$ $s = 0.171$ $F = 83.1$

which is comparable with eq 2 and confirms that the inhibitory activity is positively influenced by electron-donor substituents and by the *o*-chloro substitution,^{25,6} which enhances the activity by a factor of 2. The increase in the inhibitory potency due to the *o*-chloro substituents may be associated with a peculiar hydrophobic interaction with the enzymic site and/or to a specific *o*-chloro electronic phenomenon. Further investigation on this point is in progress.

It is worth stressing that some compounds (16, 18, 21, and 24) are from 5–11.5 times more effective than DDS (compound 1). The 2'-CH₃, 4'-OH and 2'-Cl, 4'-OH derivatives are the most active compounds of this class of drugs.

Conclusions

The good correlations found are encouraging in view of the design of new multisubstituted SO on the basis of a simple calculation of the electronic net charge of the SO₂ prior to synthesis. In this context, the superiority of quantum chemical descriptors clearly emerges when compared with empirical substituent constants (like σ), in which the additivity criterion is generally assumed and relevant changes of the molecular geometry cannot be

⁽⁶⁾ Lopez de Compadre, R. L.; Pearlstein, R. A.; Hopfinger, A. J.; Seydel, J. K. J. Med. Chem. 1987, 30, 900.

Table II. Aryl 4-Nitrophenyl Sulfides (4-NO₂C₆H₄MC₆H₂-2'-X,4'-Y,6'-Z) and Sulfones

~	37		7		synth	time,	%		recrystn	<u> </u>
no.	X	<u>Y</u>	Z	M	meth	h	yield ^a	mp, °C	solv	formula
14a	CH_3	OCH3	Н	S			89	69-70	C	C ₁₄ H ₁₃ NO ₃ S
17a	C1	OH	н	\mathbf{s}			82	185-187 ^d	А	C ₁₂ H ₈ CINO ₃ S
19a	CH_3	CH_3	OCH	\mathbf{s}			69	103 - 104	С	$C_{15}H_{15}NO_{3}S$
20a	CH_3	CH_3	OH	\mathbf{S}			82	133-134	Α	$C_{14}H_{13}NO_3S$
22a	CH_3	OCH3	CH_3	\mathbf{S}			83	115-117	В	$C_{15}H_{15}NO_3S$
23a	CH_3	OH	CH_3	\mathbf{S}			80	170 - 172	Α	$C_{14}H_{13}NO_3S$
1 4b	CH_3	OCH ₃	H	SO_2	Α	4	92	130 - 130.5	е	$C_{14}H_{13}NO_5S$
17b	Cl	OH	Н	SO_2	Α	5	96	202-204⁄	Α	C ₁₂ H ₈ ClNO ₅ S
1 9b	CH_3	CH_3	OCH₃	SO_2	В	24	79	202-203	g	$C_{15}H_{15}NO_5S$
20b	CH_3	CH_3	OH	SO_2	В	24	81	149-150	h	$C_{14}H_{13}NO_5S$
22b	CH_3	OCH3	CH_3	SO_2	В	48	82	147 - 147.5	i	$C_{15}H_{15}NO_5S$
23b	CH_3	OH	CH_3	SO_2	А	3	67	177 - 178	j	$C_{14}H_{13}NO_5S$

^a No attempt was made to maximize yield. ^bA = ethanol-water, B = ethanol, C = 2-propanol. ^cAnalyzed for C, H, N, and S; analytical results were within $\pm 4\%$ of the theoretical values. ^d The crude product was precipitated from ice-water solution adjusting the pH to 8 (lit.²⁰ mp 190 °C). ^e The product was crystallized on cooling the reaction mixture and was chromatographed on silica gel with CH₂Cl₂ as eluant. ^fLiterature²⁰ mp 207 °C. ^g Crude product was chromatographed on silica gel with CHCl₃ as eluant. ^h The crude product was purified by chromatography on silica gel with CHCl₃ as eluant and recrystallized from 2-propanol. ⁱ Crude product was recrystallized from C₂H₅OH-CH₃COOH and chromatographed on silica gel with CH₂Cl₂ as eluant. ^j The crude product was chromatographed on silica gel with 30% petroleum ether in ether as eluant and recrystallized from ethanol-water.

directly accounted for. In fact, no significant correlations were found when classical physicochemical parameters (σ , π , MR, V_{W} , etc.) were considered.

Finally, these results are consistent with the model¹ proposed recently for the interaction between both SA and SO inhibitors and the active site of DHPS. In fact, because of the long range of action of electrostatic forces, the SO₂ group (like the CO_2^- group of the substrate 4-aminobenzoate) appears to be the first to interact, anchoring the molecule loosely and increasing the probability of a correct and close fitting. This allows other forces with a small range of action to become operative.

Experimental Section

Enzymic Inhibition Measurements. The enzyme preparation, containing *E. coli* dihydropteroate synthase (EC 2.5.1.15), was obtained essentially by the method of Richey and Brown,⁷ as described previously.⁵

The enzyme substrate 2-amino-4-hydroxy-6-(hydroxy-methyl)-7,8-dihydropteridine pyrophosphate (dihydropteridine-PP) was prepared by a modified⁵ version of the method proposed by Ho et al.⁸

4-Amino[7-¹⁴C]benzoic acid (sp act. 53 μ Ci/mg) was purchased from the Radiochemical Centre, Amersham, U.K.

The assays were performed as described in our previous study.⁵ The complete reaction mixture contained the following in a final volume of 1 mL: 0.1 M Tris-HCl buffer, pH 8.6; 0.01 M MgCl₂; 0.05 M mercaptoethanol; 0.12 mM dihydropteridine-PP; 5 μ M 4-amino[7.¹⁴C]benzoic acid (16 000 cpm); and different concentrations of SO, when present. The reaction was started by addition of 0.05 mL of the enzyme preparation.

The values of the SO concentrations giving 50% inhibition of enzyme activity were calculated by interpolation from linear regressions of 1/dpm vs SO concentrations. These values divided by PAB concentration give the enzyme inhibition indices, EII_{50} , which, in turn, are expressed as $\text{ap}_{\text{E}} = \log (1/\text{EII}_{50})$. Each reported ap_{E} value represents the mean of at least three independent measures.

The pH values of the different reaction mixture (with or without the inhibitors) were measured in separate experiments and resulted to be 8.2 ± 0.1 , throughout the duration of the experiment.

p K_a Measurements. The p K_a values of the acidic derivatives (compounds 7, 12, 15, 17, 20, and 23) were measured spectrophotometrically, with a Beckman DU8 spectrophotometer, at 25 \pm 2 °C, according to the method outlined by Albert and Serjant.⁹ The measured values of p K_a are given in Table I together with the percentage values of the monoanionic forms (8, 13, 16, 18, 21,and 24) present in the solution at pH 8.2.

By ascribing the whole inhibitory effect of the acidic compounds to their monoanionic forms only,⁵ the ap_E values measured for compounds 7, 12, 15, 17, 20, and 23 were corrected to obtain the values assigned in Table I to the anions 8, 13, 16, 18, 21, and 24.

Calculations. LCAO-MO results were performed by making use of a modified version of the INDO method¹⁰ (QCPE 141). The two center repulsion integrals were computed from the Nishimoto-Mataga formula.¹¹ The calculations were performed at the Centro Interdipartimentale di Calcolo Automatico e Informatica Applicata of the University of Modena.

Standard geometries were used for the substituents, whereas for the common moiety $4\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_2$ a constant geometry was assumed¹² for all the derivatives of Table I.

Chemistry. Melting points were determined on Büchi apparatus and are uncorrected. Microanalyses were within $\pm 0.4\%$ of the theoretical values.

2,6-Dimethyl-4-methoxythiophenol. The thiol was prepared from 4-thiocyano-3,5-dimethylanisole according to a literature method,¹³ modified in order to isolate the compound: 84%, bp 94–95 °C (2 mm) [lit.¹⁴ bp 126–130 °C (10 mm), lit.¹⁵ bp 270–272 °C (760 mm)].

2.6-Dimethyl-4-hydroxythiophenol. A mixture of 2.6-dimethyl-4-hydroxyaniline¹⁶ (27.4 g, 200 mmol), concentrated hydrochloric acid (36.4 mL), and ice (50 g) was cooled at -5 °C and slowly treated with a solution of sodium nitrite (13.8 g, 200 mmol) in water (75 mL), the temperature being maintained below 0 °C. The cold solution of the diazonium salt was added dropwise (1 h) under stirring to an aqueous (75 mL) solution of potassium ethyl xantate (64 g, 400 mmol) maintained at 70-78 °C. After stirring for 1 h further, the mixture was cooled at room temperature, adjusted to pH 8, and extracted with ether, and the extracts were washed with water, dried, and evaporated. The residue was hydrolyzed for 12 h under a nitrogen atmosphere, by refluxing with a solution of 50.4 g of KOH in 250 mL of ethanol. After evaporation of the solvent, the reaction mixture was diluted with water and the solution was washed with ether. The aqueous layer was acidified by the slow addition of dilute sulfuric acid and

- (11) Nishimoto, K.; Mataga, N. Z. Phys. Chem. 1957, 12, 335.
- (12) De Benedetti, P. G.; Folli, U.; Iarossi, D.; Frassineti, C. J. Chem. Soc., Perkin Trans. 2 1985, 1527.
- (13) Kloosterziel, H.; Backer, H. J. Recl. Trav. Chim. Pays-Bas 1953, 72, 185.
- (14) Hahn, W.; Goliasch, K. Belg. Pat., 1963, 635.634; Chem. Abstr. 1965, 62, 488.
- (15) Baliah, V.; Uma, M. Tetrahedron 1963, 91, 455.
- (16) Rowe, F. M.; Bannister, S. H.; Seth, R. R.; Storey, R. C. J. Soc. Chem. Ind. 1930, 49, 469T; Chem. Abstr. 1931, 25, 2424.

⁽⁷⁾ Richey, D. P.; Brown, G. M. J. Biol. Chem. 1969, 244, 1582.

⁽⁸⁾ Ho, I.; Corman, L.; Foye, W. O. J. Pharm. Sci. 1974, 63, 1474.

⁽⁹⁾ Albert, A.; Serjant, E. P. The Determination of Ionization Constants, 2nd ed.; Chapman and Hall: London, 1971.

⁽¹⁰⁾ Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. J. Chem. Phys. 1967, 47, 2026.

the product was isolated by extraction with ether. The organic layer was washed with water, dried, and evaporated. The solid residue was washed with hot cyclohexane, the solvent was removed, and the product was chromatographed on silica gel (CHCl₃ as eluant) to give 2,6-dimethyl-4-hydroxythiophenol (15.5 g, 50%), mp 105–106 °C. Anal. (C₈H₁₀OS) C, H, N, S.

2,4-Dimethyl-6-hydroxythiophenol. 2,4-Dimethyl-6hydroxyaniline was obtained [78%, mp 158–159 °C (lit.¹⁶ mp 163 °C)] by catalytic hydrogenation (Raney Ni catalyst, 1 atm) of the corresponding nitro derivative,¹⁷ and it was converted to 2,4dimethyl-6-hydroxythiophenol by the procedure described for the preparation of 2,6-dimethyl-4-hydroxythiophenol: yield, 65%; bp 84 °C (1.5 mm); mp 39–40.5 °C [lit.¹⁸ bp 126–127 °C (19 mm)].

4-Nitrophenyl 2-Methyl-4-methoxyphenyl Sulfide (14a) (Table II). To a stirred solution of sodium hydroxide (0.6 g, 15 mmol) in water (20 mL) were added 4-nitrophenyl 2methyl-4-hydroxyphenyl sulfide¹⁹ (2.6 g, 10 mmol) and dimethyl sulfate (1.9 g, 15 mmol). The mixture was heated at 100 °C for 24 h, diluted with water, and extracted with ether. The organic layer was washed with 5% aqueous NaOH and with water, dried, and evaporated. The residue was chromatographed on silica gel (benzene as eluant) and recrystallized from 2-propanol to give 14a (2.4 g, 89%).

Synthesis of Aryl 4-Nitrophenyl Sulfide (17a, 20a, and 23a) (Table II). To a solution of the appropriate thiophenol (50 mmol) in dry acetone (80 mL) were added dry potassium carbonate (60 mmol) and a solution of 4-chloronitrobenzene (50 mmol) in dry acetone (80 mmol). The mixture was refluxed under a nitrogen atmosphere for 7 h and the solvent was removed. Ice and water were added and the crude product was collected by filtration, washed with water, and recrystallized.

4-Nitrophenyl 2,4-Dimethyl-6-methoxyphenyl Sulfide (19a) (Table II). A mixture of 4-nitrophenyl 2,4-dimethyl-6hydroxyphenyl sulfide (5.5 g, 20 mmol), dimethyl sulfate (10 g, 79 mmol), and 45 mL of 8% aqueous NaOH was stirred at 100 °C for 24 h. After cooling, water was added and the mixture was extracted with benzene. The extracts were washed with 8% NaOH and water, dried, and evaporated to give a solid residue, which was recrystallized from 2-propanol to yield sulfide 19a (4 g, 69%).

4-Nitrophenyl 2,6-Dimethyl-4-methoxyphenyl Sulfide (22a) (Table II). To a solution of sodium (2.5 g) in absolute ethanol (70 mL) was added 2,6-dimethyl-4-methoxythiophenol

(17) Adams, R.; Stewart, H. W. J. Am. Chem. Soc. 1941, 63, 2859.

- (18) Cabiddu, S.; Maccioni, A.; Secci, M. Gazz. Chim. Ital. 1969, 99, 1095.
- (19) Foss, N. E.; Dunning, F.; Jenkins, G. L. J. Am. Chem. Soc. 1934, 56, 1978.
- (20) Acharya, S. P.; Badiger, V. V.; Nargund, K. S. J. Karnatak Univ. 1958, 3, 25; Chem. Abstr. 1960, 54, 3289.

Table III. Aryl 4-Aminophenyl Sulfones $(4-NH_2C_6H_4SO_2C_6H_2-2'-X,4'-Y,6'-Z)$

no.	X	Y	z	% yieldª	mp, °C	recrystn solv ^b	formula ^c
14	CH ₃	OCH ₃	Н	89	144-145	A	C ₁₄ H ₁₅ NO ₃ S
15	CH_3	OH	Н	76	163-164	В	$C_{13}H_{13}NO_3S$
17	Cl	OH	н	95	205-207 ^d	C-B	C ₁₂ H ₁₀ ClNO ₃ S
19	CH_3	CH_3	OCH ₃	83	191-192	С	C ₁₅ H ₁₇ NO ₃ S
20	CH_3	CH ₃	OH _	74	170–171	D	$C_{14}H_{15}NO_3S$
22	CH_3	$0CH_3$	CH_3	77	202-203	Α	$C_{15}H_{17}NO_3S$
23	CH ₃	OH	CH ₃	96	178-179	C-B	$C_{14}H_{15}NO_3S$
			11 0				

^{a.c} See corresponding footnotes in Table II. ^bA = 2-propanol, B = water, C = ethanol, D = benzene. ^dLiterature²⁰ mp 209-216 °C.

(16.8 g, 100 mmol) followed by 15.7 g (100 mmol) of 4-nitrochlorobenzene dissolved in 100 mL of absolute ethanol. The mixture was refluxed under a nitrogen atmosphere for 3 h and was allowed to stand overnight at room temperature. The precipitate obtained was collected by filtration, washed with cold ethanol and water, and recrystallized from ethanol to afford **22a** (24 g, 83%).

Synthesis of Aryl 4-Nitrophenyl Sulfones (Table II). The sulfones were prepared according to the following methods.

Method A. A solution of the sulfide (10 mmol) in acetic acid was heated at 100 °C and hydrogen peroxide (30% v/v, 25 mmol) was added dropwise. The solution was concentrated and diluted with ice-water. The crude product was collected by filtration, washed with water, and purified by crystallization or column chromatography on silica gel.

Method B. To a stirred solution of the sulfide (10 mmol) in chloroform was added slowly 3-chloroperbenzoic acid (85%, 25 mmol) in 70 mL of chloroform at 0 °C. The 3-chlorobenzoic acid and unchanged peroxy acid were removed by washing with dilute alkali and dilute aqueous sodium sulfite. Removal of the solvent gave the crude product, which was purified by crystallization or column chromatography on silica gel.

Synthesis of Aryl 4-Aminophenyl Sulfones (14, 17, 19, 20, 22, and 23) (Table III). The amino derivatives were prepared by catalytic hydrogenation (Raney Ni catalyst, 1 atm, room temperature) of the corresponding nitro compounds in methanol. When the calculated amount of H_2 had been absorbed, the catalyst was removed by filtration. Crude products obtained after removal of the solvent were purified by crystallization.

4-Aminophenyl 4-Hydroxy-2-methylphenyl Sulfone (15). A solution of sulfone 14 (2.5 g) in 22 mL of 48% hydrobromic acid was stirred at 130 °C for 36 h. Excess of hydrobromic acid was evaporated and the residue was dissolved in water (100 mL), basified with aqueous sodium hydroxide, and filtered with charcoal. The solution was neutralized with dilute hydrochloric acid, and the crude product was collected by filtration and recrystallized from water to afford sulfone 15 (1.8 g, 76%).

Dihydropyrimidines: Novel Calcium Antagonists with Potent and Long-Lasting Vasodilative and Antihypertensive Activity

Hidetsura Cho,* Masaru Ueda, Keiyuu Shima, Akira Mizuno, Mariko Hayashimatsu, Yoshiko Ohnaka, Yumi Takeuchi, Mikiko Hamaguchi, Kazuo Aisaka, Toshinori Hidaka, Masanori Kawai, Minako Takeda, Takafumi Ishihara, Kazuteru Funahashi, Fumio Satoh, Minoru Morita, and Teruhisa Noguchi

Suntory Institute for Biomedical Research, 1-1-1, Wakayamadai, Shimamoto-cho, Mishimagun, Osaka 618, Japan. Received October 18, 1988

The novel calcium antagonists 3-N-substituted-3,4-dihydropyrimidines 1 and 9 and 3-N-substituted-dihydropyrimidin-2(1H)-ones 8 were regioselectively synthesized in good yields. Compounds 1 [especially 1s [$\mathbb{R}^1 = (CH_2)_2 N(\text{benzyl})(2\text{-naphthylmethyl})$, $\mathbb{R}^2 = i$ -Pr, X = o-NO₂] and 1t [$\mathbb{R}^1 = (CH_2)_2 N(\text{benzyl})(3,4\text{-dichlorobenzyl})$, $\mathbb{R}^2 = i$ -Pr, X = o-NO₂] exhibited not only more potent and longer lasting vasodilative action but also a hypotensive activity with slow onset as compared with dihydropyridines. Moreover, some dihydropyrimidines [1q [$\mathbb{R}^1 = (CH_2)_2 N(\text{benzyl})(3\text{-phenylpropyl})$, $\mathbb{R}^2 = CH_2(\text{cyclopropyl})$, X = o-NO₂], 1s, and 1t] were weaker in blocking atrioventricular conduction in anesthetized open-chest dogs and less toxic than the dihydropyridines.

1,4-Dihydropyridine derivatives possessing calcium antagonistic action in the cardiovascular system have attracted much synthetic attention over the past 20 years. Calcium antagonists inhibit the influx of calcium ions