ORIGINAL PAPER

Water-soluble xanthobilirubinic acids?

Sanjeev K. Dey · David A. Lightner

Received: 21 August 2008 / Accepted: 23 August 2008 / Published online: 30 September 2008 © Springer-Verlag 2008

Abstract Xanthobilirubinic acid, a model dipyrrinone for one-half of the bilirubin molecule in photochemical and metabolism studies, is more polar than bilirubin and insoluble in water and in chloroform. Replacing the β -alkyl substituents on the lactam ring of xanthobilirubinic acid with methyl-capped ethylene glycol, diethylene glycol, and triethylene glycol (PEG) groups steadily increased the water solubility of the pigment so that the last is completely soluble in both water and chloroform. Synthesized by base-catalyzed condensation of the corresponding methyl-capped 3,4-diPEG-pyrrolin-2-one with 3,5-dimethyl-4(2-ethoxycarbonylethyl)-2-formyl-1*H*-pyrrole, these new PEGylated analogs of xanthobilirubinic acid are yellow-colored dipyrrinones that form intermolecular hydrogen-bonded dimers in chloroform solution but are monomeric in methanol and water, as revealed by ¹H NMR spectroscopy and vapor pressure osmometry. Methyl xanthobilirubinate has served as a synthetic precursor to bilirubinoids; its amphiphilic PEGylated analogs suggest a route to water-soluble bilirubinoids and biliverdinoids.

Keywords Dipyrrinone · Pyrroles · Synthesis · NMR · Vapor pressure osmometry

Introduction

Bilirubin (Fig. 1a) is the yellow pigment of jaundice and the end product of heme metabolism [1]. It is insoluble

S. K. Dey · D. A. Lightner (⊠) Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA e-mail: lightner@scs.unr.edu in water at physiologic pH, with $K_{\rm sp}$ at pH ~7 and 37 °C estimated to be $\sim 4 \times 10^{-15}$ M [2]. Its poor aqueous solubility appears to be associated with its energetically most stable conformation, that is shaped like a ridge-tile [2–5] with its propionic acids tucked inward and firmly hydrogen bonded to the opposing dipyrrinones (Fig. 1b). Xanthobilirubinic acid (5, Fig. 1c) [6-8], a dipyrrolic yellow pigment, corresponds to onehalf of bilirubin and has been used to model bilirubin photochemistry [9–11] and metabolism [12]. (Although xanthobilirubinic acid cannot engage in intramolecular hydrogen bonding, it is still insoluble in water.) Nature increases the aqueous solubility of bilirubin by converting it to β -glucuronide esters, thereby facilitating its hepatic elimination. Recent studies involving attachment of an average molecular weight 2,200 poly(ethylene glycol) (PEG) group to the rubin's exo-vinyl group also produced a water-soluble bilirubin that retained intramolecular hydrogen bonding, but in water this derivative was significantly aggregated [13], presumably with bilirubin molecules collected inside a polyether micelle. To overcome the insolubility of xanthobilirubinic acid in water, as a model for improving the aqueous solubility of bilirubin while avoiding aggregation, we prepared its 2,3dimethoxy analog (4, Fig. 1d) [14] and found it to be an order of magnitude more soluble than 5. Guided by the success of Sessler et al. [15, 16] in improving the aqueous solubility of porphyrins by attaching short polyether chains to the tetrapyrrole perimeter, we synthesized three new PEGylated xanthobilirubinic analogs (1-3, Fig. 1d) with methyl-capped ethylene glycol (3), diethylene glycol (2) and triethylene glycol (1) groups on the lactam ring. We report their syntheses and characterization herein and compare their properties to those of 4 and 5.

Fig. 1 a Bilirubin, composed of two dipyrrinones, shown in a porphyrin-like shape and, **b** folded into a ridge-tile structure with six intramolecular hydrogen bonds. **c** The target methyl-capped PEGylated derivatives of xanthobilirubinic acid 1–4 and their methyl esters (1e–4e). **d** Xanthobilirubinic acid (5) and its methyl ester (5e)

(A)

Dipyrrinone

HO₂C

S. K. Dey, D. A. Lightner

CO₂H

16

Jinvrrinone

10 12

24

BILIRUBIN

21

Ò

12

Results and discussion

Synthesis aspects

Our approach to the syntheses of 1-3 was similar to an earlier convention [14] in which we synthesized 4 by condensing pyrrole α -aldehyde (13) (Scheme 1) and 3,4dimethoxy-3-pyrrolin-2-one. The pyrrole aldehyde was known from previous studies: 3,5-dimethyl-4-(2-ethoxycarbonylethyl)-2-formyl-(1*H*)-pyrrole (13) [17] from treatment of its 2-carbo-tert-butoxy precursor [18] with trifluoroacetic acid and triethyl orthoformate. PEGylated pyrrolinone components (6), synthesized from PEGylated pyrroles 7a, b, and c, were substituted for 3,4-dimethoxy-3pyrrolin-2-one [14] in the condensation reaction to produce 1e-3e. Saponification of the last produced 1-3. The synthesis of 7a was indicated by Tvermoes and Sessler [16], a procedure that was modified and adapted to our syntheses of 7a–7c. The key intermediate monopyrrole (11) [19] has hydroxyl (enol?) groups at the pyrrole β positions, and when its NH was protected by a removable benzyl group, we were able to attach (via an ether linkage) the desired methyl-capped polyether chains in K_2CO_3 -promoted S_N^2 reactions between 11 and the previously reported [20, 21] $CH_3O(CH_2CH_2O)_nTs$, where n = 1, 2, and 3 for 10a, 10b, and 10c, respectively. The N-benzyl protecting group of products 9a, 9b, and 9c was removed in good yield by brief treatment with hot CF₃CO₂H-H₂SO₄ in the presence of anisole. The resulting pyrroles (8a, 8b, and 8c) were smoothly saponified, then decarboxylated, to afford the parent α -free pyrroles (7a, 7b, and 7c) in excellent yields. Subsequent reaction with 30% hydrogen peroxide in hot pyridine produced the target pyrrolinones (6a, 6b, and 6c). Unlike the synthesis of 4 [14], where 3,4-dimethoxy-3pyrrolin-2-one was a reactant, reaction of 6a-6c with excess 13 in hot methanolic potassium hydroxide did not lead to the formation of the expected yellow dipyrrinones but to elimination of the polyether chains. However, after considerable experimentation with various non-nucleophilic bases and solvents, our best product yields were achieved with diazabicycloundecene (DBU) in CH₃CN by heating (sealed tube) at 120 °C for 7 days. This led to dipyrrinone esters 1e-3e in acceptable yields. The target free acids (1-3) were obtained from the corresponding esters in excellent yield by saponification with NaOH.

Structures and NMR spectroscopy

The constitutional structures of 1-3 and their ethyl esters (1e-3e) follow from the method of synthesis and comparison of their ¹³C NMR spectral data with those of the known analog 4 (Table 1). The methoxy carbons appear in the expected range, as do the $-CH_2-O$ carbons, and, as expected, differences in chemical shifts at ring carbons C(1) and C(3) are not profound in the series 1-4. As observed earlier with 4, the lactam carbonyls of 1-3 are shifted 5–6 ppm upfield,

Scheme 1

and C(4) is shifted 8–9 ppm upfield, both relative to xanthobilirubinic acid (15). Other carbon chemical shifts of 1–3 are similar to those of 4, and the presence of OCH₃ groups on the lactam rings of 1–4 was fully evident from the CH₃ chemical shifts near 60 ppm.

The structure assignments are also consistent with the ¹H NMR spectra, from which one learns, in addition, that the favored pigment conformation is *syn-Z* (Fig. 2), as deduced from nuclear *Overhauser* spectroscopic (NOE) measurements. Thus in **1–3** (and **1e–3e**) in CDCl₃ and (CD₃)₂SO solvents one sees NOEs between the pyrrole lactam and NH hydrogens, and between the C(5)–H and the flanking groups at C(3) and C(7)—as seen previously in **4** [14] and **5** [22].

Dipyrrinones are typically monomeric in $(CD_3)_2SO$, with NH hydrogen bonding to solvent [4] and lactam and pyrrole NH chemical shifts near 9.6 and 10.3 ppm, respectively, in the ¹H NMR spectra [23, 24]. This is seen again in the very similar sets of lactam and pyrrole NH chemical shifts of 1–4 and 1e–4e, and the near coincidence with those from 5 and 5e

(Table 2). In contrast, intermolecularly hydrogen-bonded dimers are favored in CDCl₃, as typically indicated by greater deshielding of the lactam NH resonance to ~ 11 ppm and relatively smaller changes in the pyrrole NH chemical shift [22–24]. The NH chemical shifts of 1-3 in CDCl₃ are very similar (Table 2) and suggest intermolecularly hydrogen-bonded dimers. Likewise, those of 1e-4e, and they trend in the right direction for hydrogen-bonded dimers. Two different types of hydrogen-bonded dimer were discerned earlier-a planar dimer held together by hydrogen bonds of the dipyrrinone to dipyrrinone type and a stacked dimer involving acid to dipyrrinone hydrogen bonds [23, 24]. The latter is found with dipyrrinone acids of the xanthobilirubinic acid (5) type; the former with esters like methylxanthobilirubinate (5e) and dipyrrinones devoid of CO₂H appendages [23, 24]. At high dilution, however, solutions of 5 tend toward monomers, which exhibit extrapolated lactam and pyrrole NH shifts of 7.00 and 7.75 ppm, respectively [22]. Consequently, allowing for alterations in NH chemical shifts because of the electronegative β substituents, it appears that

	Carbon ^a	1	1e	2	2e	3 ^b	3e	4 ^b	5 ^c
1	C=0	168.7	168.5	168.8	168.5	168.7	168.4	165.9	171.5
2	-C=	124.9	125.1	125.0	125.1	125.1	125.3	125.9	122.6
3	C=	147.9	148.4	148.0	148.4	148.0	148.4	146.4	147.2
4	C=	119.8	119.4	119.8	119.5	119.7	119.33	119.6	127.3
5	-CH=	101.1	101.2	101.1	101.2	101.3	101.4	96.6	97.6
6	-C=	124.9	124.8	124.9	124.8	124.9	125.0	121.2	121.7
7	C=	122.5	122.3	122.4	122.4	122.5	122.3	122.0	122.3
8	-C=	119.2	119.3	119.1	119.3	119.1	119.31	118.6	118.7
9	C=	131.5	131.9	131.5	131.8	131.6	132.0	129.4	129.4
2^{1}	CH ₃	d	d	_e	_e	_ ^f	_f	_	8.1
2^{2}	CH ₃	_	_	_	_	_		60.2	_
3 ¹	CH_2	d	d	-e	_e	_ ^f	_f	_	17.2
3 ²	CH ₃	_	_	_	_	_	_	59.0	14.8
7^1	CH ₃	9.8	9.8	9.7	9.8	9.7	9.8	9.1	9.2
8 ¹	CH_2	20.3	20.1	20.3	20.1	20.3	20.1	19.4	19.5
8 ²	CH_2	35.7	35.5	35.6	35.5	35.7	35.4	35.0	35.0
8 ³	CO_2H/R	177.9	173.5	178.2	173.5	178.7	173.6	174.0	174.0
9	CH ₃	11.8	11.6	11.8	11.6	11.7	11.6	11.0	11.0

Table 1 Comparison of the ¹³C NMR chemical shifts (δ /ppm) of methyl-capped PEGylated analogs **1–3** and their esters **1e–3e**, 4-desethyl-3-desethyl-3,4-dimethoxyxanthobilirubinic acid (**4**), and xanthobilirubinic acid (**5**) in CDCl₃ solvent

^a For carbon numbering system, see Fig. 1

^b Dey and Lightner [14]

^c Boiadjiev et al. [12]

d CH₃O(CH₂CH₂O)₃

^e CH₃O(CH₂CH₂O)₂

f CH₃OCH₂CH₂O

Fig. 2 Nuclear *Overhauser* effects observed and shown by *curved* arrows that confirm a syn-Z conformation in **1**, **2**, **3**, and **4** (R = H, n = 3, 2, 1, 0, respectively) and **1e**, **2e**, **3e**, and **4e** ($R = CH_2CH_3$, n = 3, 2, 1, 0, respectively) in CDCl₃

1–4 are dimers of the stacked type, like **5** [23, 24]; whereas, **1e–4e** are planar dimers, like **5e** [23, 24].

Vapor pressure osmometry (VPO) molecular weight measurements [25] of **1–4** and **1e–4e** in CHCl₃ (Table 3) confirmed that the dipyrrinones are dimers within the concentration range $1-8 \times 10^{-3}$ M. However, molecular weight measurements in CH₃OH revealed that these dipyrrinones are monomers. Apparently, the more polar CH₃OH solvent and the potential for hydrogen bonding to it disrupts the dimers. All but **1** were insufficiently soluble for VPO measurements in H₂O. However, in this solvent, as in CH₃OH, the pigment is monomeric.

Table 2 Comparison of the ${}^{1}H$ NMR N–H chemical shifts of dipyrrinones 1–5 and their esters in CDCl₃ and (CD₃)₂SO

CH ₃ O(CH ₂ CH ₂ O) _n CH ₃ (CH ₂ CH ₂ O) _T		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5: R = H 5e: R = CH ₃			
Compound	CDCl ₃		$(CD_3)_2SO$			
	Lactam NH	Pyrrole NH	Lactam NH	Pyrrole NH		
1	10.26	9.30	9.56	10.18		
2	10.27	9.26	9.55	10.17		
3	10.28	9.20	9.57	10.18		
4	Insol.	Insol.	9.54	10.19		
5	9.90 ^a	8.84 ^a	9.67	10.18		
1e	10.65	9.85	9.56	10.20		
2e	10.51	9.82	9.57	10.19		
3e	10.62	9.86	9.58	10.21		
4e	10.61	9.90	9.60	10.21		
5e	10.92	10.13	9.72	10.26		

Chemical shifts in δ/ppm downfield from $(CH_3)_4Si$ at 22 $^\circ\!C$ for $10^{-3}~M$ concentrations

^a Concentration $<10^{-6}$ M due to insolubility; values from [23, 24]

Table 3 Molecular weights (MWs) of dipyrrinones **1–4** and **1e–4e** determined by vapor pressure osmometry at 45 °C in CHCl₃, 45 °C in CH₃OH, and 60 °C in H₂O

Compound	Formula weight (FW) (g mol ⁻¹)	Measured weight (MW) (g mol ⁻¹)				
		CHCl ₃	CH ₃ OH	H ₂ O		
1	584	$1,152 \pm 30$	547 ± 45	642 ± 55		
2	496	966 ± 23	453 ± 40	Insuff. sol.		
3	408	803 ± 47	364 ± 21	Insuff. sol.		
4	320	Insol.	295 ± 20	Insuff. sol.		
1e	612	$1{,}203\pm44$	564 ± 51	Insol.		
2e	524	992 ± 34	504 ± 30	Insol.		
3e	436	815 ± 65	416 ± 20	Insol.		
4e	334	670 ± 59	302 ± 22	Insol.		

Calibrated with benzil (FW = 210 g mol⁻¹, found MW = 210 ± 15 g mol⁻¹) and d-10-camphorsulfonic acid (FW = 232.30 g mol⁻¹, found MW = 230 ± 20 g mol⁻¹); molecular wt in g mol⁻¹; conc. range, $1.1-7.0 \times 10^{-3}$ mol kg⁻¹

Solubility

The characterization of PEGylated-dipyrrinones 1-3 indicates the great similarity in solution and crystal structure and hydrogen bonding to the methoxylated parent (4) and to xanthobilirubinic acid (5). As found earlier, while the dimethoxy analog clearly behaves like 5, it did exhibit different solubility properties in water from 5 (which is very insoluble). In order to investigate this aspect of behavior, we examined their aqueous solubility and their solubility in CH₃OH as a control. UV-visible spectroscopy was used to determine the concentrations relative to standard $\sim 1 \times 10^{-5}$ M solutions. The CH₃OH control experiment shows that the solubility of the pigment at 1– 3×10^{-5} M in pure CH₃OH is almost exactly the same as that in CH₃OH-2% CHCl₃ (vol/vol) in which the pigment is freely soluble. All of the pigments are also freely soluble in a reference standard: H₂O-2% (CH₃)₂SO (vol/vol). Comparing pure H_2O with this reference (Table 4), one finds that of 1-3 are approximately 3-4 times more soluble in water than 4, which is ten times more soluble than 5. At saturation, the aqueous solubilities of 1 and 1e are ~ 4.8 and 0.68 mg/cm³ H₂O; 2 and 2e are 0.039 and 0.030 mg/ cm³; **3** and **3e** are 0.027 and 0.017 mg/cm³; **4** and **4e** [14] are 0.003 and 0.001 mg/cm³.

UV-visible spectroscopy

As might be expected, compounds 1, 2, 3 and their esters (1e, 2e, 3e) show only small variations in the intense longwavelength band, either in position or intensity (Table 5). Most noticeable is the low value for ε of 1e, 2e, and 3e in

Table 4 Comparison of the solubility of dipyrrinones (1-4) in methanol and water

Dipyrrinone	Methanol ^a [pigment]f/ [pigment]	Water ^b [pigment]f/ [pigment]
1	(0.79/0.79) 1:1	(0.71/0.72) 0.99:1
1e	(1.2/1.2) 1:1	(0.62/0.63) 0.98:1
2	(0.79/0.78) 1.01:1	(0.62/0.69) 0.9:1
3	(0.89/0.89) 1:1	(0.61/0.79) 0.77:1
4	(0.681/0.723) 0.99:1	(0.215/0.793) 0.27:1
4e	(0.631/0.636) 1:1	(0.0893/0.292) 0.31:1
5	(0.448/0.443) 1:1	(0.0250/0.419) 0.06:1
5e	(0.768/0.972) 1:1	(0.00883/0.388) 0.023:1

 a Ratio of pigment concentration in methanol solvent versus standard solution (2% CHCl_3 in CH_3OH) as compared by UV–visible spectroscopy

^b Ratio of pigment concentration (in H₂O) versus standard solution (2% DMSO in H₂O), compared by UV–visible spectroscopy. Solubility of **1** in H₂O: 4.81 mg/cm³; solubility of **1e** in H₂O: 0.68 mg/cm³. The standard solutions are prepared and ultrasonicated, the UV–visible absorbance at λ_{max} is recorded. The solution is evaporated to dryness and then the pure solvent (CH₃OH or H₂O) is added, the solution/mixture is ultrasonicated, and the absorbance is re-measured. In all cases it is less than that of the standard solutions. The ratio of absolute pigment concentrations is found in parentheses, the relative pigment concentrations are outside the parentheses. The methodology is given in the text

water, where, unlike the corresponding acids, it appears likely that the esters are "solubilized" as aggregates.

Concluding comments

The presence of two short-chain PEG groups on the dipyrrinone lactam rings renders the pigment more soluble than the corresponding pigment with alkyl groups by a factor of approximately 500 times over the dimethoxydipyrrinone at saturation. Although the amphiphilicity was improved by the presence of methoxyl groups, complete aqueous solubility arose with the triethylene glycol monomethyl ether PEGylated analog, while partial water solubility was encountered when shorter chains were present—2-methoxyethoxyl and 2-(2-methoxyethoxy)ethoxyl groups. Work is in progress underway to prepare such bilirubinoids with these β substituents.

Experimental

All nuclear magnetic resonance (NMR) spectra were obtained on a Varian 500 MHz (¹H) and 125 MHz (¹³C) instrument, in deuteriochloroform unless otherwise indicated. Chemical shifts were reported in ppm referenced to the residual chloroform proton signal at 7.26 ppm and ¹³C signal at 77.23 ppm, unless otherwise noted. Melting points

	Benzene	Chloroform	Acetone	Acetonitrile	DMSO	MeOH	Water
1	402 (28,000)	399 (28,100)	393 (32,000)	392 (31,000)	401 (32,000)	405 (35,000)	405 (29,500)
1e	399 (34,000)	397 (30,000)	392 (33,700)	391 (34,000)	400 (34,600)	400 (36,000)	404 (19,300)
2	403 (30,000)	399 (30,000)	395 (33,000)	392 (32,000)	400 (33,000)	405 (36,000)	405 (28,700)
2e	399 (29,000)	397 (29,100)	390 (31,500)	390 (30,000)	396 (30,000)	398 (32,000)	400 (15,000)
3	405 (29,000)	400 (28,500)	395 (33,500)	391 (32,600)	400 (34,000)	402 (36,000)	404 (25,000)
3e	401 (33,600)	399 (30,300)	393 (33,000)	395 (34,000)	401 (34,500)	402 (35,300)	402 (12,500)

Table 5 Solvent dependence of the ultraviolet-visible spectral data of 1-3 and 1e-3e

 λ nm (ε/dm^3 mol⁻¹ cm⁻¹)

were taken on a Mel-Temp capillary apparatus and are corrected. Combustion analyses were performed by Desert Analytics, Tucson, AZ, USA, and gave results within $\pm 0.4\%$ of theoretical values. For some compounds FAB HRMS mass determinations of the molecular ion were obtained from the Nebraska Center for Mass Spectrometry. Infrared spectra were recorded on a Perkin-Elmer FT-IR infrared spectrophotometer, model Spectrum 2000. All ultravioletvisible spectra were recorded on a Perkin–Elmer λ -12 spectrophotometer. VPO measurements were performed on an Osmomat 070-SA instrument (Gonotech, Germany) in HPLC grade CHCl₃ (Fisher) at 45 °C. Analytical thin-layer chromatography (TLC) was carried out on J.T. Baker silica gel IB-F plates (125 µm layer). For final purification, radial chromatography was carried out on Merck silica gel PF254 with calcium sulfate binder, preparative layer grade. All solvents were reagent-grade from Fisher-Acros, as were the poly(ethylene glycol) methyl ethers.

The spectral data were obtained in spectral grade solvents (Aldrich or Fisher). The other starting compounds: 3,5dimethyl-4-(2-ethoxycarbonylethyl)-2-formylpyrrole (13) [17], 3,4-dimethoxyxanthobilirubinic acid (4) [14], xanthobilirubinic acid (5), its methyl ester (5e) [7, 8], and 2-[2-(-methoxyethoxy)ethoxy]ethyl-*p*-toluenesulfonate (10a), 2-[(2-methoxyethoxy)ethyl]-*p*-toluenesulfonate (10b) [21], and 2-methoxyethyl-*p*-toluenesulfonate (10c) [20] were synthesized according to literature methods.

Solubility in H₂O and CH₃OH

In order to compare the aqueous solubility of **1–4** and **1e– 4e**, stock solutions of each were prepared in CHCl₃ and in (CH₃)₂SO solvents. Measured aliquots were withdrawn and diluted in 5.00 cm³ volumetric flasks with CH₃OH or H₂O to create $\sim 1-3 \times 10^{-5}$ M pigment solutions in CH₃OH– 2% CHCl₃ and in H₂O–2% (CH₃)₂SO. The UV–visible absorbances of each were determined (\sim 30,000), and the solvent was removed to dryness. Then pure CH₃OH was added to the residue from evaporation of CH₃OH–2% CHCl₃ solutions, and pure H₂O (pH 7) was added to the residue from evaporation of the 10⁻⁵ M CHCl₃ solutions. After digestion by ultrasonication and centrifugation, the absorbances of the reconstituted CH₃OH and H₂O solutions were determined and compared with those of the original $\sim 1-3 \times 10^{-5}$ M solutions in order to determine the pigment concentrations.

2-Desmethyl-3-desethyl-2,3-bis-(triethylene glycol methyl ether) xanthobilirubinic acid (1; $C_{28}H_{46}N_2O_{11}$) and ethyl ester (1e; $C_{30}H_{50}N_2O_{11}$)

Pyrrolinone 6a (2.5 g, 6.2 mmol) and 0.50 g (2.2 mmol) pyrrole aldehyde 13 were dissolved in 10 cm³ acetonitrile and placed in a pressure tube. 1,5-Diazabicyclo undecene $(1.7 \text{ cm}^3, 10 \text{ mmol})$ was added and the pressure tube was heated under argon at 120 °C for 7 days during which time the reaction course was monitored by checking (TLC) samples. When a substantial amount of yellow product was detected, the reaction mixture was cooled, diluted with 200 cm³ CH₂Cl₂ and washed with 100 cm³ 5% aqueous HCl to remove the DBU. The organic layer was removed, dried over Na₂SO₄ (anhyd) and evaporated (rotovap) to yield the crude dipyrrinone, which was purified first by radial chromatography on silica gel using 5% (vol/vol) CH₃OH in CH₂Cl₂ as eluent, then by a second radial chromatography using ethyl acetate-hexane (1:1 vol/vol) as eluent. The purified fractions were collected, and the solvent was evaporated (rotovap) under vacuum. Hexane was then added to the residue and the solution cooled to 5 °C to crystallize the desired products. Pure ester 1e is a vellow-brown gel. Yield: 280 mg (29%); oil; ¹H NMR: $\delta = 1.25$ (3H, t, J = 7.2 Hz), 2.10 (3H, s), 2.38 (3H, s), 2.4 (2H, t, J = 7.4 Hz), 2.7 (2H, t, J = 7.4 Hz), 3.35 (3H, s),3.39 (3H, s), 3.58-3.8 (20H, m), 4.1 (4H, q, J = 7.2 Hz), 4.25 (2H, m), 4.62 (2H, m), 6.35 (1H, s), 9.85 (1H, s), 10.65 (1H, s) ppm; ¹³C NMR: $\delta = 9.8$, 11.6, 14.5, 20.1, 35.5, 59.2, 60.5, 70.1, 70.3, 70.79, 70.86, 79.90, 71.0, 71.5, 72.16, 72.19, 10.2, 119.32, 119.36, 122.3, 124.8, 125.1, 131.9, 148.4, 168.5, 173.5 ppm.

Dipyrrinone ester **1e** (380 mg, 0.62 mmol) was dissolved in $\sim 20 \text{ cm}^3$ dry THF and 2 cm³ CH₃OH. Solid NaOH (~ 0.1 g) was added, and the mixture was heated at reflux for 1.5 h under N₂. The reaction was quenched by pouring into 200 cm³ of ice–water, acidified carefully to pH = 4.0 using dilute HCl and extracted into CH₂Cl₂ (3 × 100 cm³). The organic phases were combined, dried over anhyd. Na₂SO₄ and evaporated in vacuo (rotovap). The crude product was purified by radial chromatography using 5% (vol/vol) CH₃OH in CH₂Cl₂. The pure fractions were collected and evaporated to obtain pure **1**. Yield: 337 mg (93%); mp 42–44 °C; ¹H NMR: δ = 2.1 (3H, s), 2.31 (3H, s), 2.46 (2H, t, *J* = 7.5 Hz), 2.7 (2H, t, *J* = 7.5 Hz), 3.36 (3H, s), 3.37 (3H, s), 3.5–3.8 (20H, m), 4.26 (2H, m), 4.59 (2H, m), 6.26 (1H, s), 9.29 (1H, brs), 10.26 (1H, brs), 11.6 (1H, brs) ppm; ¹³C NMR: δ = 9.8, 11.8, 20.3, 35.6, 59.22, 59.23, 70.2, 70.3, 70.70, 70.73, 70.76, 70.85, 70.87, 71.0, 71.4, 72.05, 72.12, 72.14, 101.1, 119.2, 119.8, 122.5, 124.9, 131.5, 147.9, 168.8, 177.9 ppm.

3,4-Bis-(triethylene glycol methyl ether)-3-pyrrolin-2-one (**6a**; $C_{18}H_{35}NO_9$)

Pyrrole **7a** (200 mg, 0.500 mmol) was taken up into 2–3 cm³ pyridine under an N₂ atmosphere. To the solution 0.1 cm³ 30% H₂O₂ was added, and the solution was heated at reflux for 55 min. Pyridine was removed (rotovap) by azeotroping with toluene. The residue was purified by column chromatography followed by radial chromatography using 5% (vol/vol) CH₃OH–CH₂Cl₂ to obtain **6a** as a brown oil. Yield: 60 mg (29%); oil; ¹H NMR: δ = 3.34 (6H, s), 3.5–3.72 (20H, m), 3.75 (2H, s), 4.21 (2H, m), 4.49 (2H, m), 6.41 (brs, NH) ppm; ¹³C NMR: δ = 59.1, 63.9, 70.0, 70.6, 70.8, 71.1, 72.1, 101.7, 136.9 ppm.

3,4-Bis-(triethylene glycol methyl ether)-1H-pyrrole (**7a**; C₁₈H₃₅NO₈)

Following the procedure in [16], pyrrole ester **8a** (0.81 g, 1.60 mmol) was placed in a 100-cm³ round-bottomed flask and dissolved in 50 cm³ ethylene glycol. The solution was degassed on a high-vacuum pump for 2 h. Then KOH (0.36 g, 6.42 mmol) was added, and the mixture was placed in a preheated oil bath at 190 °C and stirred for 3 h under argon. After 3 h the reaction was cooled to 50 °C before adding $100 \text{ cm}^3 \text{ H}_2\text{O}$. The reaction mixture was then extracted with CH_2Cl_2 (4 × 100 cm³). The combined organic phases were washed with brine, dried, and evaporated (rotovap) to give 6c as a brown oil. Yield: 0.6 g (96%); oil; ¹H NMR (CDCl₃, 400 MHz): $\delta = 3.37$ (6H, s), 3.56 (4H, m), 3.60 (4H, m), 3.65 (4H, m) 3.70 (4H, m), 3.78 (4H, m), 4.04 (4H, m), 6.24 (2H, d, J = 3.0 Hz), 7.21 (1H, brs), 6.23 (brm, NH); ¹³C NMR: $\delta = 59.2, 70.4,$ 70.8, 70.9, 72.2, 74.0, 101.6, 137.3 ppm.

Dimethyl 3,4-bis-(triethylene glycol methyl ether)-1H-pyrrole-2,5-dicarboyxlate (**8a**; C₂₂H₃₇NO₁₂)

According to a reported procedure [26] for debenzylation of a different pyrrole, a mixture of 3 g (5.0 mmol) **9a**, 8 cm³ TFA, 1 cm³ anisole, and 0.2 cm³ conc. H₂SO₄ was heated in a preheated oil bath at 90 °C for 30 min. TFA was then recovered by distillation, and the residue was dissolved in ~100 cm³ CH₂Cl₂, with cooling in ice bath, and carefully neutralized with saturated aqueous NaHCO₃. The neutralized solution was then extracted with CH₂Cl₂ (5 × 100 cm³), dried, evaporated under vacuum to crude product **8a**, which was then purified by radial chromatography using ethyl acetate–*n*-hexane (1:1 vol/vol) as eluent. Yield: 6.7 g (79%); oil; ¹H NMR: δ = 3.35 (6H, s), 3.53 (4H, m), 3.63 (8H, m), 3.64 (4H, m), 3.68 (4H, m), 3.88 (6H, s), 4.29 (4H, m), 8.93 (1H, brs) ppm; ¹³C NMR: δ = 52.1, 59.2, 70.4, 70.75, 70.83, 70.88, 72.2, 74.0, 113.4, 141.5, 160.3 ppm.

Dimethyl 3,4-bis-(triethylene glycol methyl ether)-1-benzylpyrrole-2,5-dicarboxylate (**9a**; C₂₉H₄₃NO₁₂)

Following the procedure of [16], dihydroxypyrrole 11 (0.97 g, 3.18 mmol), K₂CO₃ (1.05 g, 7.5 mmol), and triethylene glycol monomethyl ether-p-toluene sulfonate (2.22 g, 2.2 equiv.) were dissolved in 30 cm³ dry acetonitrile, and the mixture was heated at reflux for 15 h, making the entire solution turn yellow. The solution was cooled to room temperature and the solids were removed by filtration and washed with acetonitrile. The filtrate was evaporated under vacuum to obtain the crude product, which was purified using radial chromatography using ethyl acetate*n*-hexane as eluent. Yield: 1.88 g (96%); oil; ¹H NMR: $\delta = 3.3$ (6H, s), 3.5–3.7 (16H, m), 3.75 (4H, m), 3.8 (6H, s), 4.20 (4H, m), 5.96 (2H, s), 6.87-6.90 (2H, m), 7.14-7.21 (3H, m) ppm; ¹³C NMR: $\delta = 49.0, 51.8, 59.2, 70.5,$ 70.7, 70.8, 70.9, 72.2, 74.0, 116.6, 126.1, 127.1, 128.6, 139.1, 142.4, 160.9 ppm.

2-Desmethyl-3-desethyl-2,3-bis-(diethylene glycol methyl ether) xanthobilirubinic acid (2; $C_{24}H_{38}N_2O_9$) and ethyl ester (2e; $C_{26}H_{42}N_2O_9$)

Dipyrrinone **2** and its ester **2e** were prepared according to the procedure for synthesizing **1** and **1e**. Pure acid **2** is a yellow solid. Yield: 248 mg (94%); mp 114–116 °C; ¹H NMR: $\delta = 2.08$ (3H, s), 2.25 (3H, s), 2.45 (2H, t, J = 7.2 Hz), 2.78 (2H, t, J = 7.2 Hz), 3.35 (3H, s), 3.39 (3H, s), 3.58–3.9 (12H, m), 4.25 (2H, m), 4.6 (2H, m), 6.26 (1H, s), 9.2 (1H, s), 10.26 (1H, s) ppm; ¹³C NMR: $\delta = 9.8$, 11.6, 20.1, 35.5, 59.2, 59.3, 60.5, 62.0, 70.1, 70.4, 70.6, 70.9, 71.5, 72.0, 72.16, 72.22, 101.2, 119.3, 119.5, 122.4, 124.8, 125.0, 131.8, 148.0, 168.8, 173.5 ppm.

Pure ester **2e** is a yellow solid. Yield: 0.3 g (35%); mp 64–68 °C; ¹H NMR: $\delta = 1.24$ (3H, t, J = 7.2 Hz), 2.1 (3H, s), 2.33 (3H, s), 2.41 (2H, t, J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 3.35 (3H, s), 3.39 (3H, s), 3.58–3.9 (12H, m), 4.11 (2H, q, J = 7.2 Hz), 4.27 (2H, m), 4.63 (2H, m), 6.32 (1H, s), 9.82 (1H, brs), 10.51 (1H, brs) ppm; ¹³C NMR: $\delta = 9.8$, 11.6, 14.5, 20.1, 35.5, 59.24, 59.27, 62.0, 70.0, 70.4, 70.5, 70.7, 70.9, 71.5, 72.16, 72.22, 72.7, 101.2, 119.3, 119.5, 122.4, 124.9, 125.1, 131.8, 148.4, 168.5, 173.5 ppm.

3,4-Bis-(diethylene glycol methyl ether)-3-pyrrolin-2-one (**6b**; C₁₄H₂₇NO₇)

Pyrrolinone **6b** was synthesized from **7b** according to the method described (above) for converting **7a** into **6a**. Thus, 4.0 g (13.2 mmol) **7b** in 20 cm³ pyridine was reacted with 2.5 cm³ 30% H₂O₂ for 2.5 h at reflux. The pyridine was removed under vacuum by azeotroping with toluene, and the residue was purified by column chromatography to afford **6b** that was sufficiently pure for the condensation step. Yield: 1.8–2.0 g (30–35%); oil; ¹H NMR: $\delta = 3.34$ (3H, s), 3.37 (3H, s) 3.50–3.75 (12H, m), 3.78 (2H, s), 4.25 (2H, m), 4.50 (2H, m), 6.0 (1H, s) ppm; ¹³C NMR: $\delta = 43.0, 59.2, 59.3, 70.2, 70.3, 70.5, 70.81, 70.83, 71.3, 72.1, 72.2, 125.4, 152.9, 171.8 ppm.$

3,4-Bis-(diethylene glycol methyl ether)-1H-pyrrole (**7b**; C₁₄H₂₇NO₆)

Pyrrole ester **8b** (20 g, 48 mmol) was placed in a 250 cm³ round-bottomed flask and dissolved in 150 cm³ ethylene glycol. The solution was degassed on a high-vacuum pump for 2 h. Then KOH (10.77 g, 190 mmol) was added and the mixture was placed in a preheated oil bath at 190 °C and stirred for 3 h under argon. After 3 h the reaction was cooled to 50 °C before adding 200 cm³ H₂O. The reaction mixture was then extracted with CH₂Cl₂ (8 × 100 cm³). The combined organic phases were washed with brine, dried, and evaporated (rotovap) to give **7b**. Yield: 14 g (92%); oil; ¹H NMR: δ = 3.37 (6H, s), 3.55 (2H, m), 3.65 (2H, m), 3.78 (4H, m), 4.29 (4H, m), 6.24 (2H, d, J = 2.5 Hz), 7.18 (1H, brs) ppm; ¹³C NMR: δ = 59.3, 70.4, 70.7, 72.2, 74.0, 101.7, 137.4 ppm.

Dimethyl 3,4-bis-(diethylene glycol methyl ether)-1H-pyrrole-2,5-dicarboxylate (**8b**; C₁₈H₂₉NO₁₀)

A mixture of 20 g (19.6 mmol) **9b**, 24 cm³ TFA, 3 cm³ anisole, and 0.8 cm³ conc. H₂SO₄ was heated in a preheated oil bath at 90 °C for 30 min. TFA was then recovered under vacuum. The residue was dissolved in $\sim 100 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$, cooled in an ice bath, then carefully neutralized with saturated aqueous NaHCO₃. The neutralsolution was then extracted with ized CH_2Cl_2 $(5 \times 100 \text{ cm}^3)$, dried, and evaporated under vacuum to crude product 8b, which was then purified by radial chromatography using ethyl acetate-*n*-hexane (1:1 vol/vol) as eluent. Yield: 6.5 g (79%); oil; ¹H NMR: $\delta = 3.37$ (6H, s), 3.55 (4H, m), 3.68 (4H, m), 3.78 (4H, m), 3.88 (6H, s), 4.29 (4H, m), 8.93 (1H, brs) ppm; ¹³C NMR: $\delta = 52.1$, 59.3, 70.4, 70.7, 72.2, 74.0, 113.3, 141.5, 160.3 ppm.

Dimethyl 3,4-bis-(diethylene glycol methyl ether)-

1-benzylpyrrole-2,5-dicarboxylate (9b; C₂₅H₃₅NO₁₀)

Dihydroxypyrrole **11** (5 g, 16 mmol), K_2CO_3 (5.75 g, 41 mmol), and diethylene glycol monomethyl ether-*p*-toluenesulfonate (9.9 g, 36 mmol) were dissolved in

100 cm³ dry acetonitrile, and the mixture was heated at reflux for 15 h, making the entire solution turn yellow. The solution was cooled to room temperature and the solids were removed by filtration and washed with acetonitrile. The filtrate was evaporated under vacuum to obtain the crude product, which was purified using radial chromatography using ethyl acetate–*n*-hexane as eluent. Yield 8.0 g (95%); oil; ¹H NMR: $\delta = 3.36$ (6H, s), 3.53 (4H, m), 3.66 (4H, m), 3.70 (4H, m), 3.78 (6H, s), 4.21 (4H, m), 5.98 (2H, s), 6.90 (2H, d, J = 7.5 Hz), 7.20 (3H, m) ppm; ¹³C NMR: $\delta = 49.0$, 51.9, 59.2, 70.5, 70.8, 72.2, 74.0, 116.6, 126.1, 127.1, 128.6, 139.1, 142.4, 160.9 ppm.

2-Desmethyl-3-desethyl-2,3-bis-(ethylene glycol methyl ether) xanthobilirubinic acid (**3**; $C_{20}H_{30}N_2O_7$) and ethyl ester (**3e**; $C_{22}H_{34}N_2O_7$)

3,4-Bis-(2-methoxyethoxy)-3-pyrrolin-2-one **6c** was condensed with aldehyde **13** as indicated for the syntheses of **1** and **1e** above. Pure acid **3** is a yellow solid. Yield: 183 mg (93%); mp 159–160 °C; ¹H NMR: $\delta = 2.08$ (3H, s), 2.31 (3H, s), 2.48 (2H, t, J = 7.5 Hz), 2.74 (2H, t, J = 7.5 Hz), 3.39 (3H, s), 3.44 (3H, s), 3.63 (2H, m), 3.72 (2H, m), 4.27 (2H, m), 4.60 (2H, m), 6.28 (1H, s), 9.20 (1H, brs) ppm; ¹³C NMR: $\delta = 9.7$, 11.7, 20.3, 35.7, 59.0, 59.4, 71.3, 71.5, 71.6, 71.9, 101.3, 119.0, 119.6, 122.4, 124.9, 125.1, 131.5, 148.0, 168.7, 178.7 ppm.

Pure ester **3e** is a yellow solid. Yield: 380 mg (40%); mp 70–71 °C; ¹H NMR: $\delta = 1.25$ (3H, t, J = 7.2 Hz), 2.11 (3H, s), 2.35 (3H, s), 2.42 (2H, t, J = 7.5 Hz), 2.70 (2H, t, J = 7.5 Hz), 3.60 (2H, m), 3.73 (3H, m), 4.12 (2H, q, J = 7.2 Hz), 4.26 (2H, m), 4.60 (2H, m), 6.35 (1H, s), 9.86 (1H, s), 10.61 (1H, s) ppm; ¹³C NMR: $\delta = 9.8$, 11.6, 14.5, 20.1, 35.4, 59.1, 59.4, 60.6, 71.38, 71.42, 71.6, 72.2, 101.4, 119.31, 119.33, 122.3, 125.0, 125.3, 132.0, 168.4, 173.6 ppm.

3,4-Bis-(2-methoxyethoxy)-3-pyrrolin-2-one (**6c**; C₁₀H₁₉NO₅)

Pyrrolinone **6c** was synthesized from pyrrole **7c** as described above for the synthesis of **6b** from **7b**. Yield: 550 mg (29%); yellow–brown oil; ¹H NMR: $\delta = 3.36$ (3H, s), 3.39 (3H, s), 3.60 (2H, m), 3.63 (2H, m), 3.79 (2H, s), 4.21 (2H, m), 4.50 (2H, m), 6.54 (1H, brs) ppm; ¹³C NMR: $\delta = 43.2$, 59.0, 59.3, 70.6, 71.3, 71.4, 71.6, 125.3, 153.2, 172.2 ppm.

3,4-Bis-(2-methoxy)-1H-pyrrole (**7c**; C₁₀H₁₉NO₄)

Pyrrole ester **8c** (22 g, 67 mmol) was placed in a 250 cm³ round-bottomed flask and dissolved in 150 cm³ ethylene glycol. The solution was degassed on a high-vacuum pump for 2 h. Then KOH (14.9 g, 270 mmol) was added and the mixture was placed in a preheated oil bath at 190 °C and stirred for 3 h under argon. After 3 h the reaction was cooled to 50 °C before adding 200 cm³ H₂O. The reaction

mixture was then extracted with CH₂Cl₂ (8 × 100 cm³). The combined organic phases were washed with brine, dried, and evaporated (rotovap) to give **7c**. Yield: 11 g (72%); oil; ¹H NMR: δ = 3.42 (6H, s), 3.70 (4H, m), 4.04 (4H, m), 6.25 (2H, d, *J* = 3.0 Hz), 7.16 (1H, brs) ppm; ¹³C NMR: δ = 59.3, 71.2, 71.5, 101.8, 137.4 ppm.

Dimethyl 3,4-bis-(2-methoxyethoxy)-1H-pyrrole-2,5-dicarboxylate (**8c**; C₁₄H₂₁NO₈)

A mixture of 10 g (23.8 mmol) **9c**, 29 cm³ TFA, 3.4 cm³ anisole, and 0.9 cm³ conc. H₂SO₄ was heated in a preheated oil bath at 90 °C for 30 min. TFA was then recovered under vacuum. The residue was dissolved in ~100 cm³ CH₂Cl₂, cooled in an ice bath, then carefully neutralized with saturated aqueous NaHCO₃. The neutralized solution was then extracted with CH₂Cl₂ (5 × 100 cm³), dried, and evaporated under vacuum to crude product **8c**, which was then purified by radial chromatography using ethyl acetate–*n*-hexane (1:1 vol/vol) as eluent. Yield: 6.7 g (85%); oil; ¹H NMR: δ = 3.35 (6H, s), 3.72 (4H, m), 3.87 (6H, s), 4.14 (4H, m), 8.93 (1H, brs) ppm; δ = 52.1, 59.3, 71.2, 71.5, 113.4, 141.5, 160.3 ppm.

Dimethyl 3,4-bis-(2-methoxyethoxy)-1-benzylpyrrole-2,5-dicarboxylate (**9c**; C₂₁H₂₇NO₈)

Dihydroxypyrrole **11** (5 g, 16 mmol), K₂CO₃ (5.75 g, 41 mmol), and ethylene glycol monomethyl ether-*p*-toluenesulfonate (8.3 g, 36 mmol) were dissolved in 100 cm³ dry acetonitrile, and the mixture was heated at reflux for 15 h, making the entire solution turn yellow. The solution was cooled to room temperature and the solids were removed by filtration and washed with acetonitrile. The filtrate was evaporated under vacuum to obtain the crude product, which was purified using radial chromatography using ethyl acetate–*n*-hexane as eluent. Yield: 9.0 g (90%); oil; ¹H NMR: δ = 3.41 (6H, s), 3.68 (4H, m), 3.79 (6H, s), 4.19 (4H, m), 6.90 (2H, d, *J* = 7.5 Hz), 7.20 (3H, m) ppm; ¹³C NMR: δ = 49.0, 51.9, 59.2, 71.8, 73.9, 116.7, 126.1, 127.1, 128.6, 139.2, 142.5, 160.9 ppm.

Dimethyl N-benzyl-3,4-dihydroxypyrrole-2,5-dicarboxylate (**11**; C₁₅H₁₅NO₆)

According to the procedure in [16], sodium metal (9.6 g, 0.40 g-atoms) was added to 125 cm³ dry CH₃OH at 0 °C in a three-necked round-bottomed flask with attached mechanical stirrer, reflux condenser with N₂ inlet, and thermometer. After all the Na had dissolved, diethyl oxalate (35 g, 1.25 equiv) and dimethyl *N*-benzyliminodiacetate (48.5 g, 193 mmol) were added, and the solution was heated at reflux overnight (after ~2 h, a yellow colored solid came out of the solution). After 15 h reflux, without allowing cooling acetic acid was added until all the solid dissolved and the pH reached ~5. The reaction mixture was poured into 500 g ice and stirred well to cause

the product to crystallize. It was sufficiently pure for the next step. Yield: 45 g (77%); mp 154–156 °C; ¹H NMR: $\delta = 3.92$ (6H, s), 5.80 (2H, s), 6.85–7.40 (5H, m), 7.70 (2H, s); ¹³C NMR: $\delta = 49.5$, 52.1 111.3, 125.9, 127.3, 128.7, 139.2, 139.8, 162.9 ppm.

Dimethyl N-benzyliminodiacetate (12; C₁₃H₁₇NO₄)

Following a reported procedure [16], but with a change of solvent from acetone to acetonitrile to improve the product vield, benzylamine (5.5 mL, 0.05 mol) and methyl bromoacetate (11.86 cm³, 0.125 mol) were added to a stirred suspension of K_2CO_3 (55.3 g, 0.40 mol) in 100 cm³ dry acetonitrile and the solution was heated at reflux for 24 h. The reaction mixture was then cooled and to it 100 cm³ H₂O was added, which dissolved the solid and separated the organic layer. The aqueous layer was washed with CH_2Cl_2 (3 × 100 cm³) and the combined organic layers were dried and evaporated under vacuum to yield a crude oil. This oil was distilled under vacuum and pure product came over at bp 130-134 °C (0.5 mm Hg). Yield: 12.2 g (96%); oil; ¹H NMR: $\delta = 3.50$ (4H, s), 3.60 (6H, s), 3.88 (2H, s), 6.85–7.40 (5H, m) ppm; ¹³C NMR: $\delta = 51.1, 53.7$, 57.6, 127.1, 128.1, 128.7, 138.0, 171.2 ppm.

Acknowledgments We thank the US National Institutes of Health (HD 17779) for generous support of this research. We also thank the National Science Foundation (CHE-0226402 and CHE-0521191) for providing funding to purchase the X-ray diffractometer used in this work, to acquire a 400-MHz NMR spectrometer, and to upgrade an existing unit. We thank Professor T.W. Bell for use of the vapor pressure osmometer.

References

- Chowdhury JH, Wolkoff AW, Chowdhury NR, Arias IM (2001) Hereditary jaundice and disorders of bilirubin metabolism. In: Scriver CF, Beaudet WS, Sly AL, Valle D (eds) The metabolic and molecular bases of inherited disease, vol II, chap 125. McGraw–Hill, NY, pp 3063–3101
- Brodersen R (1982) Physical chemistry of bilirubin: binding to macromolecules and membranes. In: Heirwegh KPM, Brown SB (eds) Bilirubin, vol I, chap 3. CRC Press, Boca Raton, p 76
- 3. Bonnett R, Davies JE, Hursthouse NB, Sheldrick GM (1978) Proc R Soc Lond Ser B 202:249
- 4. Falk H (1989) The chemistry of linear oligopyrroles and bile pigments. Springer, Wien
- 5. Person RV, Peterson BR, Lightner DA (1994) J Am Chem Soc 116:42
- 6. Boiadjiev SE, Lightner DA (2006) Org Prep Proc Intell 38:347
- 7. Shrout DP, Lightner DA (1990) Synthesis 1062
- Fischer H, Orth H (1937) Die Chemie des Pyrrols. II. Band 1. Hälfte. Akademische Verlagsgesellschaft MBH, Leipzig, pp 121– 125
- 9. Lightner DA, Park Y-T (1979) Tetrahedron 35:463
- Landen GL, Park Y-T, Lightner DA (1983) Tetrahedron 39:1893 (Symposium-in-Print on Linear Tetrapyrroles)
- Lamola AA, Braslavsky SE, Schaffner K, Lightner DA (1983) Photochem Photobiol 37:263

- Boiadjiev SE, Conley BA, Brower JO, McDonagh AF, Lightner DA (2006) Monatsh Chem 137:1463
- Boiadjiev SE, Watters K, Lai B, Wolf S, Welch W, McDonagh AF, Lightner DA (2004) Biochemistry 43:15617
- 14. Dey SK, Lightner DA (2007) Monatsh Chem 138:687
- Wie W-H, Wang Z, Mizuno T, Cortez C, Fu L, Sirisawad M, Naumorski L, Magda D, Sessler JL (2006) Dalton Trans: 1934
- Tvermoes NA (2000) A mechanistic investigation of the experimental radiation sensitizer dagolinium (III) texaphyrin. PhD Dissertation, University of Texas, Austin
- 17. Grigg R, Johnson AW, Kenyon R, Math VB, Richardson K (1969) J Chem Soc (C) 176
- Brower JO, Lightner DA, McDonagh AF (2000) Tetrahedron 56:7869–7883

- 19. Merz A, Meyer T (1999) Synthesis 94-99
- 20. Ouchi M, Inoue Y, Wada K, Iketani S, Hakushi T, Weber W (1987) J Org Chem 52:2420
- 21. Ouchi M, Inoue Y, Liu Y, Nagamune S, Nakamura S, Wada K, Hakushi T (1990) Bull Chem Soc Jpn 63:1260
- 22. Nogales DF, Ma J-S, Lightner DA (1993) Tetrahedron 49:2361
- 23. Boiadjiev SE, Anstine DT, Maverick E, Lightner DA (1995) Tetrahedron Asymmetry 6:2253
- 24. Boiajiev SE, Anstine DT, Lightner DA (1995) J Am Chem Soc 117:8727
- 25. Huggins MT, Lightner DA (2001) Monatsh Chem 132:203
- 26. Jones MI, Froussios C, Evans DA (1976) J Chem Soc Chem Commun 472–473