Binding and Preliminary Evaluation of 5-Hydroxy- and 10-Hydroxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines as Dopamine Receptor Ligands

Francesco Claudi,^{*,§} Antonio Di Stefano,[†] Fabrizio Napolitani,[§] Gian Mario Cingolani,[§] Gianfabio Giorgioni,[§] Josè A. Fontenla,[#] Gisela Y. Montenegro,[#] Maria E. Rivas,[#] Elizabeth Rosa,[#] Barbara Michelotto,[†] Giustino Orlando,[†] and Luigi Brunetti[†]

Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy, Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio", Via dei Vestini 31, 66013 Chieti Scalo (CH), Italy, and Departamento de Farmacologia, Facultad de Farmacia, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Espana

Received March 11, 1999

The *N*-methyl, *N*-ethyl, and *N*-*n*-propyl derivatives of 5-hydoxy- and 10-hydroxy-2,3,12,12atetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines were prepared as monophenolic ligands for the dopamine receptor and evaluated for their affinity at D₁-like and D₂-like subtypes. All compounds showed very low D₁ affinities. This could be ascribed to the absence of a catechol nucleus or of the β -phenyldopamine pharmacophore. Only the *N*-methyl-5-hydroxy- (**5a**), *N*-methyl-10-hydroxy- (**6a**), and *N*-methyl-4-bromo-10-methoxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines (**26a**) bound the D₂ receptors with low affinity, in the same range as dopamine. In compounds **5a** and **6a**, the 2-(3-hydroxyphenyl)ethylamine moiety does not meet the requirements of the D₂ agonist pharmacophore: namely, the 2-(3-hydroxyphenyl)ethylamine does not reach the *trans*, fully extended conformation. The three compounds did not interact with recombinant human D₄ receptors, and only **5a** showed low affinity for rat recombinant D₃ receptors. Analysis of the influence of Na⁺ on [³H]spiperone binding showed that **5a** displays a potential dopamine D₂ agonist profile, whereas **6a** probably has a dopamine D₂ antagonist activity. The D₂ agonist activity of **5a** was proved by the effects on prolactin release from primary cultures of rat anterior pituitary cells.

Introduction

The neurotransmitter dopamine (DA) is involved in the regulation of several functions, including locomotor activity, emotion, cognition, and neuroendocrine secretion. Degeneration of DA neurons in the substantia nigra contributes to the pathogenesis of Parkinson's disease, and imbalance in the limbic DA pathways is thought to contribute to psychotic disorders such as schizophrenia.¹ The actions of DA are mediated by five different receptor subtypes classified into two families: D₁-like (D₁ and D₅) and D₂-like (D₂, D₃, and D₄).

Several structurally different compounds are available as potent and selective ligands for D₂ receptors,² but far fewer agents have been found to be selective for the D₁ receptor. The 6-chloro-7-hydroxy-1-phenyl-2,3,4,5-tetrahydrobenzazepine (SCH 23390)³ has been the prototypical D₁ ligand of the benzazepine class which includes both agonists and antagonists. In the past few years, new D₁-selective full agonists have been identified such as 1-aminomethyl-5,6-dihydroxy-3-phenylisochroman⁴ and *trans*-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[*a*]phenanthridine.⁵

The structure-activity relationship studies with various classes of dopaminergic agents have established that the D₁ receptor agonist pharmacophore may be depicted by the DA in the *trans* extended conformation. Moreover, an aromatic ring at the β -position of the ethylamine chain and a catecholic nucleus are essential for D₁ receptor activation.⁵ Instead, the requirements for D₂ receptor activation are much less stringent and the D₂ agonist pharmacophore may be described by the 2-(3hydroxyphenyl)ethylamine in the *trans*, fully extended conformation.^{6,7}

Most of the dopaminergic agents contain a catechol group. This imparts high activity but is also responsible for the low oral bioavailability of the compounds, for their sensitivity toward oxidation and methylation.

Site-directed mutagenesis studies indicate that the pharmacophore primary attachment points on the D₂ receptors are an aspartic acid residue in the third transmembrane domain (TM3; electrostatic interaction with the protonated amino group) and a serine residue in TM5 (hydrogen-bonding interaction with the mhydroxyl group).^{8,9} Many aporphines possess the ability to activate DA receptors, and several studies have shown that the catechol function of R-(-)-apomorphine (1) (Chart 1) is not a prerequisite for dopaminergic activity: *R*-(-)-11-hydroxy-*N*-*n*-propylnoraporphine (2) is a DA agonist and induces strong stereotyped behaviors in the rat, nearly as potently as R-(-)-apomorphine.¹⁰ These findings support the hypothesis that also a single hydroxy group may confer affinity and activity at DA receptors.

^{*} To whom correspondence should be addressed. Tel: +39 0737 402238. Fax: +39 0737 637345. E-mail: giorgion@camserv.unicam.it. [§] Camerino University.

[†] Chieti University.

[#] Santiago University.

Chart 1

Our previous studies have been directed toward the synthesis and characterization of monohydroxylated DA receptor ligands which do not suffer the drawbacks induced by the catechol nucleus.^{11,12} With the aim of extending knowledge on the monophenolic ligands of DA receptors, in the present work we synthesized some *N*-alkyl derivatives of the 5- or 10-hydroxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinoline. This tetracyclic system was chosen considering that the cularine alkaloids cularidine (**3**) and celtisine (**4**) (Chart 1) showed high affinity for D₁-like and D₂-like receptors labeled with [³H]SCH 23390 and [³H]raclopride, respectively (IC₅₀ (nM): **3**, D₁ = **80**, D₂ = 320; **4**, D₁ = **60**, D₂ = 30).¹³

The benzoxepinoisoquinoline skeleton showed structural similarity to the tetracyclic system of the dopaminergic agonist R-(–)-apomorphine (**1**). From an inspection of **3** and **4** (Chart 1) it is evident that the hydroxy group is placed at a position *para* to the ethylamine chain. Considering that a hydroxy group *meta* to the ethylamine chain seems to be more critical for the interaction with the receptors, ^{5,7} in the new compounds (structures **5** and **6**), the hydroxy group was introduced at position 5 or 10 in order to set the 2-(3-hydroxyphenyl)ethylamine moiety into the tetracyclic system.

Chemistry

The *N*-alkyl derivatives of 5-hydroxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines 5a-cwere prepared as outlined in Scheme 1. The key intermediate 2-(3-bromo-5-methoxyphenyl)ethylamine (11) was prepared starting from 3-bromo-5-methoxytoluene. This was oxidized with KMnO₄ to 3-bromo-5methoxybenzoic acid (7). Reduction of the acid 7 with lithium aluminum hydride provided the alcohol **8**. Subsequent oxidation with pyridinium chlorochromate gave the aldehyde **9**. Amine **11** was obtained by reaction of **9** with nitromethane and reduction of the resulting nitrostyrene **10** with zinc amalgam and 37% HCl. Condensation of amine **11** with 2-benzyloxyphenylacetic acid gave the amide **12**. The Bischler Napieralski cyclization of amide **12** with phosphoryl chloride gave

^{*a*} Reagents: (a) KMnO₄, pyridine, H₂O; (b) LiAlH₄; (c) pyridinium chlorochromate; (d) CH₃NO₂; (e) Zn(Hg), 37% HCl; (f) 2-benzyloxyphenylacetic acid; (g) POCl₃, CH₃CN; (h) RI, CH₃CN; (i) NaBH₄; (j) EtOH, HCl; (k) K₂CO₃, CuO, pyridine; (l) 48% HBr.

unstable 3,4-dihydroisoquinolines. This drawback was overcome by transformation of crude 3,4-dihydrobenzylisoquinolines into the quaternary alkyl iodides. The nonisolated salts were reduced to tetrahydroisoquinolines 13a-c and 15a-c by sodium borohydride. The cyclization reaction afforded a mixture of isomeric 1-benzyl-6-bromo-8-methoxy- (13a,b) and 1-benzyl-8-bromo-6-methoxy-1,2,3,4-tetrahydroisoquinolines (15a-c) which were separated by column chromatography. This result is in disagreement with previous syntheses which afforded only 6-methoxytetrahydroisoquinolines.^{14,15} The *O*-benzyl ethers **13a**,**b** and **15a**–**c** were cleaved with 37% HCl to afford the phenol derivatives 14a,b and 16a-c. The intramolecular Ullmann cyclization of compounds 16a-c with potassium carbonate and copper oxide in pyridine gave the oxepines 17a-c. The *N*-*n*propyl derivatives 13c, 14c, and 16c are highly unstable, and for this reason, 15c was transformed into 17c without isolation of the intermediate 16c. The O-methyl ethers 17a-c were cleaved with 48% hydrobromic acid.

The *N*-alkyl derivatives of 10-hydroxy-2,3,12,12atetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines **6a**-**c** were prepared by similar procedures starting from 2-bromo-5-benzyloxybenzaldehyde through the intermediate 2-(2-bromo-5-benzyloxyphenyl)ethylamine **(22)** as outlined in Scheme 2. The presence of bromine at position 2 prevented the formation of a mixture of isomeric tetrahydroisoquinolines. Debromination of com-

Scheme 2^a

^{*a*} Reagents: (a) 48% HBr, CH₃COOH; (b) benzyl chloride, K_2CO_3 ; (c) CH₃NO₂; (d) Zn(Hg), 37% HCl; (e) 2-bromo-5-methoxy-phenylacetic acid; (f) POCl₃, CH₃CN; (g) RI, CH₃CN; (h) NaBH₄; (i) HCl; (j) K₂CO₃, CuO, pyridine; (k) 10% Pd/C, H₂; (l) 48% HBr.

pounds 26a-c was accomplished by reduction with palladium on charcoal.

NMR spectra for the oxalate salts of the compounds $6\mathbf{a}-\mathbf{c}$, $5\mathbf{a}-\mathbf{c}$, and $25\mathbf{a}-\mathbf{c}$ showed a very broad signal (basically a deformation of the baseline). These signals disappeared after D₂O addition, and they can be assigned to both phenolic and oxalic acid hydroxy groups.

Pharmacology

The binding affinities (pK_i) were determined in DA D_1 and D_2 receptor assays. It is important to emphasize that the affinities for D_1 and D_2 receptors are referred to D_1 -like $(D_1 \text{ and } D_5)$ and D_2 -like $(D_2, D_3, \text{ and } D_4)$ families of DA receptors. Rat striatal membrane was used as the tissue source; [³H]SCH 23390 and [³H]-spiperone were used as radioligands for the D_1 and D_2 receptors, respectively. Selected compounds were also tested for their ability to compete with [³H]spiperone from recombinant rat D_3 and recombinant human D_4 receptors. All compounds were tested as racemates.

Furthermore, compounds **5a** and **6a**, showing higher D_2 affinity, were pharmacologically studied in vitro by evaluating their effects on prolactin (PRL) release in primary cultures of rat anterior pituitary cells, to assess their agonist activity. Previous studies indicate that D_2 receptors on lactotroph pituitary cells inhibit PRL release via inhibition of adenylate cyclase. On the other hand, there is evidence for a dual role of DA in both stimulating and inhibiting PRL secretion through activation of the same DA receptor.^{16,17}

Results and Discussion

Table 1 displays the binding test results for monohydroxybenzoxepinoisoquinolines (5a-c, 6a-c) and for their methoxylated (17a-c, 27a-c) and brominated (26a-c) precursors.

As far as the affinities for D_1 receptors are concerned, all compounds show lower binding affinity than DA or R-(-)-apomorphine. Among the compounds substituted at the 5 position, only the *N*-methyl and *N*-ethyl derivatives **5a,b** and **17a** show D_1 affinity. Demethylation of **17a**-**c** increases only the affinity of the *N*-ethyl derivative **17b**. In the series with the hydroxyl group at position 10, the *N*-methyl and *N*-ethyl derivatives **6a,b** show D_1 affinity, while the *N*-propyl derivative **6c** is inactive, as observed also for the 5-OH analogue **6c**. Compounds **26a**-**c**, with a bromine at position 4, show D_1 affinity, and debromination decreases the affinity of the *N*-ethyl derivative **26b**. An unexpected result is that the demethylation of the *n*-propyl derivative **27c** decreases the affinity.

Binding data for D_2 receptors indicate that **5a** binds with higher affinity than DA, while compounds **6a** and **26a** are equipotent to DA. In the series having a 5-methoxy group, the *N*-*n*-propyl derivative **17c** is the most active. In the series having a 10-methoxy or 10hydroxy group, the *N*-methyl derivatives **6a** and **26a** show the highest affinity.

The *N*-methyl derivatives **5a**, **6a**, and **26a** show higher selectivity for D_2 receptors over D_1 than do DA or apomorphine. Previous studies on aporphine showed that *N*-ethyl- and *N*-*n*-propylnorapomorphine show higher affinity at the D_2 receptor than apomorphine, whereas in our compounds the *N*-methyl derivatives bind with higher affinity than the *N*-ethyl and *N*-*n*propyl analogues.¹⁸

Binding studies were carried out also on the 1-benzyltetrahydroisoquinoline intermediates. These compounds are synthetic precursors of benzoxepinoisoquinolines and were investigated considering that the 1-(2,5dimethoxy-4-propylbenzyl)-2-methyl-6-chloro-7-hydroxy-1,2,3,4-tetrahydroisoquinoline shows high affinity for D₁ receptors.¹⁹ Binding data for 1-benzyltetrahydroisoquinolines are shown in Table 2. Compounds 14a,b and **16a.b** bind with low affinity at both D₁ and D₂ receptors. On the other hand, compounds 25a-c show affinity only for D₁ receptors, the *N*-methyl derivative being equipotent to DA. From the comparison of pK_i values of 1-benzyltetrahydroisoquinoline **25a** with those of benzoxepinoisoquinoline **26a**, it is evident that cyclization decreases D_1 affinity and increases D_2 affinity. Data obtained for the 1-benzyltetrahydroisoguinolines indicate that compounds **14a**,**b**–**16a**,**b**, containing the hydroxyl group on the benzyl ring, are nonselective for D₁ and D₂ receptors. On the other hand, introduction of the hydroxyl group at position 8 of the isoquinoline ring increases D₁ selectivity, and the methyl derivative **25a** shows D_1 affinity comparable to that of DA.

The derivatives **5a**, **6a**, and **26a** were also evaluated for their affinity at the cloned rat D₃ receptor and human D₄ receptor. None of the compounds bound the D₄ receptor, and only **5a** showed D₃ affinity ($K_i = 1.48 \times 10^{-6}$, $pK_i = 5.83 \pm 0.09$).

Compounds **5a** and **6a**, displaying the highest D_2 affinities, were selected to evaluate the possible agonist

Table 1. pK_i Values for the 2,3,12,12a-Tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines and Reference Compounds at Striatal D₁ and D₂ DA Receptors^{*a*}

					$\mathbf{p}K_{\mathbf{i}}$	
compd	R	R_1	R_2	R_3	D1	D_2
5a	Me	Н	ОН	Н	5.54 ± 0.06	6.56 ± 0.11
5b	Et	Н	OH	Н	5.46 ± 0.06	5.19 ± 0.15
5c	<i>n</i> -Pr	Н	OH	Н	<5	<5
17a	Me	Н	OCH_3	Н	5.37 ± 0.04	5.03 ± 0.25
17b	Et	Н	OCH_3	Н	<5	5.07 ± 0.04
17c	<i>n</i> -Pr	Н	OCH ₃	Н	<5	5.46 ± 0.15
6a	Me	OH	Н	Н	5.32 ± 0.016	6.14 ± 0.05
6b	Et	OH	Н	Н	5.17 ± 0.39	<5
6c	<i>n</i> -Pr	OH	Н	Н	<5	<5
26a	Me	OCH ₃	Н	Br	5.12 ± 0.06	6.07 ± 0.19
26b	Et	OCH ₃	Н	Br	5.46 ± 0.23	<5
26c	<i>n</i> -Pr	OCH ₃	Н	Br	5.61 ± 0.32	<5
27a	Me	OCH ₃	Н	Н	5.28 ± 0.07	5.91 ± 0.20
27b	Et	OCH ₃	Н	Н	<5	5.73 ± 0.16
27c	<i>n</i> -Pr	OCH ₃	Н	Н	5.41 ± 0.26	<5
dopamine					6.38 ± 0.14	6.14 ± 0.08
$R \cdot (-)$ -apomorphine					6.74 ± 0.05	7.26 ± 0.13
SCH 23390					9.13 ± 0.02	NT^{b}
haloperidol					7.15 ± 0.03	$\textbf{8.67} \pm \textbf{0.11}$

^{*a*} Values represent the mean \pm SEM of at least three independent experiments. The slope of the curve for new compounds does not differ significantly from unity. Binding ligands were: D₁, [³H]SCH 23390; D₂, [³H]spiperone. ^{*b*} NT = not tested.

Table 2. pK_i Values for the 1-Benzyl-1,2,3,4-tetrahydroisoquinolines at Striatal D₁ and D₂ DA Receptors^{*a*}

compd	R	R_1	R_2		\mathbf{R}_4	R_5	p <i>K</i> _i	
				R_3			D1	D2
14a	Me	OCH ₃	Br	Н	Н	OH	5.77 ± 0.17	5.74 ± 0.27
14b	Et	OCH ₃	Br	Н	Н	OH	5.25 ± 0.06	5.66 ± 0.25
16a	Me	Br	OCH_3	Н	Н	OH	4.93 ± 0.16	5.15 ± 0.15
16b	Et	Br	OCH ₃	Н	Н	OH	5.52 ± 0.10	5.51 ± 0.20
25a	Me	OH	Н	Br	OCH_3	Br	6.41 ± 0.05	<5
25b	Et	OH	Н	Br	OCH ₃	Br	5.81 ± 0.04	<5
25c	<i>n</i> -Pr	OH	Н	Br	OCH_3	Br	5.13 ± 0.09	<5

^a See footnotes for Table 1. For binding affinity of reference compounds, see Table 1.

or antagonist properties. It is known that the presence of Na⁺ in the incubation medium converts the D₂ receptor high-affinity state into a low-affinity state and causes a shift of the agonist competition curve to the right.²⁰ Analysis of the influence of Na⁺ on [³H]spiperone binding caused a slight shift, toward the right, of the competition curves of compound **5a** (p*K*_i values 6.89 \pm 0.20 without Na⁺ and 6.28 \pm 0.12 with Na⁺) and of *R*-(-)-apomorphine (p*K*_i values 7.18 \pm 0.10 without Na⁺ and 6.97 \pm 0.15 with Na⁺). The presence of Na⁺ in the incubation medium did not change the p*K*_i values of **6a** (p*K*_i values 6.06 \pm 0.13 without Na⁺ and 5.98 \pm 0.20 with Na⁺) nor those of haloperidol (p*K*_i values 8.60 \pm 0.16 without Na⁺ and 8.61 \pm 0.28 with Na⁺). These results suggest that **5a** displays a potential DA D₂ agonist profile, whereas $\mathbf{6a}$ probably has a DA D_2 antagonist activity.

DA is generally believed to inhibit PRL pituitary secretion by stimulating D_2 receptors on lactotrophs, an effect which involves inhibition of adenylyl cyclase, yet some studies showed that DA can also stimulate PRL release from lactotrophs, and both stimulatory and inhibitory actions of DA are likely mediated by the same D_2 receptor subtype.^{17,21} Compounds **5a** and **6a** were studied in vitro by evaluating their effects on PRL release from primary cultures of rat anterior pituitary cells. Compound **5a** at low concentrations stimulates and at higher concentrations inhibits PRL release (Figure 1). It can be hypothesized that the PRL-stimulating activity demonstrated by **5a** is due to the

Figure 1. Effect of **5a** on PRL release from anterior pituitary cell cultures in vitro after a 1-h incubation; group means \pm SEM, n = 6-8, *p < 0.001 and **p < 0.01 vs control.

Figure 2. Effect of **6a** on PRL release from anterior pituitary cell cultures in vitro after a 1-h incubation; group means \pm SEM, n = 6-8.

higher affinity of **5a** with D_2 "stimulatory" receptors, an effect which is overwhelmed at higher concentrations, where D_2 inhibitory effects counteract stimulatory ones. This finding is similar to the effect of quinpirole, a specific D_2 receptor agonist with low selectivity for the D_3 receptor, as is the case with compound **5a**, which has been shown to stimulate PRL release only at low concentrations (1–100 pM).²² On the contrary, the lack of activity by **6a** on PRL secretion (Figure 2) could be explained by the D_2 antagonist profile seen in the binding test.

The moderate or low affinities for D_1 and D_2 receptors of the compounds screened do not allow us to define extensive structure—activity relationships. However, it is evident that all compounds have weak interactions with the receptors. The very low affinity for the D_1 receptor may be ascribed to the lack of the catechol nucleus or of the "*trans-* β -phenyldopamine" moiety that has been depicted as the D_1 pharmacophore.⁵

Moreover, Dreiding models and Figure 3 show that the ethylamine chain of the 2-(3-hydroxyphenyl)ethylamine moiety in the 5-OH-benzoxepinoisoquinolines is in a folded conformation, whereas in the 10-OH-benzoxepinoisoquinolines it does not reach the *trans*, fully extended, and antiperiplanar conformation required for interaction with D_2 receptors.⁷

In conclusion, the 5- or 10-monohydroxylated tetrahydrobenzoxepinoisoquinolines synthesized show weak

Figure 3. Tridimensional model of the structures of 5 and 6.

affinity for DA receptors. The benzoxepine skeleton does not affect the selectivity, and the higher affinities observed with the natural alkaloids cularidine and celtisine may be ascribed to the different position of the hydroxyl groups or to the presence of the methoxy groups.

Experimental Section

Melting points were determined on a Buchi 510 apparatus and are uncorrected. Microanalyses were performed on a 1106 Carlo Erba CHN analyzer, and the results were within $\pm 0.4\%$ of the calculated values. ¹H NMR spectra were recorded on a Varian VXR 200-MHz spectrometer. Chemical shifts are reported in parts per million (δ) downfield from the internal standard tetramethylsilane (Me₄Si). The IR spectra were run on a Perkin-Elmer model 297 spectrometer as Nujol mulls or liquid films. The identity of all new compounds was confirmed by both elemental analysis and NMR data; homogeneity was confirmed by TLC on silica gel Merck 60 F₂₅₄. Solutions were routinely dried over anhydrous sodium sulfate prior to evaporation. Chromatographic purifications were performed by Merck 60 70–230 mesh ASTM silica gel columns from Merck with the reported solvent.

3-Bromo-5-methoxybenzoic Acid (7). Potassium permanganate (26.81 g, 170 mmol) was added in small portions to a vigorously stirred mixture of 3-bromo-5-methoxytoluene (10.55 g, 53 mmol), pyridine (27 mL), and H₂O (80 mL) at 75 °C. After stirring for 24 h at the same temperature and 2 h at room temperature, the mixture was filtered. MnO₂ was suspended in hot H₂O and again filtered off. The pyridine was removed from filtrates, as an azeotrope with H₂O, by distillation under reduced pressure. The resulting aqueous solution was extracted with Et₂O and acidified with 2 N H₂SO₄. The precipitate was filtered off and recrystallized from EtOH/H₂O (8/2) to give 19.64 g (50%) of pure 7: mp 193–195 °C; IR 1670 (ν C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 7.82 (m, 1H, ArH), 7.56 (m, 1H, ArH), 7.30 (m, 1H, ArH), 3.84 (s, 3H, OCH₃). Anal. (C₈H₇-BrO₃) C, H.

3-Bromo-5-methoxybenzyl Alcohol (8). To a 0 °C magnetically stirred suspension of **7** (5.20 g, 23 mmol) in anhydrous Et₂O (108 mL) was added portionwise LiAlH₄ (950 mg, 25 mmol). The ice bath was removed, the mixture was heated for 5 min and stirred at room temperature for 3 h, and the excess LiAlH₄ was quenched by successive dropwise additions of 1 mL of H₂O, 1 mL of 15% NaOH, and 3 mL of H₂O. The solution was filtered, and the filtrate was dried and concentrated under reduced pressure. The residue was recrystallized from Et₂O/petroleum ether to give 4.04 g (81%) of pure **8**: mp 45–46 °C; IR 3300 (ν OH) cm⁻¹; ¹H NMR (CDCl₃) δ 7.09 (s, 1H, ArH), 6.97 (m, 1H, ArH), 6.82 (m, 1H, ArH), 4.63 (d, 2H, CH₂), 3.79 (s, 3H, OCH₃), 1.93 (t, 1H, OH). Anal. (C₈H₉BrO₂) C, H.

3-Bromo-5-methoxybenzaldehyde (9). A solution of **8** (5 g, 23 mmol) in anhydrous CH_2Cl_2 (50 mL) was added to the magnetically stirred suspension of pyridinium chlorochromate (7.53 g, 35 mmol) in anhydrous CH_2Cl_2 (37 mL). After 2 h, Et_2O (53 mL) was added, and the reaction mixture was allowed to stand in a refrigerator overnight. The suspension was filtered on silica gel, and the solvent was evaporated under reduced pressure. The oily residue was crystallized from EtOH/

H₂O (7/3) to give 7.13 g (95%) of pure **9:** mp 45–46 °C; IR 1695 (ν C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 9.90 (s, 1H, CHO), 7.59 (m, 1H, ArH), 7.31 (m, 2H, ArH), 3.87 (s, 3H, OCH₃). Anal. (C₈H₇-BrO₂) C, H.

2-(3-Bromo-5-methoxyphenyl)nitroethylene (10). A mixture of Na₂CO₃ (0.3 g, 2.8 mmol) and methylamine hydrochloride (0.3 g, 4.3 mmol) in EtOH (3 mL) was stirred at room temperature for 15 min and filtered into a solution of **9** (2 g, 9.3 mmol) in EtOH (3.8 mL). Nitromethane (0.6 mL, 11 mmol) was added, and the mixture was stoppered and left in the dark at room temperature for 1 day. The yellow crystalline product was filtered and washed with EtOH, yielding 800 mg (72%) of **10**: mp 127–129 °C; ¹H NMR (CDCl₃) δ 7.89 and 7.53 (d, 4H, 2CH₂), 7.26 (m, 1H, ArH), 7.18 (m, 1H, ArH), 6.97 (m, 1H, ArH), 3.84 (s, 3H, OCH₃). Anal. (C₉H₈BrNO₃) C, H, N.

2-(3-Bromo-5-methoxyphenyl)ethylamine Oxalate (11). To a stirred mixture of **10** (1 g, 3.9 mmol) at 45-50 °C were added 37% HCl (7 mL), CH₃OH (14 mL), and zinc amalgam [from zinc (4 g) and mercury(II) chloride (0.4 g)]. The mixture was stirred at 55 °C for 3 h. After removal of an inorganic substance, the mixture was made basic with 28% NH₄OH. The solvent was evaporated off and the residual solid was extracted with CHCl₃ after addition of an excess of 28% NH₄OH. The extract was washed with H₂O, dried, and evaporated to leave the ethylamine derivative as a pale brownish oil. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 930 mg (74%) of pure **11**: mp 201–203 °C; ¹H NMR (DMSO-*d*₆) δ 8.10 (bs, 3H, NH₃⁺), 7.06 (m, 2H, ArH), 6.90 (m, 1H, ArH), 3.79 (s, 3H, OCH₃), 3.06 (m, 2H, CH₂N), 2.87 (t, 2H, CH₂C). Anal. (C₉H₁₂BrNO·H₂C₂O₄) C, H, N.

N-(3-Bromo-5-methoxyphenethyl)-2-benzyloxyphenylacetamide (12). A slurry of 2-(3-bromo-5-methoxyphenyl)ethylamine (free base, 740 mg, 3.2 mmol) and 2-benzyloxyphenylacetic acid (780 mg, 3.2 mmol) in xylene (3 mL) was refluxed under N₂ for 8 h with azeotropic removal of H₂O. After cooling, the oily residue was crystallized from cyclohexane to give 930 mg (64%) of pure **12**: mp 48–50 °C; IR 3260 (ν NH), 1580– 1615 (ν C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 7.42–7.20 (m, 7H, ArH), 7.00–6.85 (m, 3H, ArH), 6.75 (m, 1H, ArH), 6.48 (m, 1H, ArH), 5.80 (bs, 1H, NH), 5.00 (s, 2H, CH₂O), 3.71 (s, 3H, OCH₃), 3.56 (s, 2H, CH₂O), 3.37 (m, 2H, CH₂N), 2.58 (t, 2H, ArCH₂). Anal. (C₂₄H₂₄BrNO₃) C, H, N.

General Procedure for the Synthesis of 1,2,3,4-Tetrahydroisoquinolines 13a,b and 15a-c. A solution of 12 (300 mg, 0.66 mmol) in dry acetonitrile (5.5 mL) was treated with phosphoryl chloride (0.6 mL) and refluxed under N₂ for 1 h; the solvent was evaporated off and the excess of reagent was removed in vacuo. A solution of the residue in CHCl₃ was rapidly washed (1 N NaOH and H₂O), dried, and evaporated under reduced pressure. The unstable 3,4-dihydrobenzylisoquinoline in acetonitrile (4 mL) and the appropriate alkyl iodide were refluxed under N₂ for 3 h. Evaporation gave the crude alkylammonium iodide which was reduced in CHCl₃ (1.1 mL) and CH₃OH (6.6 mL) by adding NaBH₄ (200 mg, 5.3 mmol) in portions and then stirring for 30 min at room temperature. The solvent was evaporated off, H₂O was added, and the mixture was extracted with CHCl₃; the organic phase was dried and the residue was chromatographed on silica gel eluting with ethyl acetate. The isomers 13a,b and 15a-c were obtained.

1-(2-Benzyloxybenzyl)-6-bromo-8-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (13a): obtained from **12** and methyl iodide (1.05 mL, 17 mmol); R_f 0.46 (eluent AcOEt); yield 25% (75 mg); ¹H NMR (CDCl₃) δ 7.50–7.30 (m, 5H, ArH), 7.13 (m, 2H, ArH), 6.85 (m, 3H, ArH), 6.65 (m, 1H, ArH), 5.04, (s, 2H, OCH₂), 4.26 (m, 1H, CHN), 3.38 (s, 3H, OCH₃), 3.36– 2.40 (m, 6H, CH₂), 2.34 (s, 3H, NCH₃). Anal. (C₂₅H₂₆BrNO₂) C, H, N.

1-(2-Benzyloxybenzyl)-8-bromo-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (15a): obtained from **12** and methyl iodide (1.05 mL, 17 mmol); R_f 0.42 (eluent AcOEt); yield 30% (90 mg); ¹H NMR (CDCl₃) δ 7.50–7.10 (m, 7H, ArH), 6.91 (m, 3H, ArH), 6.60 (m, 1H, ArH), 5.09, (s, 2H, OCH₂), 4.20 (m, 1H, CHN), 3.74 (s, 3H, OCH₃), 3.09–2.40 (m, 6H, CH₂), 2.28 (s, 3H, NCH₃). Anal. (C₂₅H₂₆BrNO₂) C, H, N.

1-(2-Benzyloxybenzyl)-6-bromo-2-ethyl-8-methoxy-1,2,3,4-tetrahydroisoquinoline (13b): obtained from **12** and ethyl iodide (1.4 mL, 17 mmol); R_f 0.55 (eluent AcOEt); yield 30% (93 mg); ¹H NMR (DMSO- d_6) δ 7.53–7.20 (m, 5H, ArH), 7.17–7.10 (m, 1H, ArH), 7.08–6.90 (m, 2H, ArH), 6.88–6.60 (m, 3H, ArH), 5.00 (s, 2H, OCH₂), 4.45 (m, 1H, CHN), 3.65 (s, 3H, OCH₃), 3.60–2.48 (m, 8H, CH₂), 0.98 (t, 3H, N–C–CH₃). Anal. ($C_{26}H_{28}BrNO_2$) C, H, N.

1-(2-Benzyloxybenzyl)-8-bromo-2-ethyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline (15b): obtained from **12** and ethyl iodide (1.4 mL, 17 mmol); R_f 0.48 (eluent AcOEt); yield 40% (123 mg); ¹H NMR (DMSO- d_6) δ 7.56–7.32 (m, 5H, ArH), 7.27–7.16 (m, 1H, ArH), 7.15–7.00 (m, 2H, ArH), 6.98–6.80 (m, 3H, ArH), 5.14 (s, 2H, OCH₂), 4.58 (m, 1H, CHN), 3.75 (s, 3H, OCH₃), 3.67–2.58 (m, 8H, CH₂), 1.00 (t, 3H, N–C–CH₃). Anal. ($C_{26}H_{28}BrNO_2$) C, H, N.

1-(2-Benzyloxybenzyl)-8-bromo-6-methoxy-2-propyl-1,2,3,4-tetrahydroisoquinoline (15c): obtained from **12** and propyl iodide (1.7 mL, 17 mmol); R_f 0.66 (eluent AcOEt); yield 20% (64 mg); ¹H NMR (DMSO- d_6) δ 7.57–7.26 (m, 5H, ArH), 7.23–7.07 (m, 2H, ArH), 7.00–6.81 (m, 3H, ArH), 6.77–6.56 (m, 1H, ArH), 5.15 (s, 2H, OCH₂), 4.48–4.22 (m, 1H, CHN), 3.77 (s, 3H, OCH₃), 3.15–2.27 (m, 8H, CH₂), 1.48–1.17 (m, 2H, N–C–CH₂–C), 0.65 (t, 3H, N–C–C–CH₃). Anal. (C₂₇H₃₀-BrNO₂) C, H, N.

6-Bromo-1-(2-hydroxybenzyl)-8-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline Oxalate (14a). A solution of **13a** (500 mg, 1.1 mmol) in 37% HCl-ethanol 1:1 (20 mL) was refluxed for 1 h under N₂. After removal of the solvent, water and ethyl ether were added; the aqueous phase was made basic with saturated NaHCO₃ solution, extracted with CHCl₃, and dried (Na₂SO₄). The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 381 mg (40%) of pure **14a**: mp 184–186° C; ¹H NMR (DMSO-*d*₈) δ 12.5 (s, 1H, OH), 9.0 (bs, 1H, NH), 7.10–6.90 (m, 3H, ArH), 6.82–6.60 (m, 3H, ArH), 4.22 (m, 1H, CH–N), 3.70 (s, 3H, OCH₃), 3.60–2.63 (m, 6H, CH₂), 2.60 (s, 3H, N–CH₃). Anal. (C₁₈H₂₀BrNO₂·H₂C₂O₄) C, H, N.

6-Bromo-2-ethyl-1-(2-hydroxybenzyl)-8-methoxy-1,2,3,4-tetrahydroisoquinoline Oxalate (14b). Obtained from **13b** with the same procedure as **14a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 385 mg (75%) of pure **14b**: mp 106–108 °C; ¹H NMR (DMSO- d_6) δ 12.40 (s, 1H, OH), 7.15–6.88 (m, 3H, ArH), 6.80–6.62 (m, 3H, ArH), 4.00–3.84 (m, 1H, CH–N), 3.75 (s, 3H, OCH₃), 3.58–2.46 (m, 8H, CH₂), 1.00 (t, 3H, N–C–CH₃). Anal. (C₁₉H₂₂-BrNO₂·H₂C₂O₄) C, H, N.

8-Bromo-1-(2-hydroxybenzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline Oxalate (16a). Obtained from **15a** with the same procedure as **14a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 373 mg (52%) of pure **16a**: mp 205–207 °C; ¹H NMR (DMSO-*d*₆) δ 12.3 (s, 1H, OH), 8.0 (bs, 1H, NH), 7.20– 7.00 (m, 3H, ArH), 6.86–6.62 (m, 3H, ArH), 4.25–4.17 (m, 1H, CH–N), 3.80 (s, 3H, OCH₃), 3.72–2.76 (m, 6H, CH₂), 2.58 (s, 3H, N–CH₃). Anal. (C₁₈H₂₀BrNO₂·H₂C₂O₄) C, H, N.

8-Bromo-1-(2-hydroxybenzyl)-2-ethyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline Oxalate (16b). Obtained from **15b** with the same procedure as **14a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 385 mg (75%) of pure **16b**: mp 116–118 °C; ¹H NMR (DMSO- d_6) δ 12.30 (s, 1H, OH), 7.12–6.95 (m, 3H, ArH), 6.90–6.60 (m, 3H, ArH), 4.40 (m, 1H, CH–N), 3.60 (s, 3H, OCH₃), 3.31–2.70 (m, 8H, CH₂), 1.12 (t, 3H, N–C–CH₃). Anal. (C₁₉H₂₂-BrNO₂·H₂C₂O₄) C, H, N.

8-Bromo-1-(2-hydroxybenzyl)-6-methoxy-2-propyl-1,2,3,4-tetrahydroisoquinoline Oxalate (16c). Obtained from **15c** with the same procedure as **14a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 317 mg (60%) of pure **16c**: mp 112–114 °C; ¹H NMR (DMSO-*d*₆) δ 12.15 (s, 1H, OH), 7.18–6.96 (m, 3H, ArH), 6.85–6.64 (m, 3H, ArH), 4.05–3.86 (m, 1H, CH–N), 3.78 (s, 3H, OCH₃), 3.72–2.34 (m, 8H, CH₂), 1.60–1.12 (m, 2H, N–C–CH₂–C), 0.61 (t, 3H, N–C–C–CH₃). Anal. ($C_{20}H_{24}BrNO_{2}$ ·H₂C₂O₄) C, H, N.

5-Methoxy-1-methyl-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinoline Oxalate (17a). A mixture of 16a (400 mg, 1.1 mmol), anhydrous pyridine (15 mL), and anhydrous potassium carbonate (1.2 g, 8.2 mmol) was heated to 135 °C, under N₂, and copper(II) oxide (400 mg, 4 mmol) was added. The resulting mixture was heated at 160 °C, with stirring, for 5 h. After cooling, the solution was filtered through silica gel, which was washed thoroughly with CH₂Cl₂. The solvent was removed under vacuum and the residue was taken into CH₂Cl₂ and washed with H₂O, with 10% cupric sulfate, and another time with H₂O. The dried extracts were purified by silica gel column chromatography (eluent ethyl acetate/ cyclohexane 9/1). The base was converted to the oxalate salt and crystallized from i-PrOH/Et₂O to give 260 mg (64%) of **17a**: mp 143-144 °C; ¹H NMR (DMSO-d₆) δ 7.28-7.20 (m, 3H, ArH), 7.18-7.10 (m, 1H, ArH), 6.82-6.71 (m, 2H, ArH), 4.85 (dd, J = 11.8, 3.6 Hz, 1H, H-12a), 3.77 (s, 3H, OCH₃), 3.55-2.90 (m, 6H, CH₂), 2.84 (s, 3H, NCH₃). Anal. (C₁₈H₁₉- $NO_2 \cdot H_2 C_2 O_4$) C, H, N.

1-Ethyl-5-methoxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinoline Oxalate (17b). Obtained from 16b with the same procedure as 17a. The base was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 297 mg (70%) of 17b: mp 191–193 °C; ¹H NMR (DMSO- d_6) δ 7.25–7.18 (m, 3H, ArH), 7.16–7,05 (m, 1H, ArH), 6.78–6.69 (m, 2H, ArH), 4.90 (dd, J=11.9, 3.8 Hz, 1H, H-12a), 3.75 (s, 3H, OCH₃), 3.48–2,84 (m, 8H, CH₂), 1.25 (t, 3H, N–C– CH₃). Anal. (C₁₉H₂₁NO₂·H₂C₂O₄) C, H, N.

5-Methoxy-1-propyl-2,3,12,12a-tetrahydro-1*H***-[1]benzoxepino[2,3,4-***ij***]isoquinoline Oxalate** (17c). Obtained from 16c with the same procedure as 17a. The base was converted to the oxalate salt and crystallized from *i*·PrOH/ Et₂O to give 220 mg (50%) of 17c: mp 216–218 °C; ¹H NMR (DMSO-*d*₆) δ 7.27–7.20 (m, 3H, ArH), 7.18–7.05 (m, 1H, ArH), 6.78–6.65 (m, 2H, ArH), 4.80 (dd, *J* = 10.6, 2.9 Hz, 1H, H-12a), 3.75 (s, 3H, OCH₃), 3.50–3.18 (m, 4H, CH₂), 3.12–2.78 (m, 4H, CH₂), 1.80–1.59 (m, 2H, N–C–CH₂–C), 0.96 (t, 3H, N–C–C–CH₃). Anal. (C₂₀H₂₃NO₂·H₂C₂O₄) C, H, N.

5-Hydroxy-1-methyl-2,3,12,12a-tetrahydro-1*H***-[1]ben-zoxepino[2,3,4-***ij***]isoquinoline Oxalate (5a).** Compound **17a** (oxalate salt, 210 mg, 0.57 mmol) was dissolved in 48% hydrobromic acid–acetic acid 1:1 (20 mL) and heated at 130 °C under N₂ for 2 h. The reaction mixture was diluted with H₂O, neutralized with NaHCO₃, and extracted with CHCl₃. The extracts were dried and evaporated to give a residue which was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 81 mg (40%) of pure **5a**: mp 168–170 °C; ¹H NMR (DMSO-*d*₆) δ 7.29–7.13 (m, 3H, ArH), 7.15–7.05 (m, 1H, ArH), 6.58–6.47 (m, 2H, ArH), 4.74 (dd, *J*=11.7, 3.7 Hz, 1H, H-12a), 3.50–2.84 (m, 6H, CH₂), 2.80 (s, 3H, NCH₃). Anal. (C₁₇H₁₇-NO₂·H₂C₂O₄) C, H, N.

1-Ethyl-5-hydroxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinoline Oxalate (5b). Obtained from 17b with the same procedure as 5a. Crystallized from *i*-PrOH/ Et₂O to give 144 mg (68%) of pure 5b: mp 130–132 °C; ¹H NMR (DMSO-*d*₆) δ 7.28–7.16 (m, 3H, ArH), 7.14–7.04 (m, 1H, ArH), 6.55–6.46 (m, 2H, ArH), 4.80 (dd, *J* = 11.8, 3.9 Hz, 1H, H-12a), 3.45–2.72 (m, 8H, CH₂), 1.22 (t, 3H, N–C–CH₃). Anal. (C₁₈H₁₉NO₂·H₂C₂O₄) C, H, N.

5-Hydroxy-1-propyl-2,3,12,12a-tetrahydro-1*H*-**[1]benzoxepino[2,3,4-***ij***]isoquinoline Oxalate (5c).** Obtained from **17c** with the same procedure as **5a**. Crystallized from *i*-PrOH/ Et₂O to give 130 mg (59%) of pure **5c**: mp 135–137 °C; ¹H NMR (DMSO-*d*₆) δ 7.28–7.20 (m, 3H, ArH), 7.18–7.15 (m, 1H, ArH), 6.58–6.45 (m, 2H, ArH), 4.76 (dd, *J* = 10.6, 2.9 Hz, 1H, H-12a), 3.48–3.17 (m, 4H, CH₂), 3.08–2.69 (m, 4H, CH₂), 1.80–1.57 (m, 2H, N–C–CH₂–C), 0.92 (t, 3H, N–C–C–CH₃). Anal. (C₁₉H₂₁NO₂·H₂C₂O₄) C, H, N.

2-Bromo-5-hydroxybenzaldehyde (19). A stirred solution of 2-bromo-5-methoxybenzaldehyde²³ (1 g, 4.6 mmol), acetic acid (5 mL), and freshly distilled 48% HBr (5 mL) was heated,

under $N_2,$ at 100 °C for 3 h. The solution was diluted with H_2O , made basic with 2 N NaOH, and washed with Et_2O. The aqueous layer was acidified to pH 1 with 2 N HCl and extracted with Et_2O. The organic extracts were dried over Na_2 -SO₄. The solution was filtered, and the filtrate was dried and concentrated under reduced pressure. The residue was recrystallized from CH_3COOH/H_2O (1/10) to give 407 mg (44%) of pure **19**: mp 135–136 °C (Lit.²⁴ mp 134 °C). Anal. (C₇H₅BrO₂) C, H.

2-(5-Benzyloxy-2-bromophenyl)nitroethylene (21). A mixture of Na₂CO₃ (160 mg, 1.5 mmol) and methylamine hydrochloride (150 mg, 2.2 mmol) in EtOH (3 mL) was stirred at room temperature for 15 min and filtered into a solution of 2-bromo-5-benzyloxybenzaldehyde²⁵ (1.3 g, 4.5 mmol) in EtOH (8 mL). Nitromethane (0.3 mL, 6.8 mmol) was added, and the mixture was stoppered and left in the dark at room temperature for 6 days. The yellow crystalline product was filtered and washed with EtOH yielding 368 mg (50%) of **21**: mp 116–118 °C; ¹H NMR (CDCl₃) δ 8.35 (d, 1H, CHNO₂, *J* = 13.59 Hz), 7.54 (m, 1H, ArH), 7.45 (d, 1H, CH=, *J* = 13.59 Hz), 7.040 (m, 5H, ArH), 7.13 (m, 1H, ArH), 6.97 (m, 1H, ArH), 5.05 (s, 2H, OCH₂Ph). Anal. (C₁₅H₁₂BrNO₃) C, H, N.

2-(5-Benzyloxy-2-bromophenyl)ethylamine Oxalate (22). Zinc amalgam [from zinc (2 g) and mercury(II) chloride (200 mg)] was added to a stirred mixture of **21** (500 mg, 1.5 mmol), 37% HCl (3.5 mL), and methanol (7 mL), at 45-50 °C. The mixture was stirred at 55 °C for 3 h. After removal of an inorganic substance, the mixture was made basic with 28% NH₄OH. The solvent was evaporated off and the residual solid was extracted with CHCl3 after addition of an excess of 28% NH₄OH. The extract was washed with water, dried, and evaporated to leave compound 22 as a pale brownish oil. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 559 mg (94%) of pure **22**: mp 178-180 °C; ¹H NMR (DMSO- d_6) δ 8.15 (br s, 3H, NH₃⁺), 7.30–7.57 (m, 6H, ArH), 7.08 (m, 1H, ArH), 6.91 (m, 1H, ArH), 5.13 (s, 2H, OCH₂Ph), 3.00 (m, 4H, 2CH₂). Anal. (C₁₅H₁₆BrNO·H₂C₂O₄) C, H, N.

N-(5-Benzyloxy-2-bromophenethyl)-2-bromo-5-methoxyphenylacetamide (23). A slurry of 22 (free base, 1 g, 3.27 mmol) and 2-bromo-5-methoxyphenylacetic acid (780 mg, 3.2 mmol) in xylene (1.5 mL) was refluxed under N₂ for 6.5 h with azeotropic removal of H₂O. After cooling, the oily residue was crystallized from cyclohexane to give 1.43 g (82%) of pure 23: mp 124–126 °C; IR 3300 (ν NH), 1630 (ν C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 7.50–7.30 (m, 7H, ArH), 6.85–6.60 (m, 4H, ArH), 5.50 (br s, 1H, NH), 5.00 (s, 2H, OCH₂Ph), 3.75 (s, 3H, OCH₃), 3.63 (s, 2H, CH₂CO), 3.52 (q, 2H, CH₂N), 2.90 (t, 2H, ArCH₂). Anal. (C₂₄H₂₃Br₂NO₃) C, H, N.

General Procedure for the Synthesis of 1,2,3,4-Tetrahydroisoquinolines 24a-c. Compound 23 (500 mg, 0.94 mmol) in dry acetonitrile (8 mL) was treated with phosphoryl chloride (0.86 mL) and refluxed under N₂ for 1 h. The solvent was evaporated off and the excess of reagent was removed in vacuo. A solution of the residue in CHCl₃ was rapidly washed (1 N NaOH and H₂O), dried, and evaporated under reduced pressure. The base in acetonitrile (6 mL) and the appropriate alkyl iodide was refluxed under N2 for 3 h. Evaporation gave the crude alkylammonium iodide, which was reduced in CHCl₃ (1.5 mL) and CH₃OH (9.5 mL) by adding sodium borohydride (300 mg, 7.9 mmol) in portions and then stirring for 30 min at room temperature. The solvent was evaporated off, and H₂O and CHCl₃ were added; the organic phase was dried, and the residue was chromatographed on silica gel eluting with ethyl acetate. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O.

8-Benzyloxy-5-bromo-1-(2-bromo-5-methoxybenzyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline oxalate (24a): obtained from **23** and methyl iodide (1.5 mL, 24 mmol); yield 33% (192 mg); mp 179–181 °C; ¹H NMR (DMSO- d_6) δ 7.55–7.25 (m, 7H, ArH), 7.12–6.62 (m, 3H, ArH), 5.03 (s, 2H, OCH₂-Ph), 4.25 (m, 1H, H-1), 3.76 (s, 3H, OCH₃), 3.30–2.80 (m, 6H, 3CH₂), 2.25 (s, 3H, NCH₃). Anal. (C₂₅H₂₅Br₂NO₂·H₂C₂O₄) C, H, N.

8-Benzyloxy-5-bromo-1-(2-bromo-5-methoxybenzyl)-2-ethyl-1,2,3,4-tetrahydroisoquinoline oxalate (24b): obtained from **23** and ethyl iodide (1.9 mL, 24 mmol); yield 53% (317 mg); mp 139–141 °C; ¹H NMR (DMSO- d_6) δ 7.52–7.22 (m, 7H, ArH), 6.88–6.66 (m, 3H, ArH), 4.90 (s, 2H, OCH₂Ph), 4.55 (m, 1H, H-1), 3.55 (s, 3H, OCH₃), 3.22–2.50 (m, 8H, 4CH₂), 0.92 (t, 3H, C–CH₃). Anal. (C₂₆H₂₇Br₂NO₂·H₂C₂O₄) C, H, N.

8-Benzyloxy-5-bromo-1-(2-bromo-5-methoxybenzyl)-2-propyl-1,2,3,4-tetrahydroisoquinoline oxalate (24c): obtained from **23** and propyl iodide (2.4 mL, 24 mmol); yield 43% (262 mg); mp 138 dec °C; ¹H NMR (DMSO- d_6) δ 7.52–7.25 (m, 7H, ArH), 6.90–6.65 (m, 3H, ArH), 5.10 (s, 2H, OCH₂Ph), 4.30 (m, 1H, H-1), 3.62 (s, 3H, OCH₃), 3.25–2.20 (m, 8H, 4CH₂), 1.20 (m, 2H, C–CH₂–C), 0.58 (t, 3H, CH₃). Anal. (C₂₇H₂₉Br₂NO₂·H₂C₂O₄) C, H, N.

5-Bromo-8-hydroxy-1-(2-bromo-5-methoxybenzyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline Oxalate (25a). A solution of **24a** (220 mg, 0.36 mmol) in 37% HCl–EtOH 1:1 (10 mL) was refluxed for 1 h under N₂. After removal of the solvent, H₂O and Et₂O were added; the aqueous phase was made basic with saturated NaHCO₃, extracted with CHCl₃, and dried. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 122 mg (64%) of pure **25a**: mp 239–241 °C; ¹H NMR (DMSO- d_6) δ 7.38 (dd, 2H, ArH), 6.94 (m, 1H, ArH), 6.75 (m, 2H, ArH), 4.35 (m, 1H, H-1), 3.72 (s, 3H, OCH₃), 3.58–2.43 (m, 6H, 3CH₂), 2.35 (s, 3H, NCH₃). Anal. (C₁₈H₁₉Br₂NO₂·H₂C₂O₄) C, H, N.

5-Bromo-2-ethyl-8-hydroxy-1-(2-bromo-5-methoxybenzyl)-1,2,3,4-tetrahydroisoquinoline Oxalate (25b). Obtained from **24b** with the same procedure as **25a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 88 mg (45%) of pure **25b**: mp 188–190 °C; ¹H NMR (DMSO- d_6) δ 7.42 (m, 1H, ArH), 7.30 (m, 1H, ArH), 6.90 (m, 1H, ArH), 6.74 (m, 1H, ArH), 6.60 (m, 1H, ArH), 4.52 (m, 1H, H-1), 3.68 (s, 3H, OCH₃), 3.54–2.52 (m, 8H, 4CH₂), 0.98 (t, 3H, C–CH₃). Anal. (C₁₉H₂₁Br₂NO₂·H₂C₂O₄) C, H, N.

5-Bromo-8-hydroxy-1-(2-bromo-5-methoxybenzyl)-2propyl-1,2,3,4-tetrahydroisoquinoline Oxalate (25c). Obtained from **24c** with the same procedure as **25a**. The residue was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 90 mg (45%) of pure **25c**: mp 145–147 °C; ¹H NMR (DMSO- d_6) δ 7.42–7.30 (m, 2H, ArH), 7.00–6.58 (m, 3H, ArH), 4.28 (m, 1H, H-1), 3.70 (s, 3H, OCH₃), 3.50–2.52 (m, 8H, 4CH₂), 1.28 (m, 2H, C–CH₂–C), 0.60 (t, 3H, CH₃). Anal. (C₂₀H₂₃Br₂NO₂·H₂C₂O₄) C, H, N.

4-Bromo-10-methoxy-1-methyl-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinoline Oxalate (26a). A mixture of 25a (270 mg, 0.61 mmol), anhydrous pyridine (10 mL), and anhydrous potassium carbonate (670 mg, 4.8 mmol) was heated at 135 °C under N2, and copper(II) oxide (220 mg, 2.2 mmol) was added. The resulting mixture was heated at 160 °C for 5 h. After cooling, the solution was filtered through silica gel, which was washed thoroughly with CH₂Cl₂. The solvent was removed under vacuum and the residue was taken into CH₂Cl₂ and washed with H₂O, with 10% cupric sulfate, and another time with H₂O. The extracts were dried and evaporated. The residue was purified by silica gel column chromatography (ethyl acetate/cyclohexane 9/1). The base was converted to the oxalate salt and crystallized from i-PrOH/ Et₂O to give 170 mg (62%) of pure **26a**: mp 219-221 °C; ¹H NMR (DMSO-d₆) δ 7.58 (d, 1H, ArH), 7.16 (m, 2H, ArH), 6.85-6.70 (m, 2H, ArH), 4.64 (dd, 1H, J = 12.25, 3.70 Hz, H-12a), 3.69 (s, 3H, OCH₃), 3.40-2.82 (m, 6H, 3CH₂), 2.70 (s, 3H, NCH₃). Anal. (C₁₈H₁₈BrNO₂·H₂C₂O₄) C, H, N.

4-Bromo-1-ethyl-10-methoxy-2,3,12,12a-tetrahydro-1*H*-**[1]benzoxepino[2,3,4-***ij***]isoquinoline Oxalate (26b).** Obtained from **25b** with the same procedure as **26a**. The base was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 195 mg (69%) of pure **26b**: mp 202–203 °C; ¹H NMR (DMSO-*d*₆) δ 7.50 (m, 1H, ArH), 7.10 (m, 2H, ArH), 6.75 (m, 1H, ArH), 6.70 (m, 1H, ArH), 4.85 (dd, 1H, *J* = 10.99, 3.05 Hz, H-12a), 3.68 (s, 3H, OCH₃), 3.40–3.16 (m, 4H, 2CH₂), 3.00-2.62 (m, 2H, CH₂), 2.44 (m, 2H, CH₂), 1.15 (t, 3H, CH₃). Anal. (C₁₉H₂₀BrNO₂·H₂C₂O₄) C, H, N.

4-Bromo-1-propyl-10-methoxy-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-*ij***]isoquinoline Oxalate (26c). Obtained from 25c with the same procedure as 26a. The base was converted to the oxalate salt and crystallized from** *i***-PrOH/ Et₂O to give 120 mg (41%) of pure 26c**: mp 214–216 °C; ¹H NMR (DMSO-*d*₆) δ 7.50 (m, 1H, ArH), 7.08 (m, 2H, ArH), 6.70 (m, 2H, ArH), 4.76 (dd, 1H, *J* = 10.80, 2.90 Hz, H-12a), 3.64 (s, 3H, OCH₃), 3.36–3.10 (m, 4H, 2CH₂), 2.88–2.58 (m, 4H, 2CH₂), 1.58 (m, 2H, C–CH₂–C), 0.88 (t, 3H, CH₃). Anal. (C₂₀H₂₂BrNO₂·H₂C₂O₄) C, H, N.

10-Methoxy-1-methyl-2,3,12,12a-tetrahydro-1*H***-[1]ben-zoxepino[2,3,4-***if***]isoquinoline Oxalate (27a).** A mixture of**26a** (free base, 170 mg, 0.47 mmol) and EtOH (180 mL) was hydrogenated at room temperature over 10% Pd/C (50 mg) at 1 bar. After absorption of the calculated hydrogen amount, the catalyst was filtered, and the solvent was evaporated. The residue was basified with aqueosus NH₄OH and extracted with CHCl₃. The extract was washed with H₂O, dried, and evaporated. The base was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 160 mg (91%) of pure **27a**: mp 184–187 °C; ¹H NMR (DMSO-*d*₆) δ 7.30–7.05 (m, 4H, ArH), 6.75 (m, 2H, ArH), 4.86 (dd, 1H, *J* = 12.45, 4.02 Hz, H-12a), 3.71 (s, 3H, OCH₃), 3.55–2.95 (m, 6H, 3CH₂), 2.77 (s, 3H, NCH₃). Anal. (C₁₈H₁₉NO₂·H₂C₂O₄) C, H, N.

1-Ethyl-10-methoxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinoline Oxalate (27b). Obtained from **26b** with the same procedure as **27a**. The base was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 110 mg (58%) of pure **27b**: mp 181–183 °C; ¹H NMR (DMSO-*d*₆) δ 7.24 (m, 1H, ArH), 7.10 (m, 3H, ArH), 6.76 (m, 1H, ArH), 6.70 (m, 1H, ArH), 4.98 (dd, 1H, *J* = 11.02, 3.85 Hz, H-12a), 3.68 (s, 3H, OCH₃), 3.48–2.82 (m, 8H, 4CH₂), 1.22 (t, 3H, CH₃). Anal. (C₁₉H₂₁NO₂·H₂C₂O₄) C, H, N.

10-Methoxy-1-propyl-2,3,12,12a-tetrahydro-1*H***-[1]ben-zoxepino[2,3,4-***ij***]isoquinoline Oxalate (27c).** Obtained from **26c** with the same procedure as **27a**. The base was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 90 mg (49%) of pure **27a**: mp 146–148 °C; ¹H NMR (DMSO-*d*₆) δ 7.24 (m, 1H, ArH), 7.10 (m, 2H, ArH), 6.76 (m, 2H, ArH), 4.92 (dd, 1H, *J* = 10.90, 2.98 Hz, H-12a), 3,68 (s, 3H, OCH₃), 3.50–3.20 (m, 4H, 2CH₂), 3.14–2.80 (m, 4H, 2CH₂), 1.68 (m, 2H, C–CH₂–C), 0.96 (t, 3H, CH₃). Anal. (C₂₀H₂₃NO₂·H₂C₂O₄) C, H, N.

10-Hydroxy-1-methyl-2,3,12,12a-tetrahydro-1*H***·[1]ben-zoxepino[2,3,4-***if***]isoquinoline Oxalate (6a).** Compound **27a** (600 mg, 1.6 mmol) was dissolved in 48% hydrobromic acid—acetic acid 1:1 (20 mL) and heated at 130 °C under N₂ for 2 h. The reaction mixture was diluted with H₂O, neutralized with NaHCO₃, and extracted with CHCl₃. The extracts were dried and evaporated to give a residue which was converted to the oxalate salt and crystallized from *i*-PrOH/ Et₂O to give 520 mg (90%) of pure **6a**: mp 212–213 °C; ¹H NMR (DMSO-*d*₆) δ 9.18 (s, 1H, OH), 7.13 (m, 1H, ArH), 6.95 (m, 3H, ArH), 6.53 (m, 2H, ArH), 4.25 (dd, 1H, *J* = 11.72, 3.67 Hz, H-12a), 3.28–2.60 (m, 6H, 3CH₂), 2.48 (s, 3H, NCH₃). Anal. (C₁₇H₁₇NO₂·H₂C₂O₄) C, H, N.

1-Ethyl-10-hydroxy-2,3,12,12a-tetrahydro-1*H***-[1]benzoxepino[2,3,4-***ij***]isoquinoline Oxalate (6b).** Obtained from **27b** with the same procedure as **6a**. The base was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 460 mg (59%) of pure **6b**: mp 202–204 °C; ¹H NMR (DMSO-*d*₆) δ 7.22 (m, 1H, ArH), 7.02 (m, 3H, ArH), 6.52 (m, 2H, ArH), 4.98 (dd, 1H, *J* = 11.20, 3.20 Hz, H-12a), 3.50–2.80 (m, 8H, 4CH₂), 1.28 (t, 3H, CH₃). Anal. (C₁₈H₁₉NO₂·H₂C₂O₄) C, H, N.

10-Hydroxy-1-propyl-2,3,12,12a-tetrahydro-1*H***·[1]benzoxepino[2,3,4-***ij***]isoquinoline Oxalate (6c).** Obtained from **27c** with the same procedure as **6a**. The base was converted to the oxalate salt and crystallized from *i*-PrOH/Et₂O to give 520 mg (64%) of pure **6c**: mp 122–124 °C; ¹H NMR (DMSO*d*₆) δ 7.20 (m, 1H, ArH), 7.00 (m, 2H, ArH), 6.2 (m, 2H, ArH), 4.88 (dd, 1H, J = 10.80, 2.85 Hz, H-12a), 3.44–2.72 (m, 8H, 4CH₂), 1.2 (m, 2H, C–CH₂–C), 0.80 (t, 3H, CH₃). Anal. (C₁₉H₂₁-NO₂·H₂C₂O₄) C, H, N.

Pharmacology. 1. Radioligand Competition Assays in Rat Striatal Membranes. Male Sprague–Dawley rats (300– 350 g body weight) were obtained from the breeding facilities at the University of Santiago. Rats were killed by decapitation, and brains were rapidly removed and dissected on an ice-cold plate. [³H]Spiperone (95 or 104 Ci/mmol) and [³H]SCH 23390 (85 Ci/mmol) were purchased from Amersham International (England), unlabeled *R*-(+)-SCH 23390 HCl and *R*-(–)-apomorphine HCl from Research Biochemicals Inc., dopamine HCl, haloperidol, and sulpiride HCl from Sigma. Reference drugs or new compounds were stored in 1 mM solutions at -20 °C and diluted to the required concentration on ice immediately before binding assays.

Striatal membrane preparations were obtained by homogenization (Polytron homogenizer, setting 6 for 10 s) of tissue in 50 mM Tris-HCl (pH 7.7 at 25 °C, about 100 μ L/mg of tissue) containing 5 mM EDTA. Homogenates were centrifuged (49000*g* for 15 min at 4 °C; Sorvall RC-26 plus), then resuspended in 50 mM Tris-HCl buffer (pH 7.4 at 25 °C) and centrifuged again (same conditions). Final pellets were stored at -80 °C until assay.

Just before the binding assay, pellets were resuspended (1.25 mg original wet weight/750 μ L for D₂ binding assays, 1.00 mg/750 µL for D₁ binding assays) in 50 mM Tris-HCl buffer (pH 7.4 at 25 °C) containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, and 1 mM MgCl₂. For agonist or antagonist properties assays (compounds 5a and 6a), pellets were resuspended in 50 mM Tris-HCl buffer (pH 7.4 at 25 °C) (without Na⁺) or 120 mM NaCl (presence of Na⁺). For D₂ binding assays, aliquots of striatal membrane preparations were added to ice-cold tubes containing (a) 100 μ L of [³H]spiperone plus 50 μ L of ketanserin (final concentration 50 nM, to block 5-HT_{2A} receptors) and either (b) 100 μL of buffer (total binding) or (c) 100 μ L of sulpiride (final concentration 10 μ M to allow quantification of specific binding by [3H]spiperone) or (d) 100 μ L of new or reference drug. For D_l binding assays, the same procedure was followed except that (a) was 100 μ L of [³H]SCH 23390 plus 50 μ L of buffer and (c) was 100 μ L of unlabeled SCH 23390 (final concentration 1 μ M, to allow quantification of specific binding by [³H]SCH 23390). The final assay volume was, thus, in all cases 1 mL. All assays were performed in duplicate.

Incubations (15 min at 37 $^{\circ}$ C) were stopped by rapid filtration under vacuum through GF-52 glass-fibers filters (Schleicher and Schuell) in a Brandel (M-30) cell harvester. Filters were rinsed three times with 3 mL of ice-cold 50 mM Tris-HCl buffer (pH 7.4).

2. Binding to Cloned DA D_3 and D_4 Receptors. Rat (Sf9) D_3 receptor: Membranes from *Spodoptera frugiperda* (Sf9) insect cells infected with baculovirus to express the rat recombinant D_3 DA receptor (lot no. OYI-19M, Research Biochemicals International, Natick, MA) were suspended in incubation buffer (0.5 mL of membranes to 24.5 mL of incubation buffer (Tris-HCl 50 mM, pH 7.4, containing 5 mM KCl, 1.5 mM CaCl₂, 5 mM EDTA, 120 mM NaCl, and 5.0 mM MgCl₂)).

Aliquots (500 μ L) of membranes were added to ice-cold tubes containing (a) 20 μ L of [³H]spiperone (104 Ci/mmol) and either (b) 20 μ L of buffer (total binding) or (c) 20 μ L of haloperidol (final concentration 10 μ M) to allow quantification of unspecific binding by [³H]spiperone or (d) 20 μ L of new drug. The final assay volume was thus in all cases 540 μ L.

Incubations (1 h at 27 °C) were stopped by filtration under vacuum, through Whatman GF/C glass-fiber filters presoaked in 0.3% polyethylenimine, in a Brandel (M-30) cell harvester. Filters were rinsed with incubation buffer.

Human (CHO, K1) D_4 receptor: Cells, transfected to express the human recombinant $D_{4,2}$ DA receptor (lot no. YBH-19SA-G, Research Biochemicals International, Natick, MA), were resuspended and homogenized (Polytron homogenizer, setting 6 at 10 s) in 8 mL of incubation buffer followed by centrifugation at 900*g* for 10 min at 4 °C (Sorvall RC-26 plus).

The supernatant was removed and saved. Following the addition of 5 mL of incubation buffer, the pellet was rehomogenized and centrifuged again (same conditions). Both supernatants were then pooled and centrifuged at 40000g for 30 min, and the resulting pellets were resuspended and homogenized in 5 mL of incubation buffer and centrifuged again (same conditions). The final pellet was resuspended in 7.5 mL of incubation buffer (Tris-HCl 50 mM, pH 7.4, containing 5 mM KCl, 1.5 mM CaCl₂, 5 mM EDTA, 120 mM NaCl, 1 mM phenylmethanesulfonyl fluoride, and 1 μ g/mL leupeptin).

Aliquots (140 μ L) of membrane preparations were added to ice-cold tubes containing (a) 20 μ L of [³H]spiperone (104 Ci/ mmol), final concentration 0.5 nM, and either (b) 40 μ L of buffer (total binding) or (c) 40 μ L of haloperidol (final concentration 10 μ M) to allow quantification of unspecific binding by [³H]spiperone or (d) 40 μ L of new drug. The final assay volume was thus in all cases 200 μ L.

Incubation (2 h at 27 °C) was stopped by filtration under vacuum, through Whatman GF/B glass-fiber filters presoaked in 0.1% polyethylenimine, in a Brandel (M-30) cell harvester. Filters were rinsed with incubation buffer and dried.

In all binding experiments radioactivity was determined by liquid scintillation counting in a Beckman LS6000LL apparatus and competition analyses were carried out with the aid of the Prism program (GraphPad); K_i values were calculated as $K_i = IC_{50}/(1 + L/K_d)$, where L is the concentration and K_d is the apparent dissociation constant of the ligand. The dissociation constants (K_d) of [³H]SCH 23390 and [³H]spiperone were 0.5 and 0.25, respectively.

3. PRL Release from Anterior Pituitary Cell Cultures. Anterior pituitary cell cultures were obtained as previously described.²⁶ Male Wistar rats (200-220 g) were sacrificed by decapitation; the anterior pituitaries were explanted, minced with a blade into small fragments, and sequentially incubated in DMEM at 37 $^\circ C$ in a Dubnoff shaking bath, with 0.5% trypsin (type XII S) for 15 min, 0.02% deoxyribonuclease I for 1 min, 0.1% soybean trypsin inhibitor for 4 min, and 2 and 1 mM EDTA (in Ca²⁺- and Mg²⁺-free EBSS) for 4 and 15 min, respectively. The remaining tissue fragments were mechanically dispersed into single cells by gentle suction and extrusion through a narrow tip Pasteur pipet; the cell suspension was then filtered through a 100- μ m nylon mesh and centrifuged at 1000g for 10 min. Finally, cells were checked for viability by Trypan blue exclusion test, counted by a hemocytometer (approximately 2 million cells/pituitary), plated into 24-well dishes (300 000 cells/dish), and incubated with DMEM supplemented with 10% newborn calf serum, at 37 °C in air/CO₂ 95/ 5%. After 2-3 days in culture, release experiments were performed by 1-h incubations with graded concentrations of testing substances in DMEM (supplemented with 0.1% BSA, 0.006% ascorbic acid, and 40 IU/mL aprotinin); release aliquots were stored at -20 °C until assay. Cell culture reagents were purchased from Sigma, except DMEM and serum from Gibco.

PRL concentrations were measured by radioimmunoassay. Rat PRL standard and antibody (raised in the rabbit) were supplied by the NIDDK Rat Pituitary Hormone Distribution Program. Tracer PRL was iodinated with Na¹²⁵I by the chloramine T method. Separation of bound from free fraction was performed by anti-rabbit goat serum (1:360) supplemented with 3% poly(ethylene glycol). After centrifuging, radioactivity in the pellets was counted in a γ -counter. Sensitivity of the assay was 50 pg/tube; ED₅₀ was 490 pg/tube.

Acknowledgment. This work was supported by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Progetto Nazionale Tecnologie Farmaceutiche) and the Xunta de Galicia (XUGA 20308B94 and XUGA 20308B96). The authors thank Prof. M. Cardellini for his collaboration.

References

- Seeman, P.; Bzowej, N. H.; Guan, H. C.; Bergeron, C.; Reynolds, G. P.; Bird, E. D.; Riederer, P.; Jellinger, K.; Tourtellotte, W. W. Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's, and Huntington's diseases. Neuropsychopharmacology 1987, 1, 5–15.
- (2)Cannon, J. C. Dopamine agonists: Structure-activity relationships. In *Progress in Drug Research*; Jucker, E., Ed.; Birkauser: Basel, 1985; Vol. 29, pp 303–414.
- (3) Iorio, L. C.; Barnett, A.; Leitz, F. H.; Houser, V. P.; Korduba, C. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic system. J. Pharmacol. Exp. Ther. 1983, 226, 462-468.
- (4) Kebabian, J. W.; DeNinno, M. P.; Schoenleber, R.; MacKenzie, R.; Britton, D. R.; Asin, K. E. A68930: a potent agonist specific for the dopamine D1 receptor. Neurochem. Int. 1992, 20, 1575-
- (5) Mottola, D. M.; Laiter, S.; Watts, V. J.; Tropsha, A.; Wyrick, S. D.; Nichols, D. E.; Mailman, R. B. Conformational analysis of D1 dopamine receptor agonists: pharmacophore assessment and receptor mapping. J. Med. Chem. 1996, 39, 285–296.
 (6) McDermed, J. D.; Freeman, H. S.; Ferris, R. M. Catechola-
- mines: Basic Clinical Front. In Proc. Int. Catecholamine Symp. 4th 1978; Usdin, E., Kopin, I. J., Barchas, J., Eds.; Pergamon: New York, 1979; pp 568–570.
 (7) Homan, E. J.; Wikstrom, H. V.; Grol, C. J. Molecular modeling
- of the dopamine D_2 and serotonin 5-HT_{1A} receptor binding modes of the enantiomers of 5-OMe-BPAT. *Bioorg. Med. Chem.* **1999**, 7. 1805-1820
- (8) Livingstone, C. D.; Strange, P. G.; Naylor, L. H. Molecular modelling of D₂-like receptors. *Biochem. J.* **1992**, *287*, 277–282.
 (9) Hibert, M. F.; Trumpp-Kallmeyer, S.; Bruinvels, A.; Hoflack J.
- Three-Dimensional models of neurotransmitter G-binding protein-coupled receptors. J. Mol. Pharmacol. **1991**, 40, 8–15.
- Gao, Y.; Zong, R.; Campbell, A.; Kula, N. S.; Baldessarini, R. J.; Neumeyer, J. L. Synthesis and dopamine agonist and antagonist (10) effects of (R)-(-)- and (S)-(+)-11-hydroxy-N-*n*-propylnorapor-phine. J. Med. Chem. **1988**, 31, 1392–1396.
- (11) Claudi, F.; Giorgioni, G.; Di Stefano, A.; Abbracchio, M. P.; Paoletti, A. M.; Balduini, W. Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands. J. Med. Chem. 1992, 35, 4408-4414.
- (12) Claudi, F.; Cingolani, G. M.; Di Stefano, A.; Giorgioni, G.; Amenta, F.; Barili, P.; Ferrari, F.; Giuliani, D. Synthesis, resolution, and preliminary evaluation of trans-2-amino-6(5)hydroxy-1-phenyl-2,3-dihydro-1H-indenes and related derivatives as dopamine receptor ligands. J. Med. Chem. 1996, 39, 4238-4246

- (13) Protais, P.; Cortes, D.; Pons, J. L.; Villaverde, M. C.; Castedo, L. Displacement activity of some natural Cularine alkaloids at striatal [3H]SCH 23390 and [3H]Raclopride binding sites. Experientia 1992, 48, 27-30.
- (14) Kametani, T.; Shibuia, S.; Nakano, T.; Fukumoto, K. Studies (14) Rameran, T., Sinbura, S., Fakano, T., Fukano, T., Fukano, K., Studies on the synthesis of heterocyclic compounds. Part CDXLIII. An alternative synthesis of (±)-Glaziovine by photolysis and phenolic oxidation. J. Chem. Soc. C 1971, 3818–3821.
 (15) Casagrande, C.; Canonica, L. Studies on proaporphine and aporphine alkaloids. Part V. Synthesis of (±)-Glaziovine by 8,17-riper clasure of theorem licensity in the situation of the section of the secti
- ring closure of 1-benzylisoquinolines derivatives. J. Chem. Soc., Perkin Trans. 1 1975, 1647-1652.
- (16) Enjalbert, A.; Bockaert, J. Pharmacological characterization of the D_2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. *Mol. Pharmacol.* **1983**, *23*, 576– 584.
- (17) Chang, A.; Shin, S. H.; Pang, S. C. Dopamine D₂ receptor mediates both inhibitory and stimulatory actions on prolactin release. *Endocrine* **1997**, *7*, 177–82.
- Gao, Y.; Ram, V. J.; Campbell, A.; Kula, N. S.; Baldessarini, R. (18)J.; Neumeyer, J. L. Synthesis and structural requirements of N-substituted norapomorphines for affinity and activity at dopamine D₁, D₂, and agonist receptor sites in rat brain. J. Med. *Chem*. **1990**, *33*, 39–44.
- (19) Riddall, D. R. A Comparison of the selectivities of SCH 23390 with BW737C89 for D_1 , D_2 and 5-HT₂ binding sites both in vitro and in vivo. *Eur. J. Pharmacol.* **1992**, *210*, 279–284.
- Seeman, P.; Grigoriadis, D. Dopamine receptors in brain and (20)periphery. Neurochem. Int. 1987, 10, 1-25.
- Ben-Jonathan, N.; Arbogast, L. A.; Hyde, J. F. Neuroendocrine (21)regulation of prolactin release. Prog. Neurobiol. 1989, 33, 399-447.
- (22)Tagawa, R.; Takahara, J.; Sato, M.; Niimi, M.; Murao, K.; Ishida, T. Stimulatory effects of Quinpirole hydrochloride, D₂-dopamine receptor agonist, at low concentrations on prolactin release in female rats in vitro. Life Sci. 1992, 51, 727-732.
- (23) Fleming, I.; Woolias, M. A. New synthesis of indoles particularly *J. Chem. Soc., Perkin Trans.* 1 **1979**, 829–837.
- (24) Hodgson, H. H.; Beard, H. G. Bromo-derivatives of m-hydroxybenzaldehyde. J. Chem. Soc. 1925, 875-890.
- Keseru, G. M.; Mezey-Vandor, G.; Nogradi, M.; Vermes, B.; Kajtar-Peredy, M. Total synthesis of Plagiochins C, macrocyclic bis(bibenzyl)constituents of Plagiochila acantophylla. Tetrahe*dron* **1992**, *48*, 913–922. Brunetti, L.; Preziosi, P.; Ragazzoni, E.; Vacca, M.; Effects of
- (26)lipopolysaccharide on hypothalamic-pituitary-adrenal axis in vitro. *Life Sci.* **1994**, *54*, 165–171.

JM991034O