Bioorganic & Medicinal Chemistry 22 (2014) 4694-4703

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

ELSEVIER

Discovery, structure–activity relationship studies, and anti-nociceptive effects of 1-phenyl-3,6,6-trimethyl-1,5,6,7tetrahydro-4*H*-indazol-4-one as novel opioid receptor agonists

Ming-Fu Cheng^a, Li-Chin Ou^a, Shu-Chun Chen^{a,†}, Wan-Ting Chang^{a,†}, Ping-Yee Law^b, Horace H. Loh^b, Yu-Sheng Chao^a, Chuan Shih^a, Shiu-Hwa Yeh^{a,*}, Shau-Hua Ueng^{a,*}

^a Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC ^b Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA

ARTICLE INFO

Article history: Received 13 May 2014 Revised 7 July 2014 Accepted 8 July 2014 Available online 16 July 2014

Keywords: μ/κ opioid receptor agonist Structure-activity relationship Anti-nociceptive effects Tail-flick test

ABSTRACT

The μ -opioid receptor (MOR) is the major opioid receptor targeted by most analgesics in clinical use. However, the use of all known MOR agonists is associated with severe adverse effects. We reported that the 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-ones are novel opioid receptor agonists. Subsequent structural modification resulted in the potent MOR/KOR (κ -opioid receptor) agonists **19**, **20**, and **21**. Testing the analgesic effect of these in WT B6 mice (tail-flick test) gave ED₅₀ values of 8.4, 10.9, and 26.6 mg/kg, respectively. The 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one core could be addressed in 1 or 2 synthetic steps with moderate to high percent of yield. In the adenylyl cyclase assay, compound **19** displayed a MOR/KOR agonist profile, with IC₅₀ values of 0.73 and 0.41 μ M, respectively. Current results suggest that compound **19** is a promising lead to go further development and in vitro/in vivo adverse effects studies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Opioids, including morphine, primarily act on opioid receptors, of which there are three well-defined subtypes: MOR, DOR (δ -opioid receptor) and KOR. These opioid receptors are Gi-coupled receptors, possessing the same general structure of an extracellular N-terminal region, seven transmembrane domains, and an intracellular C-terminal tail structure. Neuronal cells in the central nervous system (CNS) broadly express these receptors, which regulate numerous complex, partially overlapping physiological and neurobiological functions.^{1–5} Currently, most opioids in clinical use for analgesia are either non-selective or selective MOR agonists.⁶ and it has been proven that the analgesic effect of opioids is mediated principally by activation of MOR. However, use of MOR also results in tolerance, dependence, and addiction.^{7–10} DOR are implicated in morphine tolerance, dependence and rewarding effects, and DOR agonists have been regarded as very weak analgesics.¹¹⁻¹³ Activation of KOR in non-human primates causes severe adverse effects such as dysphoria, water diuresis, salivation and emesis, which may limit the utility of KOR agonists for clinical pain management.¹⁴ However, recent studies of mixed MOR/DOR agonists for analgesia with reduced tolerance was reported.¹⁵ In addition, the relevance of that mixed MOR/KOR activity is useful in reducing cocaine self-administration, and displays fewer side effects has been established recently.^{16–20}

Most of the non-peptide MOR/DOR and MOR/KOR agonists are morphine-like compounds or morphine analogs. High-throughput screening (HTS) has the potential to discover new scaffolds of non-peptide opioid receptor agonists, which may result in novel analgesics that work without severe adverse effects. 1-(2-Chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (**1**) was identified to activate µ-opioid receptor with activity in the micromolar range (Fig. 1) by HTS. The EC_{50} of compound 1 in the FLIPR[®] calcium assay at MOR is 2.28 µM. Compound **1** is based on a tetrahydro-4H-indazol-4-one core structure, and can be synthesized by the condensation of hydrazines and 2-acylcyclohexane-1,3-diones under acidic conditions. The 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one core is not a morphine-like structure, may has the potential to distinguish from the morphinelike MOR/DOR or MOR/KOR agonists, and the synthesis of it is easy to address. Although some of the 1-phenyl-3,6,6-trimethyl-1,5,6, 7-tetrahydro-4H-indazol-4-one analogs in this study are

^{*} Corresponding authors. Tel.: +886 37 246166x35759; fax: +886 37 586456 (S.-H.Y.); tel.: +886 37 246166x35791; fax: +886 37 586456 (S.-H.U.).

E-mail addresses: bau9763@bp.nhri.org.tw (S.-H. Yeh), shueng@nhri.org.tw (S.-H. Ueng).

[†] These authors contributed equally to this work.

Figure 1. Initial hit from HTS.

commercially available, the application of these analogs is unapparent.^{21–23} In this study, 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-ones are reported as novel opioid receptor agonists, and their structure–activity relationships and pharmacological studies discussed.

2. Chemistry

The regioselective condensation of phenylhydrazines with 2acylcyclohexane-1,3-diones in the presence of a catalytic amount of acid at room temperature or under reflux temperature of methanol or ethanol gave tetrahydroindazol-4-ones **2–22**, Scheme 1. A variety of commercially available phenylhydrazines were utilized to this reaction, and a series of tetrahydroindazol-4-one derivatives **2–21** bearing phenyl substituents at N_1 -, and methyl groups at C_3 - and C_6 -positions were prepared (Scheme 1). Phenylhydrazines for preparing compound **10** and compound **11** were synthesized from the corresponding hydrazinobenzoic acids through esterification. According to literature procedures, several specific phenylhydrazines (2,4-dibromo **23a**, 2-bromo-4-chloro **23b**, 2-bromo-4-methyl **23c**) were obtained from diazotization of the corresponding anilines with sodium nitrite, followed by reduction of the resulting diazonium salts with tin(II) chloride.²⁴ Phenylhydrazines **23a**– **23c** were utilized to prepare compound **19–21**, respectively.

Scheme 2 depicts the synthesis of 3-trifluoromethyl- and 3cyclopropyl-tetrahydroindazol-4-ones **26** and **27** from the corresponding 2-acylcyclohexane-1,3-diones (**25a** and **25b**) under acidic and basic conditions, respectively. Compounds **25a** and **25b** were prepared by C-acylation of 5,5-dimethyl-1,3-cyclohexanedione with trifluoroacetic acid and cyclopropanecarbonyl chloride, respectively.^{25,26} In addition, compound **28** was synthesized from hydrazine and 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione under neutral conditions.²⁷ Tetrahydroindazol-4-ol **29** was synthesized by reduction of **19** (Scheme 3). The purities of all final compounds were measured by reverse phase HPLC, and determined to be more than 95%.

3. Biological evaluation

3.1. Structure–activity relationship (SAR) studies of tetrahydro-4H-indazol-4-ones

A variety of tetrahydro-4*H*-indazol-4-one derivatives were prepared and their structure-activity relationships explored using a

Scheme 1. Synthesis of tetrahydroindazol-4-one derivatives.

Scheme 2. Modification of 2-acylcyclohexane-1,3-diones and synthesis of tetrahydroindazol-4-ones. Reagents and conditions: (a) CDI, imidazole, CHCl₃, rt; (b) DMAP, DIPEA, CH₂Cl₂, reflux; (c) H₂SO₄, EtOH, reflux; (d) NaOH, EtOH, rt.

Scheme 3. Synthesis of 28 and 29.

FLIPR[®] calcium assay in CHO-K1 cells, stably expressing hMOR and $G\alpha 15$. Activation of MOR elicits an intracellular calcium release leading to an increase in the relative fluorescence units (RFU).²⁸ As shown in Table 1, the substituted groups at C_3 - and C_6 -positions of tetrahydro-4*H*-indazol-4-one were methyl groups and various substituents of phenyl group at N_1 -position were introduced to investigate the relationships between substituents on the benzene ring, eliminated agonistic activity. This result reveals the importance of substituents on the benzene ring. Then, several analogs bearing mono-substituents at either R¹, R² or R³, were synthesized (**3–11**). Changing the position of the chlorine atom to the *meta*-

Table 1

Structure-activity relationships of tetrahydroindazol-4-ones 1-21

1-21

Compound	R ¹	R ²	R ³	R ⁴	R ⁵	EC_{50}^{a} (μM)
1	Cl	Н	Н	Н	Н	2.28
2	Н	Н	Н	Н	Н	>100
3	Н	Cl	Н	Н	Н	>100
4	Н	Н	Cl	Н	Н	13.6
5	Br	Н	Н	Н	Н	1.12
6	Н	Н	Br	Н	Н	9.91
7	Me	Н	Н	Н	Н	4.72
8	Et	Н	Н	Н	Н	19
9	Н	Н	OMe	Н	Н	18.4
10	CO ₂ Et	Н	Н	Н	Н	30.2
11	Н	Н	CO ₂ Me	Н	Н	10
12	Me	Н	Me	Н	Н	0.37
13	Me	Me	Н	Н	Н	8.9
14	Me	Н	Н	Me	Н	10
15	Me	Н	Cl	Н	Н	0.37
16	F	Н	F	Н	Н	10.3
17	Cl	Н	Н	Cl	Н	2.89
18	Cl	Н	Cl	Н	Н	0.15
19	Br	Н	Br	Н	Н	0.041
20	Br	Н	Cl	Н	Н	0.041
21	Br	Н	Me	Н	Н	0.041
Morphine	-	-	-	-	-	0.01

^a EC₅₀ values are the means of at least two independent experiments.

(3: $EC_{50} > 100 \mu M$) or para- (4: $EC_{50} = 13.6 \mu M$) position of the benzene ring resulted in a significant drop in potency. Replacing the ortho-chlorine atom of 1 with bromine to gave analog 5, the potency of which was 2-fold higher than **1** (**5**: $EC_{50} = 1.12 \mu M vs$ 1: $EC_{50} = 2.28 \mu$ M). In comparison, substituting the chlorine for methyl (to give 7) and ethyl (to give 8) devastated the potency EC_{50} = 4.72 and 19 μ M, respectively. Introduction of methoxy and ester groups was found to have no benefit; the EC₅₀ values for compounds **9–11** was in double digit μ M range (**9**: EC₅₀ = 18.4 μ M, **10**: EC_{50} = 30.2 µM, **11**: EC_{50} = 10 µM). To expand the scope of SAR study, ortho- and para-di-substituted phenyl groups were introduced in tetrahydro-4H-indazol-4-one and a dramatic enhancement of activation of the µ-opioid receptor was observed. For example, compound **12** (EC₅₀ = 0.37 μ M) exhibited higher potency than compounds **13** (R¹, R² = Me, EC₅₀ = 8.9 μ M) and **14** (R¹, R^4 = Me, EC₅₀ = 10 μ M). Replacing the methyl groups with halogens to give compounds 15 and 18 resulted in an improvement in EC_{50} values (0.37 and 0.15 µM, respectively). Introduction of a bromine atom at the ortho-position of an ortho-, para-di-substituted benzene ring gave compounds 19, 20, and 21 (19, 20, 21: EC₅₀ = 0.041 - μ M), which were 27-fold more potent than compound **5**, bearing only one bromo substituent at the ortho-position of benzene ring. These results suggest that the μ -opioid receptor favors ortho-, para-di-substituted benzene on the N₁-position of tetrahydro-4Hindazol-4-one. The activation ability of ortho-, para-di-halogen benzene on the N_1 -position of tetrahydro-4H-indazol-4-one was increased in the order; F, Cl, Br (**16**: $EC_{50} = 10.3 \mu M$, **18**: $EC_{50} = 0.15 \ \mu M$, **19**: $EC_{50} = 0.041 \ \mu M$).

To investigate additional SARs, several more derivatives were synthesized, Table 2. Analog 22 ($EC_{50} = 13.6 \mu M$), in which the methyl groups at the R^2 and R^3 positions were replaced with hydrogen atoms, displayed 91-fold less potency than compound **18**, revealing the di-methyl group at the C_6 -position of tetrahydro-4H-indazol-4-one to be necessary for agonistic activity. Introduction of trifluoromethyl and cyclopropyl groups at the C_3 -position of tetrahydro-4H-indazol-4-one gave compounds 26 $(EC_{50} = 1.54 \mu M)$ and **27** $(EC_{50} = 0.37 \mu M)$, both of which were less active than compound 18. Removing the benzene ring to give compound **28** (EC₅₀ >100 µM) eliminated all agonistic activity, emphasizing the importance of the benzene ring at the N_1 -position. When the carbonyl group at the C_4 position was reduced to a hydroxyl group to give compound **29**, the agonistic activity was 2-fold less than compound **19** (EC₅₀ = 0.1 μ M). In summary, the ortho, paradi-halogen/dimethyl-substituted (except fluorine atom) benzene ring at the N_1 -position of the tetrahydro-4H-indazol-4-one, and

Table 2		
Structure-activity	relationships of tetrahydroindazol-4-ones 22,	26-29

$R^2 \int R^3$	R^{1}	HN-N	Br	-Br N-N -N -N -N -N -N -N -N -N -N -N -N -N
22	2, 26, 27	28	2	29
Compound	\mathbb{R}^1	R ²	R ³	EC_{50}^{a} (μ M)
22	Me	Н	Н	13.6
26	CF ₃	Me	Me	1.54
27	Cyclo-C ₃ H ₅	Me	Me	0.37
28	-	-	-	>100
29	-	_	_	0.1
Morphine	_	_	_	0.01

^a EC₅₀ values are the mean of at least two independent experiments.

Table 3	
³ Hlnaloxone displacement assay and cAMP inhibition assay for function	onal selectivity

Compound	<i>K</i> _i (μM) ^a	hMOR IC_{50}^{b} (µM)	hDOR IC_{50}^{b} (μ M)	hKOR IC_{50}^{b} (μ M)
12	3.93 ± 0.14	ND^{c}	ND ^c	ND ^c
15	>100	ND ^c	ND ^c	ND ^c
18	ND ^c	7.89	10	2.65
19	0.47 ± 0.028	0.73	1.69	0.41
20	0.61 ± 0.074	3.3	3.38	0.57
21	0.74 ± 0.036	6	>100	0.37
27	1.3 ± 0.88	ND ^c	ND ^c	ND ^c
29	>100	3.38	>100	1.1
Naloxone	0.002 ± 0.0005	ND ^c	ND ^c	ND ^c
DAMGO	ND ^c	0.005	ND ^c	ND ^c
DPDPE	ND ^c	ND ^c	0.0009	ND ^c
U50488	ND ^c	ND ^c	ND ^c	0.0003

^a K_i values are the average ± SEM from three independent experiments.

^b IC₅₀ values are the mean of at least two independent experiments.

^c ND = not determined.

the dimethyl groups at the C_6 -position, contribute greatly to the human μ opioid receptor agonism.

3.2. Binding affinities determination and measurement of adenylyl cyclase-mediated effects

Binding affinities of the new compounds for MOR were determined by displacement of [³H]naloxone binding in HEK cells expressing recombinant rat MOR. Compounds 19, 20, 21 had significant binding for the MOR with K_i value in submicromolar range (**19**, $K_i = 0.47 \,\mu\text{M}$; **20**, $K_i = 0.61 \,\mu\text{M}$; **21**, $K_i = 0.74 \,\mu\text{M}$) (Table 3) in radioligand displacement studies. The poor correlation between K_i of [³H]naloxone displacement assay and EC₅₀ of FLIPR[®] calcium assay revealed that the cellular response to a pharmacological agonist was related to the efficacy of agonist, which is the intrinsic character for individual agonist, and the sensitivity of the assav.^{29,30} The typical signaling pathway of opioid receptors is through G_i/G_o proteins for inhibiting adenylyl cyclase.³¹ To investigate the selectivity of new compounds in activating opioid receptors, the ability of new compounds in affecting forskolinstimulated adenylyl cyclase activity in HEK293 cells stably expressing the μ , δ , and κ opioid receptors was measured. As shown in Table 3, compound 19 was both MOR and KOR agonist (MOR IC₅₀ = 0.73 μ M; KOR IC₅₀ = 0.41 μ M), whereas compound **20** and **21** were selective KOR agonist (**20**, MOR IC₅₀ = 3.3 μ M, KOR $IC_{50} = 0.57 \ \mu\text{M}$; **21**, MOR $IC_{50} = 6 \ \mu\text{M}$, KOR $IC_{50} = 0.37 \ \mu\text{M}$). Thus compounds 19, 20 and 21 were novel agonists of both MOR and KOR.

3.3. Compounds 19, 20 and 21 activate G protein-coupled inwardly-rectifying potassium channel in the AtT-20 pituitary cells

Upon activation of the opioid receptor and coupling to trimeric G proteins, the $\beta\gamma$ subunit of the G protein is released from $G\alpha\beta\gamma$ complex to activate the G protein-coupled inwardly-rectifying potassium (GIRK) channels.³² Spinal GIRK1/GIRK2 heterotetrameric channels modulate nociception and contribute to morphine analgesia.³³ In this study, AtT-20 cells endogenously expressing GIRK1/GIRK2,³⁴ were transiently transfected with myc-MOR expression plasmid, to detect GIRK-mediated membrane potential hyperpolarization after morphine treatment. By using the FLIPR[®] membrane potential assay, **19**, **20** and **21** treatment was found to alter the membrane potential in myc-tagged MOR expressing AtT-20 cells (Fig. 2). The EC₅₀ value of **19** was 5.49 μ M, and that of **20** and **21** was 0.1 μ M and 0.2 μ M, respectively. Finally, naloxone was found to reverse compound-stimulated membrane potentiane

Figure 2. Effects of compound-mediated membrane potential hyperpolarization in pituitary AtT-20 cells. Compounds **19**, **20** and **21** induced a membrane potential hyperpolarization in MOR expressing AtT-20 cells. The pituitary AtT-20 cells were transiently transfected with vehicle or myc-MOR, the effects of compounds on membrane potential were detected in the presence or absence of naloxone (1 μ M) treatment.

tial hyperpolarization in myc-tagged MOR expressing AtT-20 cells, indicating that the effects of compounds were dependent on opioid receptor activation.

Table 4

3.4. Compounds 19, 20, 21 elicited anti-nociceptive effects in B6 mice

To further evaluate the activity of compounds **19–21**, mice were injected with 19, 20, and 21 and their tail-flick latencies at the indicated time points (0, 0.5 and 1 h) measured. The extent of thermal withdrawal was evaluated by measuring the AUC of the tail-flick test to study the effect of the compounds on pain-related behavior in B6 mice. All three compounds, especially 19, were found to exert strong analgesia compared to vehicle control (Fig. 3). The ED_{50} of three compounds were listed in Table 4. It was also found that this effect could be attenuated using the opioid antagonist naloxone (Fig. 3).

4. Conclusions

The tetrahydro-4H-indazol-4-one containing opioid receptor agonist 1 was identified by high-throughput screening. Structural modification of this scaffold resulted in the novel opioid receptor agonist **19**, a >50 fold level potency improvement compared with compound 1, in the FLIPR[®] assay at MOR. Radioligand displacement study of **19** exhibited moderate binding affinity. The effect of **19** on cAMP accumulation assay in HEK293 cells stably expressing the μ , δ , and κ opioid receptors revealed that 19 possesses a mixed MOR/KOR agonistic activity. Recent studies emerged the relevance of MOR/ KOR agonists or partial agonists in treating cocaine abuse or in pain relief with fewer adverse effects.¹⁶⁻²⁰ The membrane potential hyperpolarization assay in pituitary AtT-20 cell indicated that 19 altered the cell membrane potential, suggesting that 19 effectively activated MOR. Compound 19 elicited strong anti-nociceptive effect in WT B6 mice (ED₅₀ = 8.4 mg/kg). Synthesis of **19** could be easily addressed in 2 synthetic steps with 61% of yield. These results demonstrate that compound **19** is a promising lead for further development and in vitro/in vivo adverse effects studies.

5. Experimental

5.1. Chemistry methods

All the reagents and solvents were reagent grade and were used without further purification unless otherwise specified. All materials used were commercially available and used as supplied. Merck silica gel 60 F₂₅₄ sheets were used for analytical thin-layer chromatography (TLC). Column chromatography was performed on silica gel (230-400 mesh) or used an Isco CombiFlash Companion system (Teledyne Isco) with prepacked silica gel cartridges. ¹H NMR spectra were recorded on a Varian Mercury-300 or Varian Mercury-400 spectrometers. Chemical shifts (δ) are given in parts per million (ppm) relative to the solvent peak. High-resolution electrospray ionization mass spectra were measured with a VARIAN 901-MS (FT-ICR Mass) mass spectrometer. Purity of all tested compounds was over 95% and determined on a Hitachi 2000 series HPLC system equipped with a C-18 column (Agilent ZORBAX Eclipse XDB-C18 5 μ m, 4.6 mm \times 150 mm) at 254 nm, eluting with mobile phase A (acetonitrile) and mobile phase B (10 mM NH₄OAc aqueous solution containing 0.1% formic acid) from 0 min (A/B, 10%) to 45 min (A/B, 90%) at 25 °C.

5.2. Representative procedure for the synthesis of tetrahydroindazol-4-ones

To a mixture of 1-(2-bromo-4-chlorophenyl)hydrazine hydrochloride 23b (103.2 mg, 0.40 mmol) and 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) was treated with a few drops of concd H₂SO₄. The mixture was stirred at room temperature for 24 h. After the reaction was

Figure 3. Compounds 19, 20 and 21 show analgesic effects through opioid receptor activation in B6 mice. Analgesic effect of 19 (A), 20 (B) and 21 (C) in the WT B6 mice. After detection of basal latencies, each group of mice were injected with 19 (20 mg/ kg, iv), 20 (18.4 mg/kg, iv) and 21 (25 mg/kg, iv), respectively, to detect tail-flick latencies at the indicated time points (10 min, 20 min, 30 min, 40 min, 50 min, and 60 min). Mice were injected with naloxone (10 mg/kg, sc) 5 min before compound injection. Quantitative results were calculated from tail-flick test (tail-flick latencybasal latency). Neither the vehicle nor naloxone alone was found to alter tail-flick latency (Supplementary Fig. S1). ***p <0.001 versus sham-control group. (Statistical analysis was carried out using one-way ANOVA with appropriate post hoc tests.)

10 mg/kg naloxone (s.c.) + 25 mg/kg compound 21 (i.v.) (n=6)

Time (min)

25 mg/kg compound 21 (i.v.) (n=6)

2

0

.

.

10 20 30 40 50 60 70 finished, the mixture was diluted with EtOAc (8.0 mL) and washed with water (4.0 mL), satd NaHCO_{3(aq)} (4.0 mL) and brine (4.0 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by Isco CombiFlash Companion column chromatography (silica gel, 0–70% EtOAc/hexane) to give 1-(2-bromo-4-chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **20** (65.0 mg, 44%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.93 (d, *J* = 2.0 Hz, 1H), 7.61 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 2.54 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 1.10 (s, 6H); HRMS calcd for C₁₆H₁₇BrClN₂O (M+H) 367.0213, found 367.0211.

5.2.1. 1-(2-Chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one (1)

The reaction of 1-(2-chlorophenyl)hydrazine hydrochloride (71.6 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄ and the crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexane (4:1), gave 1-(2-chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **1** (45.2 mg, 39%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.60–7.52 (m, 3H), 2.54 (s, 2H), 2.47 (s, 3H), 2.40 (s, 2H), 1.09 (s, 6H); HRMS calcd for C₁₆H₁₈ClN₂O (M+H) 289.1108, found 289.1117.

5.2.2. 3,6,6-Trimethyl-1-phenyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (2)

The reaction of 1-phenylhydrazine (43.3 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 3,6,6-trimethyl-1-phenyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **2** (39.2 mg, 39%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.59–7.45 (m, 5H), 2.84 (s, 2H), 2.47 (s, 3H), 2.41 (s, 2H), 1.08 (s, 6H); HRMS calcd for C₁₆H₁₉N₂O (M+H) 255.1497, found 255.1501.

5.2.3. 1-(3-Chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (3)

The reaction of 1-(3-chlorophenyl)hydrazine hydrochloride (71.6 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(3-chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **3** (45.5 mg, 39%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.63 (dd, *J* = 1.2, 3.6 Hz, 1H), 7.60–7.47 (m, 3H), 2.88 (s, 2H), 2.47 (s, 3H), 2.41 (s, 2H), 1.09 (s, 6H); HRMS calcd for C₁₆H₁₈ClN₂O (M+H) 289.1108, found 289.1108.

5.2.4. 1-(4-Chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one (4)

The reaction of 1-(4-chlorophenyl)hydrazine hydrochloride (71.6 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature for 2.5 days, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(4-chlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **4** (45.5 mg, 39%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.56 (m, 4H), 2.86 (s, 2H), 2.47 (s, 3H), 2.41 (s, 2H), 1.09 (s, 6H); HRMS calcd for C₁₆H₁₈ClN₂O (M+H) 289.1108, found 289.1109.

5.2.5. 1-(2-Bromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (5)

The reaction of 1-(2-bromophenyl)hydrazine hydrochloride (89.4 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohex-

anedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 1-(2-bromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **5** (92.4 mg, 69%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.84 (dd, *J* = 2.4, 7.6 Hz, 1H), 7.60–7.50 (m, 3H), 2.53 (s, 2H), 2.47 (s, 3H), 2.40 (s, 2H), 1.10 (s, 6H); HRMS calcd for C₁₆H₁₈BrN₂O (M+H) 333.0602, found 333.0606.

5.2.6. 1-(4-Bromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (6)

The reaction of 1-(4-bromophenyl)hydrazine hydrochloride (89.4 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 1-(4-bromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **6** (34.6 mg, 26%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 2.86 (s, 2H), 2.47 (s, 3H), 2.41 (s, 2H), 1.08 (s, 6H); HRMS calcd for C₁₆H₁₈BrN₂O (M+H) 333.0602, found 333.0606.

5.2.7. 3,6,6-Trimethyl-1-(2-methylphenyl)-1,5,6,7-tetrahydro-4*H*-indazol-4-one (7)

The reaction of 1-(2-methylphenyl)hydrazine hydrochloride (63.5 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 3,6,6-trimethyl-1-(2-methylphenyl)-1,5,6,7-tetrahydro-4*H*-indazol-4-one **7** (55.0 mg, 51%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.49–7.36 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 1H), 2.50 (s, 2H), 2.47 (s, 3H), 2.40 (s, 2H), 2.09 (s, 3H), 1.08 (s, 6H); HRMS calcd for C₁₇H₂₁N₂O (M+H) 269.1654, found 269.1656.

5.2.8. 1-(2-Ethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (8)

The reaction of 1-(2-ethylphenyl)hydrazine hydrochloride (69.1 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 1-(2-ethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*indazol-4-one **8** (52.1 mg, 46%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.52–7.47 (m, 2H), 7.40–7.36 (m, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 2.51 (s, 2H), 2.48–2.42 (m, 5H), 2.40 (s, 2H), 1.09– 1.06 (m, 9H); HRMS calcd for C₁₈H₂₃N₂O (M+H) 283.1810, found 283.1810.

5.2.9. 1-(4-Methoxyphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (9)

The reaction of 1-(4-methoxyphenyl)hydrazine hydrochloride (69.9 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(4-methoxyphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **9** (45.8 mg, 40%) as an oil. ¹H NMR (CD₃OD, 300 MHz) δ 7.42 (d, *J* = 9.0 Hz, 2H), 7.08 (d, *J* = 9.0 Hz, 2H), 3.87 (s, 3H), 2.77 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 1.08 (s, 6H); HRMS calcd for C₁₇H₂₁N₂O₂ (M+H) 285.1603, found 285.1604.

5.2.10. Ethyl 2-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indazol-1-yl)benzoate (10)

The reaction of 2-hydrazinobenzoic acid hydrochloride (56.6 mg, 0.30 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (54.7 mg, 0.30 mmol) in ethanol (0.9 mL) under reflux for 6 h, by a procedure similar to that for **20** using concd HCl (0.30 mL) instead of H₂SO₄, gave ethyl 2-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indazol-1-yl)benzoate **10** (27.7 mg, 28%) as a powder. ¹H NMR (CDCl₃, 300 MHz) δ 8.01 (dd, *J* = 1.5, 7.5 Hz, 1H), 7.67–7.54 (m, 2H), 7.36 (dd, *J* = 1.5, 7.5 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.52 (s, 3H), 2.50 (s, 2H), 2.38 (s, 2H), 1.13 (t, J = 7.2 Hz, 3H), 1.09 (s, 6H); HRMS calcd for C₁₉H₂₃N₂O₃ (M+H) 327.1709, found 327.1703.

5.2.11. Methyl 4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indazol-1-yl)benzoate (11)

The reaction of 4-hydrazinobenzoic acid hydrochloride (60.9 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in MeOH (1.2 mL) under reflux for 3 days, by a procedure similar to that for **20**, gave methyl 4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indazol-1-yl)benzoate **11** (27.7 mg, 28%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 8.19 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 3.94 (s, 3H), 2.94 (s, 2H), 2.48 (s, 3H), 2.43 (s, 2H), 1.09 (s, 6H); HRMS calcd for C₁₈H₂₁N₂O₃ (M+H) 313.1552, found 313.1558.

5.2.12. 1-(2,4-Dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (12)

The reaction of 1-(2,4-dimethylphenyl)hydrazine hydrochloride (69.1 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄ and the crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexane (4:1), gave 1-(2,4-dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one **12** (48.5 mg, 42%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.25 (s, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 2.48 (s, 2H), 2.46 (s, 3H), 2.39 (s, 5H), 2.03 (s, 3H), 1.07 (s, 6H); HRMS calcd for C₁₈H₂₃N₂O (M+H) 283.1810, found 283.1817.

5.2.13. 1-(2,3-Dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (13)

The reaction of 1-(2,3-dimethylphenyl)hydrazine hydrochloride (69.1 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄ and the crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexane (4:1), gave 1-(2,3-dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **13** (50.8 mg, 45%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.37 (d, *J* = 7.6 Hz, 1H), 7.26 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 2.46 (s, 5H), 2.39 (s, 2H), 2.37 (s, 3H), 1.94 (s, 3H), 1.07 (s, 6H); HRMS calcd for C₁₈H₂₃N₂O (M+H) 283.1810, found 283.1814.

5.2.14. 1-(2,5-Dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (14)

The reaction of 1-(2,5-dimethylphenyl)hydrazine hydrochloride (69.1 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 1-(2,5-dimethylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **14** (31.1 mg, 27%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.30–7.29 (m, 2H), 7.10 (s, 1H), 2.50 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 2.37 (s, 3H), 2.02 (s, 3H), 1.08 (s, 6H); HRMS calcd for C₁₈H₂₃N₂O (M+H) 283.1810, found 283.1811.

5.2.15. 1-(4-Chloro-2-methylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (15)

The reaction of 1-(4-chloro-2-methylphenyl)hydrazine hydrochloride (77.2 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄ and the crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexane (4:1), gave 1-(4-chloro-2-methylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one **15** (53.3 mg, 44%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.48 (s, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 2.51 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 2.07 (s, 3H), 1.08 (s, 6H); HRMS calcd for C₁₇H₂₀ClN₂O (M+H) 303.1264, found 303.1267.

5.2.16. 1-(2,4-Difluorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (16)

The reaction of 1-(2,4-difluorophenyl)hydrazine hydrochloride (72.2 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(2,4-difluorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **16** (66.5 mg, 57%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.64–7.56 (m, 1H), 7.34–7.27 (m, 1H), 7.20 (dd, *J* = 7.8, 7.8 Hz, 1H), 2.62 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 1.08 (s, 6H); HRMS calcd for C₁₆H₁₇F₂N₂O (M+H) 291.1309, found 479.1360.

5.2.17. 1-(2,5-Dichlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (17)

The reaction of 1-(2,5-chlorophenyl)hydrazine hydrochloride (85.4 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄ and the crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexane (4:1), gave 1-(2,5-dichlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one **17** (60.1 mg, 46%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.69–7.60 (m, 3H), 2.57 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 1.09 (s, 6H); HRMS calcd for C₁₆H₁₇Cl₂N₂O (M+H) 323.0718, found 323.0719.

5.2.18. 1-(2,4-Dichlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (18)

The reaction of 1-(2,4-chlorophenyl)hydrazine hydrochloride (85.4 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(2,4-dichlorophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **18** (62.1 mg, 48%) as a powder. ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (d, *J* = 2.0 Hz, 1H), 7.42–7.35 (m, 2H), 2.53 (s, 3H), 2.49 (s, 2H), 2.38 (s, 2H), 1.10 (s, 6H); HRMS calcd for C₁₆H₁₇Cl₂N₂O (M+H) 323.0718, found 479.1360.

5.2.19. 1-(2,4-Dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (19)

The reaction of 1-(2,4-dibromophenyl)hydrazine hydrochloride **23a** (121.0 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol), by a procedure similar to that for **20**, gave 1-(2,4-dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **19** (100.2 mg, 61%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 8.07 (d, *J* = 2.0 Hz, 1H), 7.76 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 2.54 (s, 2H), 2.46 (s, 3H), 2.40 (s, 2H), 1.10 (s, 6H); HRMS calcd for C₁₆H₁₇Br₂N₂O (M+H) 410.9708, found 410.9709.

5.2.20. 1-(2-Bromo-4-methylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (21)

The reaction of 1-(2-bromo-4-methylphenyl)hydrazine hydrochloride **23c** (95.0 mg, 0.40 mmol) with 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in ethanol (1.2 mL) at room temperature overnight, by a procedure similar to that for **20**, gave 1-(2-bromo-4-methylphenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **21** (55.1 mg, 40%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.67 (s, 1H), 7.37 (dd, *J* = 1.6, 1.6 Hz, 2H), 2.51 (s, 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.39 (s, 2H), 1.09 (s, 6H); HRMS calcd for $C_{17}H_{20}BrN_2O$ (M+H) 347.0759, found 347.0756.

5.2.21. 1-(2,4-Dichlorophenyl)-3-methyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (22)

The reaction of 1-(2,4-dichlorophenyl)hydrazine hydrochloride (85.4 mg, 0.40 mmol) with 2-acetyl -1,3-cyclohexanedione (61.7 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20** using concd HCl (0.40 mL) instead of H₂SO₄, gave 1-(2,4-dichlorophenyl)-3-methyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **22** (49.9 mg, 42%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 7.78 (d, *J* = 2.1 Hz, 1H), 7.59–7.52 (m, 2H), 2.88–2.69 (m, 2H), 2.56–2.49 (m, 2H), 2.46 (s, 2H), 2.37 (s, 1H), 2.19–2.12 (m, 2H); HRMS calcd for C₁₄H₁₃Cl₂N₂O (M+H) 295.0405, found 295.0403.

5.3. Representative procedure for the preparation of phenylhydrazine hydrochlorides from anilines

A mixture of 2-bromo-4-chloroaniline (825.9 mg, 4.0 mmol) and concd HCl (1.6 mL) was cooled at 0 °C and treated with a solution of NaNO₂ (0.3 g, 4.4 mmol) in H₂O (1.5 mL) precooled to 0 °C. After 45 min, a solution of SnCl₂ (2.2 g, 11.5 mmol) in concd HCl (2.8 mL) was added and a precipitation was formed. The mixture was stirred at room temperature for 2 h. After filtration, the precipitation was collected and washed with water (7.0 mL) and ether (30.0 mL) to give 1-(2-bromo-4-chlorophenyl)hydrazine hydrochloride **23b** (446.7 mg, 43%) as a solid. ¹H NMR (DMSO, 300 MHz) δ 10.05 (br, 2H), 7.96 (br, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.46 (dd, *J* = 2.4, 8.7 Hz, 1H), 7.05 (d, *J* = 8.7 Hz, 1H).

5.3.1. 1-(2,4-Dibromophenyl)hydrazine hydrochloride (23a)

Preparation of 1-(2,4-dibromophenyl)hydrazine hydrochloride **23a** (0.5 g, 41%) from 2,4-dibromoaniline (1.0 g, 4.0 mmol) by a procedure similar to that for **23b**. ¹H NMR (DMSO, 400 MHz) δ 10.11 (br, 2H), 8.01 (br, 1H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.88 (dd, *J* = 2.0, 8.8 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 1H).

5.3.2. 1-(2-Bromo-4-methylphenyl)hydrazine hydrochloride (23c)

Preparation of 1-(2-bromo-4-methylphenyl)hydrazine hydrochloride **23c** (311.5 mg, 33%) from 2-bromo-4-methylaniline (744.2 mg, 4.0 mmol) by a procedure similar to that for **23b**. ¹H NMR (DMSO, 300 MHz) δ 10.00 (br, 2H), 7.68 (br, 1H), 7.40 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 1H), 2.49 (s, 3H).

5.3.3. 5,5-Dimethyl-2-(trifluoroacetyl)cyclohexane-1,3-dione (25a)

To a solution of CDI (1.2 g, 7.1 mmol) in CHCl₃ (35.0 mL) was added a solution of trifluoroacetic acid (1.1 mL, 14.2 mmol) in CHCl₃ (53.0 mL) slowly. Then the mixture was treated with a solution of 5,5-dimethyl-1,3-cyclohexanedione (504.7 mg, 3.6 mmol) and imidazole (245.1 mg, 3.6 mmol) in CHCl₃ (35.0 mL), and stirred at room temperature for 45 min. After the reaction was finished, the mixture was washed with 1 N HCl_(aq) (50.0 mL) and water (50.0 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by Isco CombiFlash Companion column chromatography (silica gel, 0–100% EtOAc/hexane) to give compound **25a** (1.1 g, 77%) as a powder.

5.3.4. 2-(Cyclopropylcarbonyl)-5,5-dimethylcyclohexane-1,3-dione (25b)

To a solution of 5,5-dimethyl-1,3-cyclohexanedione (995.3 mg, 7.1 mmol), DMAP (256.6 mg, 2.1 mmol) and DIPEA (1.2 mL, 7.1 mmol) in CH_2Cl_2 (7.0 mL) was added a solution of cyclopropan-

ecarbonyl chloride (0.65 mL, 7.1 mmol) in CH₂Cl₂ (1.8 mL) slowly. The reaction was refluxed for 2 h. After the reaction was finished, CH₂Cl₂ was removed and the residue was purified by Isco Combi-Flash Companion column chromatography (silica gel, 0–30% EtOAc/hexane) to give compound **25b** (1.1 g, 77%) as a powder. ¹H NMR (CDCl₃, 400 MHz) δ 3.60–3.56 (m, 1H), 2.52 (s, 2H), 2.40 (s, 2H), 1.32–1.28 (m, 2H), 1.16–1.09 (m, 8H).

5.3.5. 1-(2,4-Dichlorophenyl)-6,6-dimethyl-3-(trifluoromethyl)-1,5,6,7-tetrahydro-4*H*-indazol-4-one (26)

The reaction of 1-(2,4-dichlorophenyl)hydrazine hydrochloride (85.4 mg, 0.40 mmol) with 5,5-dimethyl-2-(trifluoroacetyl)cyclohexane-1,3-dione **25a** (94.5 mg, 0.40 mmol) in ethanol (1.2 mL) under reflux for 5 h, by a procedure similar to that for **20**, gave 1-(2,4-dichlorophenyl)-6,6-dimethyl-3-(trifluoromethyl)-1,5,6,7tetrahydro-4*H*-indazol-4-one **26** (71.5 mg, 47%) as a powder. ¹H NMR (CD₃OD, 400 MHz) δ 7.83 (d, *J* = 1.2 Hz, 1H), 7.61 (dd, *J* = 1.2, 1.2 Hz, 2H), 2.63 (s, 2H), 2.48 (s, 2H), 1.11 (s, 6H); HRMS calcd for C₁₆H₁₄Cl₂F₃N₂O (M+H) 377.0435, found 377.0442.

5.3.6. 3-Cyclopropyl-1-(2,4-dichlorophenyl)-6,6-dimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one (27)

The reaction of 1-(2,4-dichlorophenyl)hydrazine hydrochloride (234.9 mg, 1.1 mmol) with 2-(cyclopropylcarbonyl)-5,5-dimethyl-cyclohexane-1,3-dione **25b** (199.9 mg, 0.96 mmol) in ethanol (5.0 mL) at room temperature overnight, by a procedure similar to that for **20** using NaOH (44.0 mg, 1.1 mmol) instead of H₂SO₄, gave 3-cyclopropyl-1-(2,4-dichlorophenyl)-6,6-dimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **27** (36.2 mg, 11%) as a powder. ¹H NMR (CDCl₃, 400 MHz) δ 7.55 (d, *J* = 2.0 Hz, 1H), 7.39 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 2.62–2.58 (m, 1H), 2.45 (s, 2H), 2.40 (s, 2H), 1.10 (s, 6H), 1.03–1.00 (m, 4H); HRMS calcd for C₁₈H₁₉Cl₂N₂O (M+H) 349.0874, found 349.0875.

5.3.7. 3,6,6-Trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one (28)

To a solution of 2-acetyl-5,5-dimethyl-1,3-cyclohexanedione (72.9 mg, 0.40 mmol) in THF (2.0 mL) was added hydrazine (0.80 mmol, 65% in H₂O). The reaction was stirred under reflux. After 4 h, THF was removed and the residue was washed with water (2.0 mL) and CH₂Cl₂ (1.0 mL) to give 3,6,6-trimethyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one **28** (30.1 mg, 42%) as a powder. ¹H NMR (DMSO, 300 MHz) δ 2.59 (s, 2H), 2.33 (s, 3H), 2.21 (s, 2H), 0.98 (s, 6H); HRMS calcd for C₁₀H₁₅N₂O (M+H) 179.1184.

5.3.8. 1-(2,4-Dibromophenyl)-3,6,6-trimethyl-4,5,6,7tetrahydro-1*H*-indazol-4-ol (29)

A solution of tetrahydroindazol-4-one **19** (30.1 mg, 0.073 mmol) in CH₂Cl₂ (1.0 mL) and MeOH (0.30 mL) was treated with NaBH₄ (14.0 mg, 0.37 mmol), and stirred at room temperature overnight. The reaction mixture was quenched with satd NH₄Cl_(aq) (1.0 mL) and extracted with CH₂Cl₂ (2.0 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by Isco CombiFlash Companion column chromatography (silica gel, 0–70% EtOAc/hexane) to give 1-(2,4-dibromophenyl)-3,6,6-trimethyl-4,5,6,7-tetrahydro-1*H*-indazol-4-ol **29** (19.0 mg, 63%) as a powder. ¹H NMR (CD₃OD, 300 MHz) δ 8.00 (d, *J* = 1.8 Hz, 1H), 7.69 (dd, *J* = 1.8, 8.7 Hz, 1H), 7.31 (d, *J* = 8.7 Hz, 1H), 4.81 (dd, *J* = 7.8, 7.8 Hz, 1H), 2.34 (s, 3H), 2.29 (d, *J* = 15.9 Hz, 1H), 2.05 (d, *J* = 15.9 Hz, 1H), 1.90 (dd, *J* = 7.8, 13.2 Hz, 1H), 1.55 (dd, *J* = 7.8, 13.2 Hz, 1H), 1.09 (s, 3H), 0.96 (s, 3H); HRMS calcd for C₁₆H₁₉Br₂N₂O (M+H) 412.9864, found 412.9864.

5.4. FLIPR[®] calcium assay

One day before the assay, CORNING[®] black with clear flat bottom 96-well assay plates were coated with a 0.1 mg/mL

Poly-L-Lysine solution. Chinese hamster ovary (CHO)-K1 cells, stably expressing hMOR and Ga15 (GenScript), were suspended in the F12 medium and plated at a density of $\sim 8 \times 10^4$ cells/well in 200 µL medium. Cells were incubated in a humidified atmosphere of 10% CO₂ at 37 °C overnight so as to reach an 80–90% confluent cell monolayer before assay. At the day of assay, 150 µL medium/well was removed from plate. To each well, 50 μ L FLIPR[®] calcium assay reagent dissolved in 1× assay buffer (HBSS: KCl 5 mM, KH₂PO₄ 0.3 mM, NaCl 138 mM, NaHCO₃ 4 mM, Na₂HPO₄ 0.3 mM, d-glucose 5.6 mM, with additional 20 mM HEPES and 13 mM CaCl₂, pH 7.4), with 2.5 mM probenecid was added and the plate is incubated at 37 °C for 1 h. Compounds and other reagents were dissolved in the assay buffer. Using a FlexStationIII (Molecular Devices), the $[Ca^{2+}]_i$ fluorescence increases after robotic injections of compounds or other reagents were monitored every 1.52 s interval with excitation wavelength at 485 nm and with emission wavelength at 525 nm. The $[Ca^{2+}]_i$ fluorescence was measured up to 90 s after agonist injection. The fluorescence intensity from 6 to 12 wells of cells were averaged and the relative amount of [Ca²⁺], release was determined by integrating the AUC of the $[Ca^{2+}]_i$ fluorescence averages.

5.5. Competition radioligand binding assay

Briefly, HEK-MOR cells were washed twice and scraped off the culture plate with ice-cold phosphate-buffered saline (PBS), and pelleted by centrifugation at 1000g, 10 min, 4 °C. Cell pellets were homogenized in assay buffer (50 mM Tris-HCl, pH 7.5), at 4 °C. Cellular membrane pellet was collected by centrifuge at 24,000g for 30 min at 4 °C, and resuspended in assay buffer. For competition binding assay, cell membranes were incubated for 60 min in 100 µL of assay buffer, containing 5 nM [³H]naloxone plus unlabeled compounds in concentrations ranging from 0.01 nM to 10 mM. The binding reaction was terminated by filtration over glass-fiber filters and washed in ice-cold assay buffer. Nonspecific binding was determined in the presence of 10 µM naloxone.

5.6. HTRF cAMP assay

We used Cisbio HTRF cAMP assay to measure [cAMP]. Briefly, 2000 HEK293 cells stably expressing opioid receptors (μ , δ , or κ) or parental cells were plated in 10 µL/well of DMEM in 96-well solid bottom white plates and 10 µL/well compound in HBSS in the presence with 1 µM forskolin and 100 µM IBMX. After 30 min incubation at room temperature, 10 µL/well of labeled d2-cAMP and 10 µL/well of anti-cAMP antibody (both diluted in lysis buffer) were added to each well. Two hours later, plates were measured using the FlexStationIII (Molecular Devices Corp.) with excitation at 330 nm and emissions of 620 nm and 665 nm.

5.7. Membrane potential assay

The mouse pituitary AtT-20 cells were transiently transfected with vehicle or a myc-tagged MOR plasmid using electroporation and seeded in 96-well plates. After 24 h, cells were serum-starved for 3 h to detect potassium conductance changes using a fluorometric imaging plate reader (FLIPR[®]) membrane potential assay according to the manufacturer's instructions (Molecular Devices). Briefly, serum-starved cells were treated with blue membrane potential dye for 0.5 h at 25 °C. Next, the cells were treated with vehicle or compounds, and their potassium conductances were measured using a FlexStation 3 benchtop multi-mode microplate reader (Molecular Devices).

5.8. Tail-flick test

Nociception of mice was evaluated by using a tail-flick instrument (Columbus Instruments). The intensity of the light was adjusted so that the averaged basal tail-flick latencies were 3-4 s. A cut-off time of 10 s was used as the maximum possible effect (MPE) to avoid tissue damage. A mouse that did not flick its tail within the cut-off time was considered as fully analgesic. The area under the time-response curve $(AUC)^{35}$ and the ED₅₀ value was employed to evaluate the analgesic effect of the drug(s). The tailflick latency was examined at 10, 20, 30, 40, 50, and 60 min after drug administration to plot time-response (test latency-basal latency) curve and the AUC value was calculated. The ED₅₀ was determined by the up-and-down method.³⁰

Acknowledgments

We are grateful to National Health Research Institutes and National Science Council of the Republic of China (100NP1004) for financial support.

Supplementary data

Supplementary data (the in vivo data of vehicle control and naloxone) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2014.07.012.

References and notes

- 1. Evans, C. J.; Keith, D. E., Jr.; Morrison, H.; Magendzo, K.; Edwards, R. H. Science 1952, 1992, 258.
- Kieffer, B. L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C. G. Proc. Natl. Acad. Sci. U.S.A. **1992** 89 12048
- Minami, M.; Toya, T.; Katao, Y.; Maekawa, K.; Nakamura, S.; Onogi, T.; Kaneko, 3. S.: Satoh. M. FEBS Lett. 1993. 329. 291.
- Wise, R. A. Drug Alcohol Depend. 1998, 51, 13. 4
- Atweh, S. F.; Kuhar, M. J. Br. Med. Bull. 1983, 39, 47. 5.
- Bie, B.; Pan, Z. Z. Mol. Pain 2007, 3, 37. 6
- Waldhoer, M.; Bartlett, S. E.; Whistler, J. L. Annu. Rev. Biochem. 2004, 73, 953. 7.
- Schreckenberger, M.; Klega, A.; Gründer, G.; Buchholz, H.-G.; Scheurich, A.; 8. Schirrmacher, R.; Schirrmacher, E.; Müller, C.; Henriksen, G.; Bartenstein, P. J. Nucl. Med. 2008, 49, 1257.
- 9. Berger, A. C.; Whistler, J. L. EMBO Mol. Med. 2011, 3, 385.
- Wanigasekera, V.; Lee, M. C.; Rogers, R.; Kong, Y.; Leknes, S.; Andersson, J.; Tracey, I. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109*, 17705.
 Kest, B.; Lee, C. E.; McLemore, G. L.; Inturrisi, C. E. Brain Res. Bull. **1996**, *39*, 185.
- Zhu, Y.; King, M. A.; Schuller, A. G.; Nitsche, J. F.; Reidl, M.; Elde, R. P.; 12.
- Unterwald, E.; Pasternak, G. W.; Pintar, J. E. *Neuron* **1999**, *24*, 243.
 Shippenberg, T. S.; Chefer, V. I.; Thompson, A. C. *Biol. Psychiatry* **2009**, *65*, 169. Wang, Y. H.; Sun, J. F.; Tao, Y. M.; Chi, Z. Q.; Liu, J. G. Acta Pharmacol. Sin. 2010, 14.
- 1065.31.
- 15 Negus, S. S.; Bear, A. E.; Folk, J. E.; Rice, K. C. Eur. J. Pharmacol. 2009, 602, 92. 16. Smith, M. A.; Cole, K. T.; Iordanou, J. C.; Kerns, D. C.; Newsome, P. C.; Peitz, G.
- W.; Schmidt, K. T. Parmacol., Biochem. Behav. 2013, 104, 40.
- 17 Mello, N. K.; Negus, S. S. Ann. N.Y. Acad. Sci. 2000, 909, 104.
- Negus, S. S.; Mello, N. K. J. Pharmacol. Exp. Ther. 1997, 282, 44. 18.
- 19 Bowen, C. A.; Negus, S. S.; Zong, R.; Neumeyer, J. L.; Bidlack, J. M.; Mello, N. K. Neuropsychopharmacology 2003, 28, 1125.
- 20. Neubert, J. K.; Rossi, H. L.; Pogar, J.; Jenkins, A. C.; Caudle, R. M. Behav. Brain Funct. 2007. 3, 49.
- 21. We carried out the structure search by SciFinder 'exact structure search' for each of tetrahydroindazol-4-one analogs listed in this manuscript, 9 out of 26 analogs are available from commercial source (1, 2, 4, 5, 6, 7, 9, 18, 28), and 3 out of these 9 analogs have been reported in the literatures and performed biological assay or other applicable usage (2, 9, 28). Those 2 literatures are related to CDK inhibitors and NOS inhibitors, respectively. Most of the compounds discovered by us have never been reported in the literature, especially the most potent compounds in this manuscript, 19, 20, and 21, belong to the new scaffold in MOR/KOR agonists.
- 22. Pevarello, P.; Villa, M.; Varasi, M.; Isacchi, A. 4,5,6,7-Tetrahydroindazole derivatives as antitumor agents. WO patent, WO0069846.
- Claramunt, R. M.; López, C.; Pérez-Medina, C.; Pérez-Torralba, M.; Elguero, J.; 23. Escames, G.; Acuña-Castroviejo, D. Bioorg. Med. Chem. 2009, 17, 6180.
- 24. Hernández, S.; Moreno, I.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Org. Biomol. Chem. 2011, 9, 2251-2257.

- Khlebnicova, T. S.; Isakova, V. G.; Baranovsky, A. V.; Borisov, E. V.; Lakhvich, F. A. J. Fluorine Chem. 2006, 127, 1564–1569.
 Khlebnicova, T. S.; Isakova, V. G.; Lakhvich, F. A.; Kurman, P. V. Chem. Heterocycl. Compd. 2008, 44, 301–308.
 Claramunt, R. M.; López, C.; Pérez-Medina, C.; Pinilla, E.; Torres, M. R.; Elguero, L. Kurkalvar, 2002, 620
- J. Tetrahedron **2006**, 62, 11704–11713.
- 28. Chu, J.; Zheng, H.; Loh, H. H.; Law, P.-Y. Cell. Signaling 2008, 20, 1616. and references cited therein.
- Kenakin, T. Nat. Rev. Drug Disc. 2003, 2, 429. 29.

- Kenakin, T. *Trends Pharmacol. Sci.* 2004, *25*, 186.
 Megaritis, G.; Merkouris, M.; Georgoussi, Z. *Receptors Channels* 2000, *7*, 199.
 Logothetis, D. E.; Kurachi, Y.; Galper, J.; Neer, E. J.; Clapham, D. E. *Nature* 1987,
- 325, 321.
- Luscher, C.; Slesinger, P. A. *Nat. Rev. Neurosci.* 2010, *11*, 301.
 Kuzhikandathil, E. V.; Yu, W.; Oxford, G. S. *Mol. Cell. Neurosci.* 1998, *12*, 390.
 Chow, L. H.; Huang, E. Y.; Ho, S. T.; Tsai, S. K.; Tao, P. L. *J. Biomed. Sci.* 2004, *11*,
- 717.
- 36. Crocker, A. D.; Russell, R. W. Pharmacol. Biochem. Behav. 1984, 21, 133.