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Abstract: The synthetic utility of tertiary amines to oxidatively
generate a-amino radicals is well established, however, pri-
mary amines remain challenging because of competitive side
reactions. This report describes the site-selective a-functional-
ization of primary amine derivatives through the generation of
a-amino radical intermediates. Employing visible-light photo-
redox catalysis, primary sulfonamides are coupled with
electron-deficient alkenes to efficiently and mildly construct
C�C bonds. Interestingly, a divergence between intermolecular
hydrogen-atom transfer (HAT) catalysis and intramolecular
[1,5] HAT was observed through precise manipulation of the
protecting group. This dichotomy was leveraged to achieve
excellent a/d site-selectivity.

The formation of a-amino radicals using visible-light photo-
redox catalysis has garnered significant attention as a mild
method to construct C�C bonds.[1] Electron-rich tertiary
amines can be oxidized to generate nitrogen radical cations,
allowing facile access to a-amino radicals after deprotonation
of the a-C�H bond.[2] Competitive N-alkylation events for
primary and secondary amines can hinder the formation of a-
amino radicals (Figure 1a).[3] A cleavable functionality at the
a-position may be pre-installed to circumvent undesired
reactivity by accessing a-amino radicals (Figure 1b).[4] Hydro-
gen-atom transfer (HAT) catalysts have been successfully
implemented to achieve a-C�H functionalization of acylated
secondary amine derivatives devoid of a-pre-functionaliza-
tion.[5] Our group has recently reported the selective a-
functionalization of primary aliphatic amines to afford g-
lactams under dual photoredox and HAT catalysis utilizing
CO2 as an activating group, wherein we identified an
acceleration of the HAT event by an electrostatic interaction
between the quinuclidinium cation and carbamate anion.[6]

We recognized, however, that ring closure is not always

desired and manipulation of primary amines themselves can
be challenging in multistep synthetic planning. For this
reason, we further explored the impact of either different
common activating or protecting groups searching for
a broadly applicable a-alkylation of primary amine deriva-
tives.

We sought to develop a protocol for amine C�H
functionalization in which the site-selectivity can be achieved
through the judicious choice of the directing group on
nitrogen. Independently, our group and the group of Knowles
demonstrated the robustness of d-C(sp3)�H alkylation
through [1,5] HAT.[7] Utilizing trifluoroacetamides, amidyl
radicals are formed under oxidative conditions to remotely
activate the d-C�H bond (Figure 1c), an undesirable pathway
for a-derivatization. We reasoned that using a more acidifying
functionality could pivot reactivity towards the activation of
a-C(sp3)�H bonds by leveraging the following consequences:
a change in the nature of the protecting group results in
a change in the bond strength and the pKa value of the NH.[8]

After surveying a variety of amine protecting groups, we
gratifyingly observed promising reactivity and selectivity

Figure 1. Photoredox functionalization: a) Tertiary versus secondary
amines. b) Installation of cleavable functionality to direct a-amino
radical formation. c) Acidity-controlled site-selectivity.

[*] M. A. Ashley,[+] Dr. C. Yamauchi,[+] S. Otsuka, Prof. Dr. T. Rovis
Department of Chemistry, Columbia University
New York, NY 10027 (USA)
E-mail: tr2504@columbia.edu

Dr. J. C. K. Chu, Prof. Dr. T. Rovis
Department of Chemistry, Colorado State University
Fort Collins, CO 80523 (USA)

S. Otsuka, Prof. Dr. H. Yorimitsu
Department of Chemistry, Graduate School of Science, Kyoto
University, Sakyo-ku, Kyoto 606-8502 (Japan)

[+] These authors contributed equally to this work.

Supporting information and the ORCID identification number(s) for
the author(s) of this article can be found under:
https://doi.org/10.1002/anie.201812227.

Angewandte
ChemieCommunications

1Angew. Chem. Int. Ed. 2019, 58, 1 – 6 � 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! � �

http://dx.doi.org/10.1002/ange.201812227
http://dx.doi.org/10.1002/anie.201812227
http://orcid.org/0000-0002-0153-1888
http://orcid.org/0000-0002-0153-1888
http://orcid.org/0000-0001-6287-8669
https://doi.org/10.1002/anie.201812227
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fanie.201812227&domain=pdf&date_stamp=2019-02-15


using trifluoromethanesulfonamides. We were delighted to
observe a-functionalization of 1a in 50 % yield with benzyl
acrylate in the presence of a carbonate base, the photocatalyst
A, and blue light (Table 1, entry 1). A superior yield was

obtained when using [Ir(dF-CH3-ppy)2(dtbbpy)PF6] (B)[9] as
the photocatalyst, and subjecting quinuclidine to the reaction
conditions (entry 6). Control experiments confirmed photo-
catalyst, base, and light were all essential for successful a-
alkylation of 1a (see the Supporting Information for details).
Desired product formation was not obtained with weaker
electron-withdrawing groups on nitrogen (entries 7–9).

With optimized reaction conditions in hand, we sought to
investigate the scope with respect to the alkene with 1 a as the
substrate (Scheme 1). Both acrylates devoid of a-substituents
(3aa–ad), as well as methyl-methacrylate (3ae), give products
in acceptable yields. Acrylates containing b-substituents (3af)
lead to a moderate drop in reactivity (33 %) except in the case
of highly activated dimethyl fumarate (3 f), which proceeds in
moderate yield (53 %). In addition to acrylates, enones
provide the desired a-functionalization (3ah–ai). Additional
Michael acceptors, including vinyl sulfones (3aj), vinyl
phosphonates (3ak), and acrylonitrile (3 al–am) are well
tolerated. Dimethylacrylamide (3an) is incorporated with
a slightly compromised yield (38%). Of note is the successful
use of electron-deficient styrene derivatives as coupling
partners (3ao–aq) as well as a heteroarene-substituted
olefin (3ar).[10]

We examined the scope with respect to the amine using
either tert-butyl acrylate (2a) or ethyl acrylate (2b) as the

coupling partner (Scheme 2). Substrates containing secon-
dary a-C(sp3)�H bonds (3ba–da) provide product in good
yields, whereas tertiary (3 ea–fa) a-positions show lower
levels of reactivity. Interestingly, methyl-triflamide (3ga) as
substrate leads to a 34% yield of the dialkylated product as
nearly the sole product. Altering the ratio of triflamide and
olefin coupling partner did not suppress dialkylation. We
reasoned the second alkylation event occurs by a faster rate
because of the resulting radical stability from the first
(primary carbon radical) versus second hydrogen-atom
abstraction event (secondary carbon radical). Nearby elec-
tron-withdrawing groups create a more difficult alkylation
event (3hb, 34%) presumably because of the decreased
hydridicity of the triflamide a-C�H bond. Absence of over-
alkylation in the formation of the products 3ba and 3ca can
be attributed to this mode of deactivation in conjunction with

Scheme 1. Olefin scope. [a] 1a (0.1 mmol), alkene (0.15 or 0.3 mmol),
quinuclidine (0.2 mmol), [Ir(dF-CH3-ppy)2(dtbbpy)PF6] (2.0 mol%),
DMF (0.2m), 34 W blue LED, ca. 40 8C, 16 h. [b] Yield of the isolated
products. [c] The d.r. value was determined by 1H NMR analysis of the
isolated product. [d] Used 1.2 equiv of 3-buten-2-one. [e] 0.3 mmol
scale. EWG= electron-withdrawing group.

Table 1: Reaction optimization.

Entry PG Photocatalyst R Base Yield [%][b]

1 Tf A Bn Cs2CO3 50
2 Tf A Bn K2CO3 54
3 Tf A Bn K3PO4 58
4 Tf B Bn K3PO4 65
5 Tf A tBu quinuclidine 71
6 Tf B tBu quinuclidine 77[c]

7 COCF3 B tBu quinuclidine 0
8 Ts B tBu quinuclidine 0
9 Ac B tBu quinuclidine 0

[a] 1a (0.1 mmol), alkene (0.15 or 0.3 mmol), base (0.2 mmol), photo-
catalyst (2.0 mol%), DMF (0.2m), 34 W blue LED, ca. 40 8C, 16 h.
[b] Yields determined by 1H NMR spectroscopy using trimethoxyben-
zene as an internal standard. [c] Yield of isolated product. Ac = acetyl,
Bn = benzyl, DMF= N,N-dimethylformamide, Et = ethyl, Me =methyl,
PG= protecting group, tBu= tert-butyl, Tf = triflyl, Ts = tosyl.
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a sterically demanding environment. Furthermore, the for-
mation of the fully branched 3ea and 3 fa proceeds in lower
yield. This methodology also proved tolerant of heterocyclic
derivatives (3 ia–ja).

To demonstrate the robustness of our site-selective a-
alkylation, we sought to functionalize sulfonamides bearing
additional potential sites of activation. A glucose derivative
containing multiple abstractable tertiary C(sp3)�H bonds
affords the desired a-functionalization selectively to form
3kb in 68% yield (Scheme 2). The inclusion of primary (3 la)
and secondary Boc-protected amines (3ma) provide a com-
petitive site for a-functionalization. Previous work from the
group of MacMillan demonstrates a quinuclidine radical
cation can abstract a hydrogen atom from these sites.[5]

Gratifyingly, alkylation occurs site-selectively at the a-C-
(sp3)�H triflamide site. A lysine-derived triflamide also
participates, delivering 3 na as a single constitutional isomer
in 58% yield. Preference for the selective formation of a-
amino radicals over [1,5] HAT pathways is further demon-
strated with the products 3 oa–qa. This selectivity is quite
remarkable considering our previous work with trifluoroace-
tamide directing groups which activate the d-C�H bond by
[1,5] HAT.

Several mechanistic experiments proved enlightening.
Stern–Volmer quenching studies (Scheme 3b) reveal
a strong kinetic preference for the single-electron oxidation
of quinuclidine (E1/2

red = 1.1 V vs. SCE in DMF) over the
triflamide anion (E1/2

red = 1.2 V vs. SCE in DMF) by the
excited state of B. A deuterium-labelling experiment reveals
a lack of appreciable deuteration at the position a to the ester,
suggesting that a chain-transfer mechanism by direct HAT
from another molecule of substrate to the enoyl radical is
a minor pathway at best. Taken together, we propose the
following mechanism to explain these observations. Under
quinuclidine conditions, a dual HAT/photoredox catalytic
cycle is proposed (Scheme 3a).[11] The highly electrophilic
quinuclidinium radical cation (VI) abstracts an activated
hydridic a-hydrogen atom of the triflamide anion (I) to
deliver an a-amino radical anion (II).[12] Subsequent radical
trapping by an electron-deficient olefin coupling partner will
furnish a carbon-centered radical (III). Single-electron reduc-
tion of III by the reduced iridium photocatalyst (E1/2

red = IrIII/
IrII =�1.42 V vs. SCE) and a final protonation event affords
the desired product VIII, closing the catalytic cycle.

More significant, perhaps, is the question of mechanism in
the presence of phosphate as a base (entry 3 in Table 1).

Scheme 2. Triflamide scope. [a] 1a (0.1 mmol), alkene (0.15 or 0.3 mmol), quinuclidine (0.2 mmol), [Ir(dF-CF3-ppy)2(dtbbpy)PF6] (2.0 mol%), DMF
(0.2m), 34 W blue LED, ca. 40 8C, 16 h. [b] Yield of isolated products are reported. [c] The d.r. value was determined by 1H NMR analysis of
isolated product. [d] 0.3 mmol scale. Boc= tert-butyloxycarbonyl.
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While phosphate has been implicated as a potential HAT
catalyst, [13] we believe its dominant role is to deprotonate the
acidic triflamide forming the anion in high concentration. A
control experiment revealed that the potassium salt of the
triflamide undergoes the a-alkylation reaction in the absence
of added phosphate or quinuclidine in similar yield
(Scheme 3d). As mentioned above, Stern–Volmer studies
support triflamide oxidation by the excited state of the
photocatalyst. Thus, we suggest the N-centered triflamidyl
radical undergoes intermolecular HAT from another mole-
cule of triflamide anion, delivering the C-centered radical.

By subjecting isohexylamine derivatives to the photo-
redox catalyzed C�H activation reaction (Scheme 3e) we find
that trifluoroacetamides site-selectively functionalize at the d-
position (4 aa), whereas triflamides conserve a-activation
(3qa). This divergence in reactivity can be attributed to the
resulting nitrogen radical stability and extent of deprotona-
tion of the N�H bond. Computational studies suggest the
nitrogen radical from a trifluoroacetamide is less stable than

that from a triflamide.[8] Under phosphate conditions, tri-
fluoroacetamides lie toward heavily protonated, thus, a-C�H
bond activation is minimized when compared to their
triflamide counter partners. The trifluoroacetamide nitro-
gen-centered radical will experience a larger driving force for
intramolecular [1,5] HAT due to nitrogen radical instability
and the absence of activated a-C�H bonds in solution
(trifluoroacetamides in solution lie in the protonated state).
The more stable nitrogen-centered radical present on trifla-
mide acts as an intermolecular hydrogen-atom abstractor to
deprotonated triflamides in solution, which possess highly
activated a-C�H bonds due to the anionic character. This
pivot in reactivity allows selective functionalization of both a-
and d-C�H bonds depending on the installed nitrogen
protecting group.

In summary, we have developed a site-selective, visible-
light-driven photocatalyzed a-functionalization of primary
amines. Key to success is the use of a trifluoromethanesulfonyl
group on nitrogen as it allows full deprotonation of the N�H

Scheme 3. Mechanistic interrogation. [a] No deuterium/hydrogen scrambling was observed a to the nitrogen center. Deuterium incorporation was
measured in the product. Reaction was repeated under phosphate conditions in which about 1% incorporation was observed. [b] Phosphate
conditions. [c] Reaction conditions: trifluoroacetamide (0.1 mmol), alkene (0.15 or 0.3 mmol), K3PO4 (0.2 mmol), [Ir(dF-CF3-ppy)2(dtbbpy)PF6]
(2.0 mol%), PhCF3 (0.4m), blue LED. [c] KSV = Stervn–Volmer quenching constant.
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bond and renders the a-C�H bond more hydridic and
susceptible to intermolecular HAT. Our reaction allows the
formation of a C�C bond at the a position of primary amine
derivatives through coupling a-amino radicals and electron-
deficient alkenes.
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