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Introduction 

3-(Substituted-1,2,4-oxadiazol-5-yl)propanoic and butanoic 
acids are valuable tools in drug discovery and in the parallel 
synthesis of candidates for high throughput screening or “hit to 
lead” optimization of bioactive compounds. The 
pharmaceutical applications of small molecules based on these 
motifs include nonpeptidic procollagen C-proteinase 
inhibition,1 cannabinoid receptor 2 (CB2) agonist,2 nonsteroidal 

anti-inflammatory,3 lung and larynx carcinoma cell growth 
inhibition,4 ανβ3 receptor antagonist,5 analgesic,6 niacin 
receptor (GPR109A) agonist,7 dipeptidyl peptidase IV 
inhibition,8 larvicide9 and antibiotic10 properties. Furthermore, 
some acids are of interest as peptidomimetic building blocks11 
or starting materials for the synthesis heterocyclic compounds, 
as exemplified by benzimidazoles with antimicrobial 
activities.12 

 
Figure 1. Representative examples of bioactive alkyl carboxylic acid derivatives containing the 1,2,4-oxadiazole motif. 
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An efficient and mild one-pot protocol has been developed for the synthesis of 1,2,4-oxadiazoles 
via the reaction of amidoximes with dicarboxylic acid anhydrides in a NaOH/DMSO medium. 
The method allows the synthesis of diversely substituted carboxylic acids bearing the 1,2,4-
oxadiazole motif, – a popular building block for pharmaceutical research, in moderate to 
excellent yields. The reaction scope includes aromatic and heteroaromatic amidoximes as well 
as five-, six- and seven-membered anhydrides. The advantages of this procedure are proven
gram-scalability and the use of inexpensive starting materials, which from a process chemistry 
point of view are essential for future industrial applications. 

2009 Elsevier Ltd. All rights reserved.
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A condensation of amidoximes with dicarboxylic acid 

anhydrides represents a general route to 1,2,4-oxadiazole-based 
acids.13 Typically this reaction is carried out in “two-step, one-
pot” fashion via O-acylamidoxime intermediate generation and 
subsequent thermal cyclodehydration to the corresponding 1,2,4-
oxadiazole. Unfortunately, the cyclodehydration process requires 
high temperatures (~100-140 °C), which often results in poor 
product yields and the formation of undesired by-products.13,14 
For this reason, a number of reagents have been developed for 
the room-temperature synthesis of 1,2,4-oxadiazoles: TBAF 
(Gangloff in 2001),15a TBAH (Otaka in 2014),15b and 
MOH/DMSO (our group, in 2016).15c These systems provided 
good yields of the desired heterocycles at ambient temperature 
with short reaction times. Nevertheless, examples of the room-
temperature synthesis of 1,2,4-oxadiazoles with the carboxyl 
functionality have not been described at the present time. 
Additionally, only O-acylamidoximes can be utilized as starting 
materials for this approach. Thereby an extra stage for their 
isolation and purification is necessary, which significantly 
increases the work-up complexity of the procedure and reduces 
the final yield of the 1,2,4-oxadiazoles. Thus, a mild and efficient 
protocol for the synthesis of 1,2,4-oxadiazoles containing a 
carboxyl functionality from readily available starting materials 
such as amidoximes and dicarboxylic acid anhydrides is highly 
desirable. 

 
Scheme 1. Direct reaction of amidoximes and dicarboxylic acid 
anhydrides. 

Previously, we proposed a one-pot route to 1,2,4-oxadiazoles 
based on the reaction between amidoximes and esters in a 
NaOH/DMSO medium at ambient-temperature.16 This 
achievement encouraged us to continue our research, and herein 
we report a mild and gram-scalable procedure for the preparation 
of 1,2,4-oxadiazoles from amidoximes and dicarboxylic acid 
anhydrides. 

 

Results and Discussion 

In the literature, only one unsuccessful example of the base-
catalyzed (TBAF in MeCN), room-temperature cyclodehydration 
of O-acylamidoximes containing a carboxylic functionality has 
been described.17 Initially, we investigated conversion of O-
acylamidoxime 3a, which was previously synthesized from 
benzamidoxime 1a and succinic anhydride 2a,18 into 1,2,4-
oxadiazole 4a in the MOH/DMSO medium at ambient 
temperature (Table 1). Alkali metal hydroxides in different 
amounts were screened as the MOH-component, and NaOH (2.0 
equiv.) was found to be the most effective. 

Table 1. Cyclodehydration of O-acylamidoxime 3a.
a 

Ph

N

NH2

O

O

OH

O
N

N

O

Ph

O

OH

3a
4a

1) MOH, DMSO
r.t., 1 h

2) H+, H2O

 
Entry MOH (equiv.) Yield 4a (%) 

1 KOH (1.1) 30 

2 KOH (1.5) 49 

3 KOH (2.0) 76 

4 KOH (2.5) 71 

5 KOH (3.0) 63 

6 NaOH (2.0) 90 

7 LiOH (2.0) 85 

a Reagents and conditions: О-acylamidoxime 3a (2 mmol), DMSO (2 
mL). 

Having developed optimal conditions for the cyclodehydration 
process, we transferred this to the reaction between 
benzamidoxime 1a and succinic anhydride 2a. Initially, two 
sequences of manipulations (A and B) were compared (Scheme 
2). In the case of method A, anhydride 2a was treated with 
amidoxime 1a in DMSO followed by the addition of NaOH (2 
equiv.) after 4 hours. The alternative procedure B consisted of the 
addition of anhydride 2a to a suspension of the amidoxime 1a 
sodium salt, prepared previously by the treatment 1a with NaOH 
(2 equiv.) in DMSO. The best result was obtained when the 
reaction was carried out under the first sequence of manipulations 
(A): 88% versus 68% yield of 4a (Scheme 2). Thus, all further 
experiments were pursued according to method A. 

 
Scheme 2. Reaction pathways for methods A and B. Reagents and conditions: amidoxime 1a (2.5 mmol), succinic anhydride 2a (2.5 mmol), 
NaOH (5 mmol), DMSO (2 mL). 

 

Next, we examined the effect of reaction time for both steps 
(anhydride-amidoxime and cyclodehydration reactions) of this 

one-pot process (Table 2). This showed that 2 h for the O-
acylation step and 1 h for the cyclodehydration step were the 
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most suitable reaction times. Further increases in the reaction 
time had no significant effect on the yield of 1,2,4-oxadiazole 4a. 

Table 2. Cyclodehydration of O-acylamidoxime 3aa. 

 
Entry Reaction time (h) Yield 4a (%) 

Step 1 Step 2 

1 1 1 61 

2 2 1 88 

3 3 1 88 

5 2 0.5 76 

6 2 2 88 

a Reagents and conditions: amidoxime 1a (2.5 mmol), succinic anhydride 

2a (2.5 mmol), NaOH (5 mmol), DMSO (2 mL). 

The reaction scope and limitations were then examined using 
different amidoximes as well as several anhydrides. Firstly, 
aliphatic, aromatic (containing both electron donating and 
withdrawing substituents), and heteroaromatic amidoximes 1b-k 
were reacted with succinic anhydride 2a (Table 3, entries 1-10), 
only indole-derivative 1f provided at unfavourable result (Table 
3, entry 5). In the case of other amidoximes, 1,2,4-oxadiazole-5-
ylpropanoic acids were obtained in good yields. All substituents, 
including primary sulfonamide (1h) and protected amino groups 
(1i and 1j), were tolerated under these conditions. Moreover, 
NaOH/DMSO was demonstrated as a convenient medium for the 
synthesis of 1,2,4-oxadiazoles with an unprotected amino 
functional group 4k (Table 3, entry 11). In comparison, the 
synthesis of compound 4k in 1,4-dioxane at reflux for 6 h gave 
the target acid 4k in only 11% yield after purification by column 
chromatography (Table 3, entry 11). 

Furthermore, the reactivity of cyclic anhydrides 2b-k was 
explored (Table 3, entries 12-21). Most of the studied anhydrides 
reacted with the amidoximes in moderate to excellent yields (> 
50%). However, 1,8-naphthalic anhydride 2i demonstrated poor 
reactivity, and the corresponding 1,2,4-oxadiazole derivative 4s 
was only obtained in 43% yield (Table 3, entry 19).  

Satisfactory selectivity was observed for homophthalic 
anhydride 2k (Table 3, entry 21), which can react via  the two 

non-equivalent acyl carbons, leading to two different 1,2,4-
oxadiazoles. Although both compounds were formed, isomer 4u 
was the major product (1H NMR analysis). This was isolated by 
recrystallization from toluene in 62% yield, and its structure 
determined by single-crystal X-ray analysis (Fig. 2). 

The reaction of anhydrides 2e-k with amidoximes 1 followed 
by 1,2,4-oxadiazole ring formation was hitherto unreported, and 
1,2,4-oxadiazoles 4o-q, 4s, and 4u were not previously 
synthesized via the anhydride route.19 Moreover, compound 4t 
represents the novel backbone of carboxylic acids containing a 
1,2,4-oxadiazole core.20 

 

Figure 2. Single-crystal X-ray structure of acid 4u (CCDC 
1557057). 

Finally, we decided to check the scalability of our method. To 
this end, two selected 1,2,4-oxadiazoles 4a and 4r were 
synthesized according to the general procedure on a 60 mmol 
scale (Scheme 3). Both heterocycles were obtained in good 
isolated yields (83% and 80%, respectively) and sufficient purity. 
Another advantage of our approach in industrial applications is 
the utilisation of a low-toxicity solvent (DMSO).21 

 
Scheme 3. Gram-scale synthesis of 4a and 4r. 
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Table 3. Investigation of the reaction scopea. 

 
Entry Amidoxime 1 Anhydride 2 1,2,4-oxadiazole 4 Yield (%) 

1 1b 

 

2a 

 

4b 

 

81 

2 1c 

 

2a -//- 4c 

 

71 

3 1d 

 

2a -//- 4d 

 

94 

4 1e 

 

2a -//- 4e 

 

89 

5 1f 

 

2a -//-  - 0 

6 1g 

 

2a -//- 4f 

 

70 

7 1h 

 

2a -//- 4g 

 

61 

8 1i 

 

2a -//- 4h 

 

80 

9 1j 

 

2a -//- 4i 

 

74 

10 1k 

 

2a -//- 4j 

 

87 

11 1l 

 

2a -//- 4k 

 

77, (11b) 

12 1a 

 

2b 

 

4l 

 

78 

13 1a 

 

2c 

 

4m 

 

86 

14 1a 

 

2d 

 

4n 

 

81 
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Entry Amidoxime 1 Anhydride 2 1,2,4-oxadiazole 4 Yield (%) 

15 1a 

 

2e 

 

4o 

 

95 

16 1a 

 

2f 

 

4p 

 

52 

17 1m 

 

2g 

 

4q 

 

78 

18 1a 

 

2h 

 

4r 

 

91 

19 1n 

 

2i 

 

4s 

 

43 

20 1o 

 

2j 

 

4t 

 

85 

21 1n 

 

2k 

 

4u 

 

62 

a Reagents and conditions: amidoxime 1 (2.5 mmol), anhydride 2 (2.5 mmol), NaOH (5.0 mmol), DMSO (2-3 mL). 

b Reaction was carried out in 1,4-dioxane at 100 °C for 6 h. 

 

Conclusion 

In conclusion, an effective, convenient and scalable one-pot 
protocol for the synthesis of 1,2,4-oxadizoles bearing carboxyl 
group from dicarboxylic acid anhydrides and amidoximes has 
been developed. The present method could be applied to various 
five-, six-, and seven-membered anhydrides, as well as aliphatic, 
aromatic and heteroaromatic amidoximes. We hope that the 
simple work-up procedure, mild condition (particularly, the 
ambient temperature), inexpensive and readily available starting 
materials, and a low-toxicity solvent, will make this method a 
useful tool in medicinal and process chemistry. 
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Room-temperature synthesis of pharmaceutically important carboxylic acids 

bearing the 1,2,4-oxadiazole moiety 

 

• An efficient protocol for the 1,2,4-oxadiazoles preparation were developed. 

• Amidoximes and dicarboxylic acid anhydrides were used as starting materials. 

• The reaction carries out at room temperature due to the strong base effect. 

• The method can be scaled. 




