Organic & Biomolecular Chemistry

COMMUNICATION

RSCPublishing

View Article Online View Journal

Received 3rd May 2013, Accepted 28th May 2013

DOI: 10.1039/c3ob40932e

Cite this: DOI: 10.1039/c3ob40932e

www.rsc.org/obc

Development of ratiometric near-infrared fluorescent probes using analyte-specific cleavage of carbamate†

Dongjian Zhu,^{a,b} Guoping Li,^{a,b} Lin Xue^{*a} and Hua Jiang^{*a}

We report a facile method to design NIR ratiometric fluorescent probes in terms of analyte-induced carbamate cleavage. Two examples, CyNB and CyNN₃, exhibit a significant analyte-triggered response with ratiometric fluorescence change in the NIR range and dual-emission ratiometry in living cells.

Fluorescence imaging is a very powerful method for monitoring biomolecules in living systems because of its high sensitivity and selectivity, facility and fast response.¹ Recently, utilizing ratiometric fluorescent probes to analyze biological species has been drawing intensive attention. This type of probe, importing a built-in correction via the ratio of the emission intensity at two different wavelengths, can provide quantitative information on analytes.² Hence, a number of ratiometric fluorescence probes have been developed based on small molecules, biological molecules, conjugated polyelectrolytes or nanoparticles, etc.³ However, most of them have absorption and emission in the ultraviolet or visible range, and are not adaptable to in vivo imaging and quantification. Near-infrared (NIR) dyes provide a feasible opportunity for in vivo imaging due to many distinct advantages, including deeper tissue penetration, minimum photodamage to biological samples, and minimum interference from background autofluorescence in the living systems.⁴ Therefore, development of ratiometric fluorescent probes based on NIR dyes will contribute useful molecular tools for quantitative measurements in vivo.

Among NIR dyes, amine-substituted tricarbocyanine has been proved to be an excellent candidate for designing NIR probes through modifying the amino group with well-defined receptors.⁵ The photophysical properties of this type of cyanine highly depend on the electron density of the *meso*-

^bUniversity of Chinese Academy of Sciences, Beijing, P.R. China

nitrogen atom due to the internal charge transfer (ICT). When such an ICT process was affected by a certain sensing event, sharp changes in absorption/fluorescence spectra were observed.⁶ With these facts in mind, we envision that modifying the amine substituent of tricarbocyanine with an electronwithdrawing carbamate group would efficiently lower the electron density of the amine and could, in principle, give out an obvious bathochromic shift of fluorescence emission compared to that of normal amine-substituted tricarbocyanines. The concept will provide a rationale for molecular design of a generic model to construct NIR ratiometric probes by taking advantage of a chemospecific cleavage of the caged carbamate. Therefore, in this paper, we report the synthesis and photophysical properties of several carbamate-substituted tricarbocyanines and further evaluation of the performances of two NIR ratiometric probes utilizing this generic model (Scheme 1).

We initially synthesized benzylamine-substituted tricarbocyanine (CyN) and modified the *meso*-nitrogen atom with a carboxybenzyl group (CyNC) (Scheme 1). The photophysical properties of both CyN and CyNC are shown in Fig. 1 and

Scheme 1 Design strategy for NIR ratiometric fluorescent probes.

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China. E-mail: hjiang@iccas.ac.cn, zinclin@iccas.ac.cn; Tel: (+86) 10-82612075

 $[\]dagger$ Electronic supplementary information (ESI) available: Synthetic procedures and characterization of compounds CyCl, CyN, CyNC, CyNB and CyNN₃, and additional spectroscopic data. See DOI: 10.1039/c3ob40932e

Fig. 1 (a) Absorption and (b) emission spectra of 1 μ M CyN (black line) and 1 μ M CyNC (red line) in a mixture of H₂O–DMSO (9:1, v/v, 10 mM HEPES, 100 mM NaCl, pH = 7.4) $\lambda_{ex} = 671$ nm.

Table 1	Photophysical	data of	CyN	and	CyNC ^a
					.,

Dye	$\lambda_{\rm abs}/{\rm nm}$	$\varepsilon_{\rm max}{}^{b}$ /×10 ⁵ M ⁻¹ cm ⁻¹	$\lambda_{\rm em}/{\rm nm}$	Φ^c
CyN	645	0.42	747	0.062
CyNC	785	1.71	808	0.044

^{*a*} 10 mM HEPES, 100 mM NaCl, 10% (v/v) DMSO, pH = 7.4. ^{*b*} Molar extinction coefficients are in the maximum of the highest peak. ^{*c*} Cardiogreen was used as the standard for quantum yield measurements ($\Phi = 0.13$ in DMSO).⁷

Table 1. We found that benzylamine-substituted tricarbocyanine, CyN, exhibits a major absorption maximum at 645 nm and a characteristic NIR fluorescence emission maximum at 747 nm ($\Phi = 0.062$) very similar to other amine-substituted tricarbocyanine analogues.⁵ As expected, the electron-withdrawing carboxybenzyl group in CyNC induces remarkable bathochromic shifts in both absorption of 140 nm and emission of 61 nm, which is consistent with the ICT process involved in the *meso*-nitrogen atom of CyNC. Hence, these features afford an excellent opportunity to design a generic model or scaffold for single-excitation, dual-emission NIR ratiometric probes through specific chemoselective triggers.

To confirm the feasibility of our concept, we subsequently tried to introduce diverse caging groups into the cleavable carbamate group. It is well known that H₂O₂ and H₂S are small-molecule signal transducers and play vital roles in physiological and pathological processes in living organisms.⁸ Developments of fluorescent probes for in vivo detection and visualization of H₂O₂/H₂S are still challenging research topics of chemistry and biochemistry. Recent disclosures show that reaction-based approaches are very efficient for designing H₂O₂/H₂S probes by taking advantage of caging groups, such as boronic acid/ester or azide, which can be specifically reacted with H₂O₂ or H₂S.^{9,10} On the other hand, on the basis of the fact that the *p*-hydroxybenzyl or aminobenzyl moiety is able to self-immolate through an intramolecular 1,6-elimination,¹¹ we reason that importing an analyte-responsive group to the carbamate of CyNC could make the caged CyNC responsive to a particular molecule while not affecting the photophysical properties of the fluorophore. If the cleavage process was triggered by a specific analyte so as to release the NIR dye of CyN, remarkable ratiometric fluorescence signals would be obtained (Scheme 1 and Table 1). Herein, we demonstrate the

Fig. 2 (a) Fluorescence response of 2 μ M CyNB to 300 μ M H₂O₂. Spectra were acquired every 5 min after H₂O₂ was added. (b) Fluorescence responses of 2 μ M CyNB to various ROS and RNS (300 μ M). Bars represent emission intensity ratios $F_{747 \text{ nm}}/F_{808 \text{ nm}}$ at 0, 15, 30, 45, 60, 90, and 120 min after addition of each ROS or RNS. Data were acquired in a mixture of H₂O–DMSO (9 : 1, v/v, 10 mM HEPES, 100 mM NaCl, pH = 7.4), $\lambda_{ex} = 676 \text{ nm}.$

evaluation of our design concept through two analyte-responsive NIR ratiometric probes CyNB and CyNN₃.

The probes can be easily obtained through the reaction between CyN and the corresponding carbonochloridate (see the ESI[†]). As shown in Fig. 2, we assessed the photophysical properties of CyNB in a mixture of H₂O-DMSO (9:1, v/v, 10 mM HEPES, 100 mM NaCl, pH = 7.4). CyNB exhibits a maximal absorbance at 785 nm ($\varepsilon = 1.49 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$) and a characteristic emission maximum at 808 nm (Φ = 0.036), which are almost the same as those of CyNC. Treatment of CyNB with H_2O_2 in a time period of 2 h resulted in remarkable blue shifts of 140 nm in absorption and 61 nm in fluorescence spectra (Fig. 2a and Fig. S1a⁺). These spectral changes clearly demonstrate that the self-immolative process was triggered by H₂O₂ and subsequently liberated the NIR dye, CyN with a characteristic of much shorter wavelengths in both absorption and emission spectra (Table 1). The ratio of emission intensities $(F_{747 \text{ nm}}/F_{808 \text{ nm}})$ varied from 0.15 to 3.4 in the reaction with H₂O₂, indicating that CyNB is an excellent NIR dual-emission ratiometric fluorescent probe for H_2O_2 (*R*/*R*₀ up to 22). Kinetic measurement of CyNB (1 μ M) with H₂O₂ (1 mM) under the pseudo-first-order conditions gave an observed rate constant of $k_{obs} = 1.26 \times 10^{-3} \text{ s}^{-1}$ (Fig. S3a[†]). At low concentration of H₂O₂ (30 µM), CyNB also exhibited distinct fluorescence ratiometric response, but with a slower reaction rate (Fig. S4⁺). Further, the selectivity of CyNB for H₂O₂ was also examined in the presence of other biologically relevant reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as ONOO⁻ (peroxynitrite), OCl⁻, TBHP (tert-butylhydroperoxide), [•]OH, [•]O^tBu, ¹O₂, O₂⁻, NO, NO₂⁻ and NO₃⁻ under the identical conditions. Due to the high H2O2-specificity of boronate groups, the ratiometric emission response of CyNB to H₂O₂ is highly selective. However, other ROS/RNS exerted no obvious fluorescence ratio response (Fig. 2b). These results suggest that the sensing scaffold of CyN/CyNB is practicable for NIR ratiometric H₂O₂-selective probes in aqueous media.

We further test the feasibility of our concept using another NIR probe, CyNN₃, containing an azide group which is highly specific to H_2S .¹⁰ The spectroscopic properties of CyNN₃ were measured in a mixture of H_2O -CH₃CN (8:2, v/v, 40 mM

Fig. 3 (a) Fluorescence response of 2 μ M CyNN₃ to 4 mM H₂S. Spectra were acquired every 5 min after H₂S was added. (b) Fluorescence responses of 2 μ M CyNN₃ to various relevant species for 1 h. Data shown: H₂S, Cl⁻, Br⁻, I⁻, AcO⁻, N₃⁻, SCN⁻, HCO₃⁻, HPO₄²⁻, H₂O₂, TBHP, O₂⁻, NO, NO₂⁻, NO₃⁻, HSO₃⁻, SO₃²⁻, S₂O₄²⁻, S₂O₅²⁻, Cys, GSH, and Hcy at 4 mM. Data were acquired in a mixture of H₂O–CH₃CN (8 : 2, v/v, 40 mM HEPES, pH = 7.4), $\lambda_{ex} = 698$ nm.

HEPES, pH = 7.4). Again, we found the tuning of the caging site in CyNN₃ did not apparently affect the photophysical properties of the fluorophore of CyNC. CyNN₃ shows a maximal emission at 810 nm (ϕ = 0.033) in the absence of H₂S upon excitation at 698 nm. By treating with 4 mM H₂S (Na₂S was used as a hydrogen sulfide source in all experiments),^{10b} the fluorescence spectrum shows a gradual decrease at 810 nm with a concomitant increase at 744 nm (Fig. 3a). These spectroscopic changes are similar to those of CyNB. The ratio of emission intensities $(F_{744 \text{ nm}}/F_{810 \text{ nm}})$ varied from 0.16 to 2.9 in response to H₂S during 1 h, and ca. 18-fold emission ratio change was thereby obtained, indicating that a self-immolative process can also be triggered by H₂S. Under the pseudo-firstorder conditions (2 µM CyNN₃, 4 mM H₂S), the observed rate constant was measured to be 9.91×10^{-4} s⁻¹ (Fig. S3b⁺). When CyNN₃ was treated with a low concentration of H₂S (0.4 mM), a distinct fluorescence ratiometric response but with a slower reaction rate was observed (Fig. S5⁺). The fluorescence responses of CyNN₃ to other biological species were also investigated in parallel under the identical conditions. As shown in Fig. 3b, the ratiometric emission response of CyNN₃ is highly selective for H₂S over other anions, ROS, RNS, reactive sulfide species (RSS), and, in particular, different thiols. The results indicate that CyNN3 is a good candidate to selectively detect H₂S in aqueous solution.

Moreover, in order to verify the practicability of our tricarbocyanine scaffold for intracellular imaging, we also measured the fluorescence spectra of CyNB, CyNN₃, and CyN at different pH values. Emission intensities and ratio calibrations remain almost constant in the range of pH 6–8 (Fig. S6†). This evidence indicates that both CyNB and CyNN₃ are pHindependent in the physiological pH range and are suitable for ratiometric detection of H_2O_2 and H_2S in living cells, respectively.

We next applied CyNB and CyNN₃ to confocal fluorescence ratiometric imaging of H_2O_2 and H_2S in living cells, respectively. The fibroblast NIH 3T3 cells were incubated with 5 μ M CyNB in serum-free DMEM (0.5%, v/v, DMSO) for 30 min at 37 °C, and then washed with PBS three times before imaging. Upon excitation at 635 nm, both emission channels of 700–770 nm and 780–800 nm displayed evident fluorescence

Fig. 4 Fluorescent imaging of H_2O_2 in CyNB-labeled NIH 3T3 cells. (a) Bright-field image; (b) cells were stained with 5 μ M CyNB at 37 °C for 30 min; (c) CyNB-labeled cells were treated with 100 μ M H_2O_2 for 30 min at 25 °C. λ_{ex} = 635 nm, scale bar: 20 μ m, ratio bar: 0–4.

signals (Fig. S7[†]). Accordingly, the pseudocolor ratio image (Em_{700-770} nm/Em_{780-800} nm) gave an average value of 0.87 \pm 0.12 (Fig. 4b) by using the FV10-ASW software (Olympus, Ver. 2.1c). When the cells were treated with 100 μ M H₂O₂ at 25 °C for 30 min, significant enhancements in the ratio were obtained with an average value of 1.63 ± 0.13 (Fig. 4c). These are consistent with the observations in aqueous buffer, indicating that CyNB can visualize H₂O₂ in living cells by dual-emission ratiometry under biological conditions. We then tested the ability of CyNN₃ to detect intracellular H₂S in living cells (Fig. 5 and Fig. $S8^{\dagger}$). Similarly, CyNN₃ is also cell-permeable and can stain the NIH 3T3 cells in the same optical windows. The ratio imaging (Em_{700-770 nm}/Em_{780-800 nm}) gave an average value of 1.20 ± 0.14 (Fig. 5a). Treatment of CyNN₃-loaded cells with 1 mM H₂S for 30 min at 37 °C led to a sharp increase in the ratio to 2.05 ± 0.28 (Fig. 5b). Moreover, in the presence of ZnCl₂ (an efficient eliminator of H₂S),^{10b,g} addition of H₂S did not obviously induce the increase of the fluorescence ratio $(1.16 \pm 0.13, \text{ Fig. 5c})$. The data establish that CyNN₃ is capable of imaging intracellular H₂S in living cells.

In summary, we have developed a new tricarbocyaninebased scaffold for constructing NIR ratiometric fluorescent probes by specific analyte-induced cleavage of carbamate. Accordingly, we prepared two NIR ratiometric probes: CyNB for H_2O_2 and CyNN₃ for H_2S . By highlighting the significant ratiometric fluorescence signal output in aqueous solution and dual-emission ratiometry in living cells of both probes, we expect that this design concept can contribute an effective method for development of NIR probes through a simple modulation of the caging site on the carbamate moiety.

Fig. 5 Fluorescent imaging of H₂S in CyNN₃-labeled NIH 3T3 cells. (a) Cells were stained with 5 μ M CyNN₃ at 37 °C for 30 min and further incubated in serum-free DMEM for 30 min; (b) CyNN₃-labeled cells were treated with 1 mM H₂S for 30 min at 37 °C; (c) cells were pretreated with 2 mM ZnCl₂ for 30 min, then incubated with 5 μ M CyNN₃ for 30 min, and further treated with 1 mM H₂S for 30 min at 37 °C. $\lambda_{ex} = 635$ nm, scale bar: 20 μ m, ratio bar: 0–5.

Organic & Biomolecular Chemistry

We thank the National Natural Science Foundation of China (21102148, 21125205), National Basic Research Program of China (2009CB930802, 2011CB935800), and the State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology for financial support.

Notes and references

- (a) J. Zhang, R. E. Campbell, A. Y. Ting and R. Y. Tsien, *Nat. Rev. Mol. Cell Biol.*, 2002, 3, 906; (b) T. Terai and T. Nagano, *Curr. Opin. Chem. Biol.*, 2008, 12, 515; (c) J. Chan, S. C. Dodani and C. J. Chang, *Nat. Chem.*, 2012, 4, 973.
- 2 (a) G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem., 1985, 260, 3440; (b) K. W. Dunn, S. Mayor, J. N. Myers and F. R. Maxfield, FASEB J., 1994, 8, 573; (c) L. Yuan, W. Lin, K. Zheng and S. Zhu, Acc. Chem. Res., 2013, DOI: 10.1021/ar300273v.
- 3 (a) T. Doussineau, A. Schulz, A. Lapresta-Fernandez and A. Moro, *Chem.-Eur. J.*, 2010, 16, 10290; (b) J. L. Vinkenborga, M. S. Koaya and M. Merkx, *Curr. Opin. Chem. Biol.*, 2010, 14, 231; (c) X. Qian, Y. Xiao, Y. Xu, X. Guo, J. Qian and W. Zhu, *Chem. Commun.*, 2010, 46, 6418; (d) J. Liang, K. Lia and B. Liu, *Chem. Sci.*, 2013, 4, 1377; (e) Z. Liu, W. He and Z. Guo, *Chem. Soc. Rev.*, 2013, 42, 1568.
- 4 (a) R. Weissleder, Nat. Biotechnol., 2001, 19, 316;
 (b) V. Ntziachristos, C. Bremer and R. Weissleder, Eur. J. Radiol., 2003, 13, 195; (c) E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata and T. Nagano, J. Am. Chem. Soc., 2005, 127, 3684;
 (d) H. Kobayashi, M. R. Longmire, M. Ogawa and P. L. Choyke, Chem. Soc. Rev., 2011, 40, 4626; (e) L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev., 2013, 42, 622.
- 5 (a) A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra and G. B. Behera, *Chem. Rev.*, 2000, 100, 1973; (b) M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang and D. Zhu, *Org. Lett.*, 2008, 10, 1481; (c) B. Tang, F. Yu, P. Li, L. Tong, X. Duan, T. Xie and X. Wang, *J. Am. Chem. Soc.*, 2009, 131, 3016; (d) X. Cao, W. Lin and L. He, *Org. Lett.*, 2011, 13, 4716.
- 6 (a) K. Kiyose, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2006, 128, 6548; (b) K. Kiyose, S. Aizawa, E. Sasaki, H. Kojima, K. Hanaoka, T. Terai, Y. Urano and

T. Nagano, *Chem.-Eur. J.*, 2009, **15**, 9191; (c) Z. Guo, W. Zhu,
M. Zhu, X. Wu and H. Tian, *Chem.-Eur. J.*, 2010, **16**, 14424;
(d) T. Myochin, K. Kiyose, K. Hanaoka, H. Kojima, T. Terai and T. Nagano, *J. Am. Chem. Soc.*, 2011, **133**, 3401;
(e) H. Zheng, X.-J. Zhang, X. Cai, Q.-N. Bian, M. Yan,
G.-H. Wu, X.-W. Lai and Y.-B. Jiang, *Org. Lett.*, 2012, **14**, 1986.

- 7 K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance and W. Semmler, *Photochem. Photobiol.*, 2000, 72, 392.
- 8 (a) T. Finkel, Curr. Opin. Cell Biol., 2003, 15, 247;
 (b) R. S. Balaban, S. Nemoto and T. Finkel, Cell, 2005, 120, 483;
 (c) J. R. Stone and S. Yang, Antioxid. Redox Signal, 2006, 8, 243;
 (d) E. W. Miller and C. J. Chang, Curr. Opin. Chem. Biol., 2007, 11, 620.
- 9 (a) L. C. Lo and C. Y. Chu, Chem. Commun., 2003, 2728;
 (b) M. C. Y. Chang, A. Pralle, E. Y. Isacoff and C. J. Chang, J. Am. Chem. Soc., 2004, 126, 15392; (c) E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff and C. J. Chang, J. Am. Chem. Soc., 2005, 127, 16652; (d) A. E. Albers, V. S. Okreglak and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 9640;
 (e) B. C. Dickinson, C. Huynh and C. J. Chang, J. Am. Chem. Soc., 2010, 132, 5906; (f) X. Chen, X. Tian, I. Shin and J. Yoon, Chem. Soc. Rev., 2011, 40, 4783; (g) L. Yuan, W. Lin, S. Zhao, W. Gao, B. Chen, L. He and S. Zhu, J. Am. Chem. Soc., 2012, 134, 13510; (h) G. Li, D. Zhu, Q. Liu, L. Xue and H. Jiang, Org. Lett., 2013, 15, 924.
- 10 (a) A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 10078; (b) H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer and B. Wang, Angew. Chem., Int. Ed., 2011, 50, 9672; (c) L. A. Montoya and M. D. Pluth, Chem. Commun., 2012, 48, 4767; (d) F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, Chem. Commun., 2012, 48, 2852; (e) Z. Wu, Z. Li, L. Yang, J. Han and S. Han, Chem. Commun., 2012, 48, 10120; (f) C. Yu, X. Li, F. Zeng, F. Zheng and S. Wu, Chem. Commun., 2013, 49, 403; (g) Q. Wan, Y. Song, Z. Li, X. Gao and H. Ma, Chem. Commun., 2013, 49, 502; (h) W. Sun, J. Fan, C. Hu, J. Cao, H. Zhang, X. Xiong, J. Wang, S. Cui, S. Sun and X. Peng, Chem. Commun., 2013, 49, 3890.
- 11 (a) P. L. Carl, P. K. Chakravarty and J. A. Katzenellenbogen, J. Med. Chem., 1981, 24, 479; (b) R. J. Griffin, E. Ever, R. Davison, A. E. Gibson, D. Layton and W. J. Irwin, J. Chem. Soc., Perkin Trans. 1, 1996, 1205; (c) C.-S. Tsai, Y.-K. Li and L.-C. Lo, Org. Lett., 2002, 4, 3607.