

Syntheses, structures and catalytic activities of lowcoordinated rare-earth metal complexes containing 2,2'pyridylpyrrolides

Jun Du¹ | Shuangliu Zhou¹ | Xiuli Zhang¹ | Lijun Zhang¹ | Peng Cui¹ | Zeming Huang¹ | Yun Wei¹ | Xiancui Zhu¹ | Shaowu Wang^{1,2}

¹Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China

²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China

Correspondence

Shuangliu Zhou, Peng Cui, and Shaowu Wang, Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China. Email: slzhou@ahnu.edu.cn; pcui@ahnu. edu.cn; swwang@ahnu.edu.cn

Funding information

Anhui Normal University; National Natural Science Foundation of China, Grant/ Award Number: 21672009, 21602004, 21702004 and 21861162009

Reactions of the ligand precursors 2-(2'-pyridyl)-3,5-Me₂-pyrrole (\mathbf{L}^{1} H) and 2-(2-pyridyl)-3,4,5-Me₃-pyrrole (\mathbf{L}^{2} H) with [(Me₃Si)₂N]₃RE(μ -Cl)Li(THF)₃ in toluene afforded a series of low-coordinated rare-earth metal bis-amido complexes \mathbf{L}^{1} RE[N(SiMe₃)₂]₂ [RE = Y (**1a**), Dy (**1b**), Er (**1c**), Yb (**1d**)] and \mathbf{L}^{2} RE[N(SiMe₃)₂]₂ [RE = Y (**2a**), Dy (**2b**), Er (**2c**), Yb (**2d**)]. With the ionic radius of rare-earth metal increasing, the reaction of \mathbf{L}^{1} H and [(Me₃Si)₂N]₃RE(μ -Cl)Li(THF)₃ gave dinuclear complexes (\mathbf{L}^{1})₂RE(μ -Cl)(μ - η^{5} :- $\eta^{1}:\eta^{1}$ - \mathbf{L}^{1})RE(\mathbf{L}^{1})[N(SiMe₃)₂]₂ [RE = Sm (**1e**), Pr (**1f**)]; however, the reaction of \mathbf{L}^{2} H and [(Me₃Si)₂N]₃Sm(μ -Cl)Li(THF)₃ afforded (\mathbf{L}^{2})₂Sm[N(SiMe₃)₂]₂ (**2e**). Results indicated that the ionic radius of rare-earth metal and subtle change in the ligands have substantial effects on the structure and bonding mode of complexes. The complexes showed a high catalytic activity for the ringopening reaction of cyclohexene oxide with amines to afford various β -aminoalcohols under mild solvent-free conditions.

KEYWORDS

2,2'-pyridylpyrrolide, catalysis, rare-earth metal complex, X-ray analysis

1 | INTRODUCTION

Pyrrole and its derivatives have been widely used in rareearth organometallic chemistry, exhibiting increased reactivity toward electrophiles owing to their π -electron excessive properties.^[1] However, pyridine is π -electron deficient but exhibits Lewis basicity because of its available lone-pair electrons. Owing to the complementary properties of pyridine and pyrrole, pyridylpyrrolide ligands can potentially generate push/pull interaction between the pyridyl and pyrrolide halves to exhibit the intramolecular excited-state proton transfer.^[2] In particular, there has been significant interest in the metalbinding properties of 2-(2'-pyridyl)pyrroles in a 1,4relationship,^[3] which is similar to the α -diimine ligands, such as 2,2'-bipyridine. Additionally, 2-(2'-pyridyl)pyrroles can coordinate to metal, forming a five-membered chelate metallacycle, which is typical for many stable photoactive molecular materials.^[4] Although various 2,2'-pyridylpyrrolide metal complexes for late transition metals have been reported to exhibit rich redox chemistry^[5] and photoluminescent properties,^[6] only a few reports are available for early transition metals.^[7] It has been reported that the titanium complex bearing 2,2'-pyridylpyrrolyl ligand could highly catalyze the multicomponent coupling of alkynes, isonitriles and monosubstituted hydrazines to generate substituted pyrazoles.^[7a] Recently, the group 4 metal complexes bearing 2,2'-pyridylpyrrolyl ligands were reported to exhibit photoluminescence in solution and facilitate photoredox processes as a photosensitizer.^[7b-d] However, the rareearth metal complexes containing 2,2'-pyridylpyrrolyl ligands remain unexplored. We herein report the syntheses and structural characterizations of a series of 2,2'-pyridylpyrrolyl ligand-supported rare-earth metal complexes. The resulting *bis*-amido complexes featured relatively low coordination number and the catalytic activities of all of the obtained complexes toward the ring-opening reaction of cyclohexene oxide with various amines were studied

2 | RESULTS AND DISCUSSION

2.1 | Syntheses and characterization of rare-earth metal complexes containing 2,2'-pyridylpyrrolyl ligands

The reaction of 2-(2'-pyridyl)-3,5-Me₂-pyrrole (\mathbf{L}^{1} H) and 2-(2'-pyridyl)-3,4,5-Me₃-pyrrole (\mathbf{L}^{2} H) with 1 equiv. of [(Me₃Si)₂N]₃RE(μ -Cl)Li(THF)₃ in toluene afforded a series of low-coordinated rare-earth metal *bis*-amido complexes \mathbf{L}^{1} RE[N(SiMe₃)₂]₂ [RE = Y (**1a**), Dy (**1b**), Er (**1c**), Yb (**1d**)] and \mathbf{L}^{2} RE[N(SiMe₃)₂]₂ [RE = Y (**2a**), Dy (**2b**), Er (**2c**), Yb (**2d**)], respectively (Scheme 1). When the light

rare-earth metals Sm and Pr were employed, the reaction of $[(Me_3Si)_2N]_3RE(\mu-Cl)Li(THF)_3$ with 2 equiv. of L^1H afforded dinuclear complexes $(L^1)_2 RE(\mu-Cl)(\mu-\eta^5:\eta^1:\eta^1-\eta^5:\eta^2)$ \mathbf{L}^{1})RE(\mathbf{L}^{1})[N(SiMe₃)₂]₂ [RE = Sm (1e), Pr (1f)]; however, the reaction of $[(Me_3Si)_2N]_3Sm(\mu-Cl)Li(THF)_3$ with 2 equiv. of L^2H gave the mononuclear amido complex $(L^2)_2 Sm[N(SiMe_3)_2]$ (2e) (Scheme 1). These results suggest that the structures and bonding modes of the complexes are largely affected by the ionic radius of rare-earth metal; however, a slight variation of the ligand by addition of a methyl group on the 4-position of the pyrrole backbone also subtly affects the resulting complexes, as in the case of 1e and 2e. These complexes are extremely sensitive to air and moisture, and they are soluble in THF, toluene and *n*-hexane. All of the complexes were fully characterized by NMR spectroscopic methods (for 1a and 2a), elemental analyses and X-ray crystallographic analyses.

X-ray diffraction analyses revealed that complexes **1a–1d** were isostructural tetra-coordinated rare-earth metal *bis*-amido complexes adopting distorted tetrahedral geometries, and a representative structure diagram of complex **1c** is shown in Figure 1. Compounds **1e** and **1f** were dinuclear complexes with two metal centers bridged by one μ -Cl ligand and one pyrrolide moiety in a μ - η^5 : η^1 :- η^1 mode, and only one amido group coordinated to the metal center with the μ - η^5 bridged pyrrolide. The representative structure diagram of complex **1e** is shown in Figure 2. X-ray diffraction analyses revealed that

SCHEME 1 Syntheses of rare-earth metal complexes

FIGURE 2 Representative molecular structure of complex 1e. Hydrogen atoms are omitted for clarity.

complexes 2a-2d were also isostructural with distorted tetrahedral geometries, and a representative structure diagram of complex 2c is shown in Figure 3. The monoamido complex 2e adopted a penta-coordinated squarebased pyramidal configuration, and the structure diagram is shown in Figure 4. The selected bond distances and angles are listed in Tables 1-3.

As shown in Tables 1–3, the average $RE(1)-N_{av}$ bond distances in complexes 1a-1d are comparable with those in complexes 2a-2d, and both series are also consistent with the trend in ionic radius of the corresponding rareearth metals. The RE(1)-N(2) bond lengths in complexes 1a-1d and 2a-2d were slightly longer than those of RE(1)-N(1), N(3) and N(4), as expected, as the donation

FIGURE 3 Representative molecular structure of complex **2c**. Hydrogen atoms are omitted for clarity.

from the neutral pyridine donor is weaker than those from the anionic pyrrolide and amido donors in the molecules. In the π coordinated pyrrolyl ring of **1e**, the

bond distances between samarium ions with the fivemembered pyrrolyl ring range from 2.760(5) to 2.967(5)Å, with the average value of 2.858(5) Å, comparable with

	1a (Y)	1b (Dy)	1c (Er)	1d (Yb)
RE(1)-N(1)	2.282(8)	2.278(6)	2.260(6)	2.233(4)
RE(1)-N(2)	2.422(7)	2.450(6)	2.442(6)	2.398(4)
RE(1)-N(3)	2.200(7)	2.222(9)	2.195(6)	2.165(4)
RE(1)-N(4)	2.204(7)	2.228(10)	2.204(6)	2.176(4)
RE(1)-N _{av}	2.277(8)	2.298(10)	2.275(6)	2.243(4)
N(1)-RE(1)-N(2)	70.4(3)	70.0(3)	70.9(2)	71.67(15)
N(2)-RE(1)-N(3)	93.8(2)	93.6(3)	95.0(2)	93.80(14)
N(3)-RE(1)-N(4)	116.8(2)	117.6(3)	115.9(2)	115.90(14)
N(4)-RE(1)-N(1)	106.4(3)	106.3(3)	106.1(2)	106.00(15)

 TABLE 2
 Selected bond length (Å) and bond angle (deg) of complexes 1e-1f

	1e (Sm)	1f (Pr)
RE(1)-N(1)	2.384(4)	2.412(6)
RE(1)-N(2)	2.532(3)	2.573(8)
RE(1)-N(3)	2.415(3)	2.491(8)
RE(1)-N(4)	2.581(3)	2.641(8)
RE(1)-N(5)	2.487(3)	2.542(8)
RE(1)-N(6)	2.575(3)	2.672(8)
RE(2)-C(23)	2.760(5)	2.784(9)
RE(2)-C(24)	2.822(5)	2.876(9)
RE(2)-C(25)	2.967(5)	2.973(9)
RE(2)-C(26)	2.934(4)	2.878(9)
RE(2)-N(5)	2.806(3)	2.769(7)
RE(2)–Pyr _{av}	2.858(5)	2.874(9)
RE(2)-N(7)	2.376(4)	2.399(8)
RE(2)-N(8)	2.514(4)	2.602(8)
RE(2)-N(9)	2.279(3)	2.310(7)
RE(1)-Cl(1)	2.854(1)	2.913(2)
RE(2)-Cl(1)	2.804(1)	2.850(3)
N(1)-RE(1)-N(2)	67.45(13)	65.2(3)
N(3)-RE(1)-N(4)	67.19(11)	65.3(3)
N(5)-RE(1)-N(6)	64.36(11)	62.6(3)
N(7)-RE(2)-N(8)	66.90(13)	64.2(3)

that of 2.874(3) Å in calix[4]-pyrrolyl complex $(\eta^5:\eta^1:\eta^5:\eta^1:Me_8\text{-calix}[4]\text{-pyrrolyl})\{\text{SmN}(\text{SiMe}_3)_2\}_2,^{[8]}$ but slightly longer than those of 2.810 (3) and 2.796(4) Å in $\{2\text{-}[(2,6\text{-Me}_2C_6H_3)\text{NCH}_2](C_4H_3\text{N})\text{SmN}(\text{SiMe}_3)_2\}_2^{[11]}$ and $\{2\text{-}[(2,4,6\text{-Me}_3C_6H_2)\text{NCH}_2](C_4H_3\text{N})\text{SmN}(\text{SiMe}_3)_2\}_2.^{[9]}$

WILEY Organometallic 5 of 10 Chemistry

TABLE 3 Selected bond length (Å) and bond angle (deg) ofcomplexes 2a-2e

	2a (Y)	2b (Dy)	2c (Er)	2d (Yb)	2e (Sm)
RE(1)-N(1)	2.266(7)	2.299(7)	2.263(10)	2.236(2)	2.390(8)
RE(1)-N(2)	2.440(4)	2.454(7)	2.420(6)	2.396(2)	2.501(8)
RE(1)-N(3)	2.195(6)	2.216(7)	2.196(10)	2.166(2)	2.369(7)
RE(1)-N(4)	2.204(7)	2.224(7)	2.203(9)	2.182(2)	2.481(7)
RE(1)-N(5)					2.255(7)
RE(1)-N _{av}	2.276(7)	2.298(7)	2.271(10)	2.245(2)	2.399(8)
N(1)-RE(1)-N(2)	70.4(2)	70.1(2)	71.3(3)	71.85(8)	66.4(3)
N(2)-RE(1)-N(3)	93.3(2)	93.3(3)	94.3(3)	93.85(8)	89.3(3)
N(3)-RE(1)-N(4)	117.4(3)	117.5(2)	116.1(4)	115.98(8)	67.4(2)
N(1)-RE(1)-N(4)	106.1(3)	99.5(2)	105.6(4)	106.09(8)	
N(4)-RE(1)-N(5)					129.7(2)
N(1)-RE(1)-N(5)					109.4(3)

2.2 | Catalytic activity of rare-earth metal complexes containing 2,2'-pyridylpyrroly ligands.

The ring opening of epoxides with aromatic amines is an important and well-defined route for the synthesis of β -amino alcohols, which are versatile intermediates for the synthesis of natural products and bioactive molecules.^[10] Various catalysts including metal triflates,^[9,11] metal halides,^[12] metal alkoxides,^[13] metal amides^[14] and other catalysts^[15] are employed to achieve the products in high conversion and selectivity. However, these catalytic systems usually require elevated temperature, high pressure, stoichiometric amounts of catalyst and long reaction times. Recently, a green method for the synthesis of β -aminoalcohols was developed using a reusable catalyst or under solvent-free and mild reaction conditions.^[16] Here, the rare-earth metal amido complexes containing 2,2'-pyridylpyrrolyl ligands as catalysts for the ring-opening reaction of cyclohexene oxide with amines were examined. The ring-opening reaction of cyclohexene oxide with aniline was initially investigated as the template reaction in the presence of 1 mol% of complex 1a (entries 1-5, Table 4). Under solvent-free conditions at room temperature, the reaction afforded 2-phenylaminocyclohexanol 4a in a 95% yield (entry 5, Table 4), which was identified as the trans isomer with characteristic ¹H NMR signals appearing at at 3.35 (ddd, J = 10.0, 9.5 and 4.5 Hz, 1H) for the CHOH and δ 3.14 (ddd, J = 11.0, 9.5 and 4.0 Hz, 1H) for the CHNH protons.^[11c,12b] Further examination of the different complexes as catalysts showed that all of the complexes effectively catalyzed the reactions (entries 7-16, Table 4). Under optimized conditions, using 0.5 mol% of complex

TABLE 4 Optimization of the reaction condition^a

		0 + PhNH	2 catalyst	., "ОН	
	2	3a	solvent r.t.	4a	Ph
		Loading			
Entry	Catalyst	(mol%)	Time (h)	Solvent	Yield (%) ^b
1	1a	1	10	Toluene	70
2	1a	1	10	THF	67
3	1a	1	10	Hexane	53
4	1a	1	10	PhCl	65
5	1a	1	10	Free	95
6	—	—	24	Free	Trace
7	1b	1	10	Free	91
8	1c	1	10	Free	90
9	1d	1	10	Free	92
10	1e	1	10	Free	94
11	1f	1	10	Free	93
12	2a	1	10	Free	89
13	2b	1	10	Free	91
14	2c	1	10	Free	87
15	2d	1	10	Free	90
16	2e	1	10	Free	87
17	1a	0.5	10	Free	90
18	1a	0.25	10	Free	78
19	1a	0.5	8	Free	92
20	1a	0.5	6	Free	92
21	1a	0.5	4	Free	91
22	1a	0.5	2	Free	79

^aThe reaction was performed by treating 1 equiv. of amines with 2 equiv. of epoxides under the given conditions.

^bIsolated yield.

1a under solvent-free conditions in 4 h, the reaction of cyclohexene oxide with aniline afforded the corresponding ring-opening product in a 91% yield (Entries 7–16, Table 4).

Complex **1a** was selected as the catalyst for the following experiments to examine the ring-opening reaction of cyclohexene oxide with various amines, and results are presented in Table 5. The results showed that high yields were achieved under mild reaction condition (0.5 mol% cat., solvent-free at r.t.) for a wide range of different amines. It was also found that both the electronic and the steric properties of the substrates affected the reactivity. In the case of *ortho*-substituted anilines, the ringopened products were obtained in slightly lower yield (entries 2, 5 and 10, Table 5). For aryl amines bearing a strong electron-withdrawing substituent such as NO₂ or

	(-) + p1p2NU	0.5 mo% 1a	,.,.OH
	2 R R NH	solvent-free r. t.	NR ¹ R ²
Entry	$\frac{2}{R^{1}R^{2}NH_{2}}$	Product	4 Yield (%) ^b
1	NH ₂	4a	91
2	NH ₂	4b	82
3	NH ₂	4c	91
4	NH ₂	4d	91
5	NH ₂	4e	70
6	NH ₂ OMe	4f	90
7	MeO NH2	4g	88
8	CINH2	4h	87
9	CI NH2	4i	89
10	NH ₂ Br	4j	84
11	Br NH ₂	4k	91
12	O ₂ N NH ₂	41	58 ^c
13	O ₂ N NH ₂	4m	63 ^c
14	F ₃ C NH ₂	4n	69 ^c
15	NH ₂	40	97
16	NH ₂	4p	98
17	H N	4q	93
18	NH	4r	91
19	NH	4s	96

 $^{\rm a}Reaction$ conditions: complex ${\bf 1a}$ (0.05 mol), amines (1.0 mmol), epoxides (2.0 mmol), solvent-free, room temperature.

^bIsolated yields.

^cToluene as solvent, 70°C, 4 h.

CF₃, the ring-opened products **4l–4n** were also obtained in lower yields of 58–69%, even at 70°C (entries 12–14, Table 5). The ring-opened products **4o–4s** were obtained in satisfactory yields for the aliphatic primary and secondary amines (entries 15–19, Table 5). The probable reaction mechanism was that the complexes functioned as Lewis acid catalysts, the cyclohexene oxide was activated through the coordination of cyclohexene oxide oxygen atom to the rare-earth metal center, then amine as a nucleophile attacked to afford the desired product.^[12c, 17] The low-coordinated *bis*-amido rare-earth complexes exhibited slightly high catalytic activity probably owing to the steric effect around the rare-earth metals.

3 | CONCLUSIONS

In summary, a series of the rare-earth metal complexes bearing 2,2'-pyridylpyrrolides have been synthesized and characterized. The X-ray diffraction studies showed that the structure of the resulted complexes were affected by the ionic radius of rare-earth metal, and a subtle change of ligand from L^1H to L^2H . The four coordinated *bis*-amido rare-earth complexes exhibited high catalytic activity for the ring-opening reaction of cyclohexene oxide with various aromatic and aliphatic amines, which provided a facile synthesis of the β -aminoalcohols under mild solvent-free conditions.

4 | EXPERIMENTAL

4.1 | General remarks

All syntheses and manipulations of air- and moisturesensitive materials were performed under dry argon and oxygen-free atmosphere using standard Schlenk techniques or in a glovebox. Solvents were refluxed and distilled over sodium/benzophenone under argon prior to use. Compounds L¹H and L²H,^[18] [(Me₃Si)₂N]₃RE(μ -Cl) Li(THF)₃^[19] were prepared according to literature methods. IR spectra were recorded on Shimadzu FTIR-8400S spectrometer. ¹H NMR and ¹³C NMR spectra for analyses of compounds were recorded on a Bruker AV-400 or 500 NMR spectrometer in C₆D₆ for lanthanide complexes and in CDCl₃ for organic compounds.

4.2 | General synthesis of $L^1REN(SiMe_3)_2$ and $L^2REN(SiMe_3)_2$

Under an argon atmosphere, an oven-dried 50.0 ml Schlenk flask equipped with a magnetic stir bar was charged with the compound $L^{1}H$ (0.17 g, 1.00 mmol) or

 $L^{2}H$ (0.19 g, 1.00 mmol), [(Me₃Si)₂N]₃RE(μ -Cl)Li(THF)₃ (1.00 mmol) and toluene (30.0 ml) at room temperature. The reaction mixture was stirred at 100°C for 12 h, and the solvent was evaporated under reduced pressure. The residue was extracted with *n*-hexane (15.0 ml), and the crystals were obtained by cooling the solution at 0°C for several days.

4.2.1 | Complex 1a

Yellow crystals (0.49 g, 85% yield). M.p.: 167–169°C. ¹H NMR (500 MHz, C₆D₆): δ 7.90 (d, J = 5.5 Hz, 1H, ArH), 7.24 (d, J = 8.6 Hz, 1H, ArH), 6.91–6.88 (m, 1H, ArH), 6.18 (t, J = 6.5 Hz, 1H, ArH), 6.02 (s, 1H, pyrrole-H), 2.57 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 0.26 (s, 36H, SiCH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 157.0 (ArC), 146.2 (ArC), 141.7 (ArC), 139.3 (ArC), 131.5(ArC), 127.4 (pyrrole-*C*), 119.9 (pyrrole-*C*), 115.9 (pyrrole-*C*), 115.7 (pyrrole-*C*), 17.6 (CH₃), 15.8 (CH₃), 4.4 (SiCH₃). Elemental analysis calcd (%) for C₂₃H₄₇N₄Si₄Y·0.3 hexane: C 49.23, H 8.59, N 9.19; found: C 49.11, H 8.78, N 9.42.

4.2.2 | Complex 1b

Yellow crystals (0.58 g, 88% yield). M.p.: 154–156°C. IR (KBr pellets, cm⁻¹): ν 1586 (s), 1555 (s), 1502 (s), 1461 (m), 1277 (s), 1149 (m), 1093 (s), 838 (s). Elemental analysis calcd (%) for C₂₃H₄₇N₄Si₄Dy·0.5 hexane: C 44.77, H 7.80, N 8.03; found: C 44.50, H 7.55, N 8.34.

4.2.3 | Complex 1c

Pink crystals (0.55 g, 83% yield). M.p.: 151–153°C. IR (KBr pellets, cm⁻¹): ν 1590 (s), 1559 (s), 1504 (s), 1456 (m), 1269 (s), 1183 (m), 1092 (s),846 (s). Elemental analysis calcd (%) for C₂₃H₄₇N₄Si₄Er: C 41.90, H 7.19, N 8.50; found: C 41.80, H 7.08, N 8.74.

4.2.4 | Complex 1d

Red crystals (0.59 g, 89% yield). M.p.: 156–158°C. IR (KBr pellets, cm⁻¹): ν 1589 (s), 1559 (s), 1504 (s), 1456 (m), 1269 (s), 1183 (m), 1092 (s), 846 (s). Elemental analysis calcd (%) for C₂₃H₄₇N₄Si₄Yb·0.5 hexane: C 44.10, H 7.69, N 7.91; found: C 43.90, H 7.69, N 8.05.

4.2.5 | Complex 2a

Yellow crystals (0.48 g, 80% yield). M.p.: 142–144°C. ¹H NMR (500 MHz, C₆D₆): δ 7.87 (d, J = 5.5 Hz, 1H, Ar*H*),

7.29 (d, J = 8.5 Hz, 1H, ArH), 6.92–6.88 (m, 1H, ArH), 6.17–6.14 (m, 1H, ArH), 2.53 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 0.27 (s, 36H, SiCH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 156.9 (ArC), 146.2 (ArC), 139.4 (ArC), 139.2 (ArC), 130.8 (ArC), 125.4 (pyrrole-C), 119.8 (pyrrole-C), 119.6 (pyrrole-C), 115.6 (pyrrole-C), 15.9 (CH₃), 13.6 (CH₃), 10.0 (CH₃), 4.4 (SiCH₃). IR (KBr pellets, cm⁻¹): ν 1591 (s), 1517 (s), 1466 (s), 1272 (s), 1152 (s), 976 (s), 779 (s), 746 (s). Elemental analysis calcd (%) for C₂₄H₄₉N₄Si₄Y·0.5 hexane: C 50.83, H 8.85, N 8.78; found: C 50.30, H 8.81, N 9.10.

4.2.6 | Complex 2b

Yellow crystals (0.58 g, 87% yield). M.p.: 137–139°C. IR (KBr pellets, cm⁻¹): 1589 (s), 1513 (s), 1460 (s), 1269 (s),1150 (s), 932 (m), 782 (s), 736 (s). Elemental analysis calcd (%) for $C_{24}H_{49}N_4Si_4Dy$: C 43.12, H 7.39, N 8.38; found: C 43.44, H 7.47, N 8.34.

4.2.7 | Complex 2c

Pink crystals (0.55 g, 82% yield). M.p.: 137–139°C. IR (KBr pellets, cm⁻¹): ν 1594 (s), 1514 (s), 1461 (s), 1274 (s), 1160 (s), 935 (s), 780 (s), 735 (s). Elemental analysis calcd (%) for C₂₄H₄₉N₄Si₄Er·0.5 hexane: C 45.27, H 8.88, N 7.82; found: C 45.02, H 8.02, N 7.90.

4.2.8 | Complex 2d

Red crystals (0.57 g, 84% yield). M.p.:139–141°C. IR (KBr pellets, cm⁻¹): ν 1591 (s), 1514 (s), 1463 (s), 1267 (s), 1154 (s), 932 (s), 774 (s), 734 (s). Elemental analysis calcd (%) for C₂₄H₄₉N₄Si₄Yb·0.5 hexane: C 44.91, H 7.82, N 7.76; found: C 44.63, H 7.78, N 8.05.

4.3 | General synthesis of 1e and 1f

Under an argon atmosphere, an oven-dried 50.0 ml Schlenk flask equipped with a magnetic stir bar was charged with the compound L^1H (0.17 g, 1.00 mmol), [(Me₃Si)₂N]₃RE(μ -Cl)Li(THF)₃ (0.50 mmol) and toluene (30.0 ml) at room temperature. The reaction mixture was stirred at 100°C for 12 h, and the solvent was evaporated under reduced pressure. The residue was extracted with *n*-hexane (15.0 ml) and the crystals were obtained by cooling the solution at 0°C for several days.

4.3.1 | Complex 1e

Yellow crystals (0.36 g, 61% yield). M.p.: 164–166°C. IR (KBr pellets, cm⁻¹): ν 1591 (s), 1560 (s), 1504 (s), 1463 (m), 1262 (s), 1149 (m), 1093 (s), 797 (s). Elemental analysis calcd (%) for C₅₁H₆₅ClN₉Si₂Sm₂·hexane: C 53.38, H 6.21, N 9.83; found: C 53.19, H 5.51, N 10.18.

4.3.2 | Complex 1f

Yellow crystals (0.37 g, 63% yield). M.p.: 169–171°C. IR (KBr pellets, cm⁻¹): ν 1594 (s), 1558 (s), 1499 (s), 1466 (m), 1280 (s), 1154 (m), 1009 (s), 782 (s). Elemental analysis calcd (%) for C₅₁H₆₅ClN₉Si₂Pr₂: C 52.02, H 5.56, N 10.71; found: C 52.17, H 5.94, N 10.72.

4.4 | Synthesis of L^2 SmN(SiMe₃)₂ (2e)

A similar method for preparation of complex **2e** was used for the treatment of L^2H (0.19 g, 1.00 mmol), [(Me₃Si)₂N]₃Sm(μ -Cl)Li(THF)₃ (0.50 mmol) and toluene (30.0 ml) at room temperature. Yellow crystals were obtained upon cooling the solution at 0°C for several days (0.22 g, 65% yield). M.p.: 137–139°C. IR (KBr pellets, cm⁻¹): 1594 (s), 1517 (s), 1468 (s), 1264 (s), 1149 (s), 930 (s), 785 (s), 739 (s). Elemental analysis calcd (%) for C₃₀H₄₄N₅Si₂Sm: C 52.89, H 6.51, N 10.28; found: C 53.48, H 6.73, N 10.12.

4.5 | X-ray crystallography

Suitable crystals of complexes **1a–1f** and **2a–2e** were each mounted in a sealed capillary. Diffraction was performed on a Burker SMART CCD area detector diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å); an empirical absorption correction was applied using the SADABS program. All structures were solved by direct methods, completed by subsequent difference Fourier syntheses, refined anisotropically for all nonhydrogen atoms by full-matrix least-squares calculations on F^2 using the SHELXTL program package. All hydrogen atoms were refined using a riding model. See Supporting Information for crystallographic parameters and data collection and refinement information.

4.6 | General procedure for the ring opening reaction of cyclohexene oxide with amines

Under an argon atmosphere, an oven-dried 20.0 ml Schlenk flask equipped with a magnetic stir bar was

charged with complex 1a (3.0 mg, 0.005 mmol) and the amine (1.0 mmol). Cyclohexene oxide (0.202 ml, 2.0 mmol) was added and the resulting mixture was stirred under solvent-free conditions for 4 h. At completion, the crude product was purified by column chromatography on silica gel using ethyl acetate-petroleum ether (1:5, v/v) as the eluent to afford the final product.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (21672004, 21602004, 21702004 and 21861162009) and the Special and Excellent Research Fund of Anhui Normal University.

CONFLICTS OF INTEREST

There are no conflicts of interest to declare.

ORCID

Shuangliu Zhou D https://orcid.org/0000-0002-0103-294X

REFERENCES

- [1] a)T. Dubé, S. Conoci, S. Gambarotta, G. P. A. Yap, G. Vasapollo, Angew. Chem. Int. Ed. 1999, 38, 3657. b)M. Ganesan, S. Gambarotta, G. P. A. Yap, Angew. Chem. Int. Ed. 2001, 40, 766. c)Y. Yang, S. Li, D. Cui, X. Chen, X. Jing, Organometallics 2007, 26, 671. d)L. Xiang, Q. Wang, H. Song, G. Zi, Organometallics 2007, 26, 5323. e)Q. Wang, L. Xiang, H. Song, G. Zi, Inorg. Chem. 2008, 47, 4319. f)G. Zi, Q. Wang, L. Xiang, H. Song, Dalton Trans. 2008, 5930. g)J. J. Hao, H. B. Song, C. M. Cui, Organometallics 2009, 28, 3970. h)J. J. Hao, H. B. Song, C. M. Cui, Organometallics 2009, 28, 3100. i)Y. Yang, D. Cui, X. Chen, Dalton Trans. 2010, 39, 3959. j)S. Zhou, S. Wu, H. Zhu, S. Wang, X. Zhu, L. Zhang, G. Yang, D. Cui, H. Wang, Dalton Trans. 2011, 40, 9447. k)Q. Li, J. Rong, S. Wang, S. Zhou, L. Zhang, X. Zhu, F. Wang, S. Yang, Y. Wei, Organometallics 2011, 30, 992. l)S. Zhou, Z. Wu, J. Rong, S. Wang, G. Yang, X. Zhu, L. Zhang, Chem. - Eur. J. 2012, 18, 2653. m)Q. Li, S. Zhou, S. Wang, X. Zhu, L. Zhang, Z. Feng, L. Guo, F. Wang, Y. Wei, Dalton Trans. 2013, 42, 2861. n)Z. Feng, Y. Wei, S. Zhou, G. Zhang, X. Zhu, L. Guo, S. Wang, X. Mu, Dalton Trans. 2015, 44, 20502. o)J. Li, J. Hao, C. Cui, Dalton Trans. 2015, 44, 767. p)G. Zhang, B. Deng, S. Wang, Y. Wei, S. Zhou, X. Zhu, Z. Huang, X. Mu, Dalton Trans. 2016, 45, 15445. q)W. Wang, X. Wang, S. Zhou, X. Xu, J. Du, L. Zhang, X. Mu, Y. Wei, X. Zhu, S. Wang, Inorg. Chem. 2018, 57, 10390. r)X. Zhu, Y. Li, D. Guo, S. Wang, Y. Wei, S. Zhou, Dalton Trans. 2018, 47, 3947.
- [2] a)M. Kijak, Y. Nosenko, A. Singh, R. P. Thummel, J. Waluk, J. Am. Chem. Soc. 2007, 129, 2738. b)P. J. Morgan, A. J. Fleisher, V. Vaquero-Vara, D. W. Pratt, R. P. Thummel, M. Kijak, J. Waluk, J. Phys. Chem. Lett. 2011, 2, 2114.

- [3] a)C. L. Perry, J. H. Weber, J. Inorg. Nucl. Chem. 1971, 33, 1031.
 b)B. Chiswell, Inorg. Chim. Acta 1972, 6, 629. c)Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2007, 36, 1421. d)Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2010, 39, 638. e)J. A. Flores, J. G. Andino, N. P. Tsvetkov, M. Pink, R. J. Wolfe, A. R. Head, D. L. Lichtenberger, J. Massa, K. G. Caulton, Inorg. Chem. 2011, 50, 8121.
- [4] a)A. T. Luedtke, K. I. Goldberg, *Inorg. Chem.* 2007, *46*, 8496. b)
 J.-L. Chen, C.-H. Lin, J.-H. Chen, Y. Chi, Y.-C. Chiu, P.-T. Chou, C.-H. Lai, G.-H. Lee, A. J. Carty, *Inorg. Chem.* 2008, *47*, 5154. c)D. Pucci, I. Aiello, A. Aprea, A. Bellusci, A. Crispini, M. Ghedini, *Chem. Commun.* 2009, 1550.
- [5] a)K. Searles, M. Pink, K. G. Caulton, D. J. Mindiola, *Dalton Trans.* **2012**, *41*, 9619. b)N. P. Tsvetkov, C.-H. Chen, J. G. Andino, R. L. Lord, M. Pink, R. W. Buell, K. G. Caulton, *Inorg. Chem.* **2013**, *52*, 9511.
- [6] a)S. F. Liu, Q. Wu, H. L. Schmider, H. Aziz, N. X. Hu, Z. Popovic, S. Wang, J. Am. Chem. Soc. 2000, 122, 3671. b)P.-I. Shih, C.-H. Chien, C.-Y. Chuang, C.-F. Shu, C.-H. Yang, J.-H. Chen, Y. Chi, J. Mater. Chem. 2007, 17, 1692. c)J. L. McBee, T. D. Tilley, Organometallics 2010, 29, 184. d)M. L. Clement, K. A. Grice, A. T. Luedtke, W. Kaminsky, K. I. Goldberg, Chem. Eur. J. 2014, 20, 17287. e)Y.-P. Wang, X.-H. Hu, Y.-F. Wang, J. Pan, X.-Y. Yi, Polyhedron 2015, 102, 782. f)H. Xu, J. B. Diccianni, J. Katigbak, C. Hu, Y. Zhang, T. Diao, J. Am. Chem. Soc. 2016, 138, 4779. g)J. A. Flores, J. G. Andino, R. L. Lord, R. J. Wolfe, H. Park, M. Pink, J. Telser, K. G. Caulton, Eur. J. Inorg. Chem. 2018, 4893.
- [7] a)A. A. Dissanayake, A. L. Odom, *Chem. Commun.* 2012, 48, 440. b)Y. Zhang, T. S. Lee, J. L. Petersen, C. Milsmann, *J. Am. Chem. Soc.* 2018, 140, 5934. c)Y. Zhang, N. G. Akhmedov, J. L. Petersen, C. Milsmann, *Chem. Eur. J.* 2019, 25, 3042. d)G. Li, M. Lamberti, M. Mazzeo, P. Pappalardo, C. Pellecchia, *J. Mol. Catal. a: Chem.* 2013, 370, 28.
- [8] S. Zhou, H. Wang, J. Ping, S. Wang, L. Zhang, X. Zhu, Y. Wei, F. Wang, Z. Feng, X. Gu, S. Yang, H. Miao, *Organometallics* 2012, *31*, 1696.
- [9] a)M. Chini, P. Crotti, L. Favero, F. Machhia, M. Pine-schi, Tetrahedron Lett. 1994, 35, 433. b)J. Auge, F. Leroy, Tetrahedron Lett. 1996, 37, 7715. c)G. Sekar, V. K. Singh, J. Org. Chem. 1999, 64, 287. d)J. S. Yadav, A. R. Reddy, A. V. Narsaiah, B. V. S. Reddy, J. Mol. Catal. a: Chem. 2007, 261, 207.
- [10] C. Liu, S. Zhou, S. Wang, L. Zhang, G. Yang, *Dalton Trans.* 2010, 39, 8994.
- [11] a)D. J. Ager, I. Prakash, D. R. Schaad, *Chem. Rev.* 1996, 96, 835.
 b)K. Mori, M. Sakakibara, K. Okada, *Tetrahedron* 1984, 40, 1767.
 c)A. Sekine, T. Ohshima, M. Shibasaki, *Tetrahedron* 2002, 58, 75.
 d)G. Li, H. T. Chang, K. B. Sharpless, *Angew. Chem. Int. Ed.* 1996, 35, 45.
 e)E. J. Corey, F. Zhang, *Angew. Chem. Int. Ed.* 1999, 38, 1931.
 f)S. Zhu, L. Meng, Q. Zhang, L. Wei, *Bioorg. Med. Chem. Lett.* 2006, 16, 1854.
- [12] a)J. Iqbal, A. Pandey, *Tetrahedron Lett.* **1990**, *31*, 575. b)A. K. Chakraborti, A. Kondaskar, *Tetrahedron Lett.* **2003**, *44*, 8315. c)B. Shivani, A. K. Pujala, J. Chakraborti, *Org. Chem.* **2007**, *72*, 3713.
- [13] a)S. Sagava, H. Abe, Y. Hase, T. Inaba, J. Org. Chem. 1999, 64, 4962.
 b)S. Rampalli, S. S. Chaudhari, K. G. Akamanchi,

10 of 10 WILEY-Organometallic Chemistry

Synthesis **2000**, 78. c)Y. Li, Y. Tan, E. Herdtwick, M. Cokoja, F. E. Kühn, *Appl. Catal. a* **2010**, *384*, 171.

- [14] a)L. E. Overman, L. A. Flippin, *Tetrahedron Lett.* 1981, 22, 196.
 b)M. C. Carre, J. P. Houmounou, P. Caubere, *Tetrahedron Lett.* 1985, 26, 3107. c)Y. Yamamoto, N. Asao, M. Meguro, N. Tsukade, H. Nemoto, N. Adayari, J. G. Wilson, H. Nakamura, *J. Chem. Soc., Chem. Commun.* 1993, 1201. d)J. Cossy, V. Bellosta, C. Hamoir, J.-R. Desmurs, *Tetrahedron Lett.* 2002, 43, 7083.
- [15] a)G. H. Posner, D. Z. Roger, J. Am. Chem. Soc. 1977, 99, 8208.
 b)M. D. Pujol, Y. Harrak, *Tetrahedron Lett.* 2002, 43, 819. c)
 P.-Q. Zhao, L.-W. Xu, C.-G. Xia, *Synlett* 2004, 846. d)A. K. Chakraborti, S. Rudrawar, A. Kondaskar, Org. Biomol. Chem. 2004, 2, 1277. e)R. I. Kureshy, S. Singh, N. H. Khan, S. H. R. Abdi, E. Suresh, R. V. Jasra, J. Mol. Catal. a: Chem. 2007, 264, 162. f)A. Najmodin, R. S. Mohammad, Org. Lett. 2005, 17, 3649.
- [16] a)K. Tanaka, S. Oda, M. Shiro, Chem. Commun. 2008, 820. b)S. Roy, B. Banerjee, N. Salam, A. Bhaumik, S. M. Islam, ChemCatChem 2015, 7, 2689. c)S. Roy, S. S. Piyali Bhanja, A. Islam, S. M. I. Bhaumik, Chem. Commun. 2016, 52, 8171. d) M. Karimi, T. Hajiashrafi, A. Heydari, T. A. Azhdari, Appl. Organometal. Chem. 2017, 31, e3866.
- [17] S. Yadav, S. Kumar, R. Gupta, Eur. J. Inorg. Chem. 2015, 5534.

[19] a)S. Zhou, S. Wang, G. Yang, X. Liu, E. Sheng, K. Zhang, L. Cheng, Z. Huang, *Polyhedron* 2003, 22, 1019. b)E. Sheng, S. Wang, G. Yang, S. Zhou, L. Cheng, K. Zhang, Z. Huang, *Organometallics* 2003, 22, 684.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Du J, Zhou S, Zhang X, et al. Syntheses, structures and catalytic activities of low-coordinated rare-earth metal complexes containing 2,2'-pyridylpyrrolides. *Appl Organometal Chem.* 2019;e5275. <u>https://doi.org/</u>10.1002/aoc.5275

^[18] J. J. Klappa, A. E. Rich, K. McNeill, Org. Lett. 2002, 4, 435.