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1,2,4-Thiadiazoles are important five-membered heterocycles 

with broad biological and pharmaceutical activities.
1,2

 Among 

which, the 3,5-diaryl- analogues serve as sphingosine 1-

phosphate receptor agonists,3 antifungal agents,4 and antibacterial 

reagents.
5
 Compared with the intramolecular cyclization toward 

such frameworks,
6
 the intermolecular pathway features the 

simplicity for preparing starting materials as well as diversity of 

the final products. For example, the oxidative dimerization of 

either thioamides (Scheme 1, eq 1),
7
 or the annulation of aryl 

nitriles with sulfur,
8
 SCl2,

9
 (NH4)2S

10
 and nitrile sulfide

11 

(Scheme 1, eq 2) allowed rapidly to construct symmetric 3,5-

diaryl-1,2,4-thiadiazole. Unfortunately, the cross-dimerization of 

two kinds of thioamides resulted in the distribution of four 1,2,4-

thiadiazole with extremely low selectivity. 

From both diversity and complexity points of view, either the 

development of methodologies or the proper substrate design 
toward unsymmetric 3,5-diaryl-1,2,4-thiadiazole kept highly 

desired goal for organic chemists, yet challenging. And no 

examples were reported till Deng developed the annulation 

between amidines, elemental sulfur, and 2-methylquinolines (or 

aromatic aldehydes) under transition-metal-free conditions 

(Scheme 1, eq 3).12 As our continuous interest in the synthesis of 

thiadiazole,
13

 herein, we wish to report a three-component 

reaction between arylmethyl bromides, arylamidines and 

elemental sulfur toward unsymmetric 3,5-diaryl-1,2,4-thiadiazole 

(Scheme 1, eq 4). This procedure features: 1) high chemical 

diversity and complexity of the products by multicomponent 

reaction; 2) the employment of elemental sulfur
14

 and 

commercially available starting material under transition metal-

free conditions; 3) wide substrates scope. 

Scheme 1. Synthetic Pathways toward 3,5-Diaryl-1,2,4-

Thiadiazoles 

 

Initially, we tested the reaction of (4-tolyl)methyl bromide 

(1a), benzamidine hydrochloride (2a) and sublimed sulfur in 

toluene at 140 
o
C under N2 in the presence of 4 equivalent of 

K2CO3 as the model reaction. To our delight, 3,5-diaryl-1,2,4-
thiadiazole 3aa was isolated in 19% yield (Table 1, entry 1). 

Replacing K2CO3 with NaO
t
Bu increased the yield to 34% (Table 

1, entry 2). A comparable 31% yield was obtained in the case of 

KO
t
Bu (Table 1, entry 3). The yield dramatically increased to 
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66% by using LiOtBu (Table 1, entry 4). Under an air or O2 

atmosphere, the reaction efficiency significantly decreased to 

47% and 23%, respectively. So did the procedure under elevated 

(59%, 150 
o
C) or lower (51%, 130 

o
C) reaction temperature 

(Table 1, entry 4). The solvent tests demonstrated toluene was the 

best (66%), though DMSO provided the product 3aa in an 
acceptable 58% yield (Table 1, entries 5-9). The practicability of 

this procedure was further increased since 3aa was isolated in a 

comparable 62% yield in a 1 mmol scale reaction. 

Table 1. Selected Results for Screening the Optimized Reaction 

Conditions
a
 

 
entry base solvent yieldb (%) 

1 K2CO3 toluene 19 

2 NaOtBu toluene 34 

3 KOtBu toluene 31 

4 LiOtBu toluene 66,47c,23d,51e,59f 

5 LiOtBu DMAC 33 

6 LiOtBu DMF 26 

7 LiOtBu DMSO 58 

8 LiOtBu xylene 51 

9 LiOtBu diglyme 13 
a Reaction conditions: (4-tolyl)methyl bromide 1 (0.12 mmol), benzamidine 

hydrochloride 2 (0.1 mmol), S8 (0.1 mmol), base (0.4 mmol), solvent (2.0 

mL), N2, at 140 oC for 12 h, in a sealed Schlenk tube. b Isolated yield. c air.  d 

O2. 
e 130 oC. f 150 oC. DMAC = dimethylacetamide; DMF = N,N-

dimethylformamide; DMSO = dimethyl sulfoxide. 

 
After the establishment of the optimized reaction conditions, 

the scope and limitation of arylmethyl bromides in the reaction 

with benzamidine hydrochloride and sublimed sulfur were tested, 

as shown in Fig. 1. As expected, this procedure was applicable 

for arylmethyl bromides bearing both para-, meta- and ortho-

substitutents in the phenyl ring (3aa-ea and 3ga-ia), albeit with 

low yield for ortho-substituted analogue (3ba, 35%). Some 
functional groups, such as fluoro (3da, 50%), chloro (3ea, 69%), 

trifluoromethyl (3ga, 57%), and cyano (3ha, 70%), survived 

under this procedure, providing handles for further 

transformation. 

Figure 1. Scope of substituted benzyl bromidesa 

 

 a Reaction conditions: arylmethyl bromide 1 (0.12 mmol), benzamidine 

hydrochloride 2a (0.1 mmol), S8 (0.1 mmol), LiO
t
Bu (0.4 mmol), toluene (2 

mL), N2, 140 oC, 12 h. 
Notably, 

n
BuBr worked to some extent under this procedure to 

introduce the n-propyl to 5- position of 3-phenyl-1,3,4-

thiadiazole (3ja, 21%). However, replacing 
n
BuBr with 

n
BuI did 

not have any positive effect on the reaction efficiency. 

Figure 2. Scope of substituted benzamidine hydrochloride.
a
 

 
a Reaction conditions: (4-tolyl)methyl bromide 1a (0.12 mmol), arylamidine 

hydrochloride 2 (0.1 mmol), S8 (0.1 mmol), LiOtBu (0.4 mmol), toluene (2 

mL), N2, 140 oC, 12 h. b DMSO (2 mL). 

 

Next, the scope of (4-tolyl)methyl bromide in the reaction with 

arylamidine hydrochloride and sublimed sulfur was studied (Fig. 

2). Once again, this procedure workedsmoothly, providing a 

series of 3-aryl-5-(4-tolyl)-1,3,4-thiadiazoles in moderate yields 

(3ab-ae, 56-67%). Notably, 3- and 4-pyridinyl were introduced 

into 3- position of 5-(4-tolyl)-1,2,4-thiadiazoles (3af, 45%; 

3ag,47%) by replacing toluene with DMSO as solvent.  

Scheme 2. Mechanism Study
 

 

To get insights into the mechanism, the presumed intermediate 

A was subjected to the procedure, and 3,5-diphenyl 1,2,4-

thiadiazole was isolated in a comparable 62% yield, which 

indicated A may serve as intermediate during this tranformation. 



  

 3
Based on the experimental results, a proposed pathway of this 

reaction is outlined in Scheme 3. In step 1, in the presence of 

base, the reaction of arylmethyl bromide with arylamidine 

produces intermediate A, which tautomerizes to B. Then, the 

nucleophilic attack of elemental sulfur to nitrogen atom in amino 

takes place leading to intermediate C.
15

 After the tautomerization 
of C to D, the intermolecular nucleophilic attack of sulfur atom 

to imino group provides cyclized intermediate E. Afterwards, 

intermediate E transforms to intermediate F by the elimination of 

S7
-
. Finally, the oxidation of intermediate F by sulfur furnishes 

the final product 3,5-diaryl-1,2,4-thiadiazone (path a). 

Alternatively, in the presence of DMSO, the Kornblum oxidation 
of benzyl bromide produces aldehyde,16 which annulates with 

amidine to provide intermediate A’. Then, the nucleophilic attack 

of elemental sulfur takes place leading to intermediate B’. After 

that, the nucleophilic attack of sulfur atom to nitrogen atom 

provides intermediate E (path b). 

 

Scheme 3. Proposed Mechanism 
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In conclusion, we have developed a base-promoted three-
component reaction between arylmethyl bromides, arylamidine 

hydrochlorides and sublimed elemental sulfur leading to 

unsymmetric 3,5-diaryl-1,2,4-thiadiazoles in moderate to good 

yields with diversity and complexity. This procedure features 
with broad substrates scope as well as the employment of 

elemental sulfur and commercially available starting materials 

under transition-metal free conditions. 
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