517

Synthesis and conformational analysis of 2-amino-1,2,3,4-tetrahydro-1-naphthalenols¹

ANTONIO DELGADO, JOSÉ MIGUEL GARCIA, DAVID MAULEON,² CRISTINA MINGUILLON, AND JOAN RAMON SUBIRATS

Departamento de Farmacología y Ouímica Terapéutica, División de Ciencias de la Salud, Facultad de Farmacia,

Laboratorio de Química Farmacéutica, Avda. Diagonal s/n, 08028 Barcelona, Spain

AND

MIGUEL FELIZ, FRANCISCO LOPEZ, AND DOLORES VELASCO Departamento de Química Orgánica, División Ciencias Experimentales y Matemáticas, Facultad de Química, Martí i Franqués, 1, 08028 Barcelona, Spain

Received March 31, 1987³

ANTONIO DELGADO, JOSÉ MIGUEL GARCIA, DAVID MAULEON, CRISTINA MINGUILLON, JOAN RAMON SUBIRATS, MIGUEL FELIZ, FRANCISCO LOPEZ, and DOLORES VELASCO. Can. J. Chem. 66, 517 (1988).

Synthesis and conformational analysis of several cis- and (or) trans-2-amino-1,2,3,4-tetrahydro-1-naphthalenols are described. Introduction of the nitrogen atom at the C(2) position of the starting tetralones 3 has been carried out through nitrosation followed by reduction of the intermediate hydroxyimino tetralone and (or) Neber rearrangement of the tosyloxy derivatives 7a-e. Stereoselective reduction of the C(1) carbonyl group of acetamidotetralones 5a-e or aminotetralones 8a-eafforded the corresponding acetamido or aminotetralols, respectively, of OH/N trans stereochemistry whereas an opposite stereoselectivity was observed in reduction of C(8)-OCH₃ derivatives 5f and 8f under the same experimental conditions. Finally, acid hydrolysis of trans-acetamidotetralols led to cis-aminoalcohols in high yields. Conformational analysis has been carried out by ¹H nuclear magnetic resonance techniques and MM2 theoretical calculations. All cis derivatives showed a major conformation in which the C(1)-OH group adopts a pseudoaxial disposition. On the other hand, trans-aminoalcohols in $CDCl_3$ showed a major or exclusive OH/N trans-dipseudoequatorial conformation in which stabilization by intramolecular OH/N hydrogen bonding is possible. The only exception was found in C(8)-OCH₃ trans-aminoalcohols in DMSO-d₆ solution, which showed a major OH/N trans-diaxial conformation.

ANTONIO DELGADO, JOSÉ MIGUEL GARCIA, DAVID MAULEON, CRISTINA MINGUILLON, JOAN RAMON SUBIRATS, MIGUEL FELIZ, FRANCISCO LOPEZ et DOLORES VELASCO. Can. J. Chem. 66, 517 (1988).

On décrit la synthèse et l'analyse conformationnelle de plusieurs amino-2 tétrahydro-1,2,3,4 naphtalénols-1-cis et -trans. Pour introduire un atome d'azote en position C(2) des tétralones 3 de départ, on a fait appel soit à une nitrosation suivie d'une réduction de l'hydroximino tétralone intermédiaire soit à une transposition de Neber des dérivés tosyloxy 7a-e. La réduction stéréosélective du groupement carbonyle en C(1) des acétamidotétralones 5a-e ou des aminotétralones 8a-e conduit aux acétamido ou aminotétralols correspondants de stéréochimie OH/N trans; par ailleurs, on obtient la stéréochimie inverse lorsqu'on réduit les dérivés C(8)-OCH₃, 5f et 8f, en utilisant les mêmes conditions expérimentales. Enfin, l'hydrolyse acide des acétamidotétralols-trans conduit au aminoalcools-cis, avec d'excellents rendements. On a réalisé l'analyse conformationnelle à l'aide de la résonance magnétique nucléaire du ¹H et de calculs théoriques MM2. Pour chacun des dérivés *cis*, la conformation prédominante comporte un groupement C(1)-OH dans une position pseudo-axiale. Par ailleurs, en solution dans le CDCl₃, les aminoalcools trans présentent une conformation majeure, sinon exclusive, OH/N di-pseudo-équatoriale trans dans laquelle une stabilisation par liaison OH/N intramoléculaire est possible. On a noté une seule exception; il s'agit des aminoalcools trans C(8)-OCH₃ qui, en solution dans le DMSO- d_6 , existent dans une conformation OH/N trans-diaxiale.

[Traduit par la revue]

As part of our research concerning the synthesis of conformationally restrained arylethanolamines, this paper deals with the synthesis and conformational analysis of several cis- and (or) trans-2-amino-1,2,3,4-tetrahydro-1-naphthalenols 1a-i and 2a-i (Scheme 1) as potential adrenergic agents.

In all cases, synthesis started from the corresponding 1-tetralones 3a-f, prepared by standard procedures. Introduction of the nitrogen atom at the C(2) position of the 1-tetralone system was carried out according to two alternative procedures (Scheme 2).

First, nitrosation of 1-tetralones 3a, b, d-f with butyl- or isoamyl nitrite in the presence of potassium *tert*-butoxide afforded the desired hydroxyiminotetralones 4a, b, d-f in 50-80% yield. The comparatively lower yields observed for 4b, d, and f can be explained as a consequence of the concomitant formation of benzoates 9b, d, f or 10, resulting from alkoxide

а	Н	cis or trans
b	5-OCH ₃	cis or trans
с	5-OBzl	trans
d	6-OBzl	trans
е	7-OBzl	trans
f	5,8-(OCH ₃) ₂	cis or trans
g	5-OH	trans
ĥ	6-OH	trans
i	7-OH	trans
	Sc	неме 1

¹This work was presented in a preliminary form at the XX Reunión Bienal de la Real Sociedad Espanola de Química, Castellón, Spain, 1984.

²Author to whom correspondence may be addressed.

³Revision received November 10, 1987.

a: BuONO or iso-AmmONO/KOt-Bu; b: Zn, Ac₂O, AcOH; c: NaBH₄, CH₃OH, H₂O or H₂, PtO₂ (for **5**f); d: KOH, EtOH-H₂O; e: HCl 0.3 M rfx.; f: NH₂OH · HCl, pyr.; g: Cl-OTs, pyr.; h: KOEt, benzene, EtOH (Neber rearrangement); i: HCl 5 M; j: NaBH₄, CH₃OH-NaOH; k: (1) acetone, benzene, rfx., (2) NaBH₄-CH₃OH; l: acetone, CH₃OH, NaBH₃CN; m: H₂, Pd/C 5%, 200 psi (from compounds c, d, and e).

Scheme 2

3*a*, *b*, *d*–*f*

SCHEME 3

attack upon the C(1) position of the initially formed nitroso derivatives and subsequent Beckmann fragmentation (1) (Scheme 3). Nitrile **10** (arising from alkaline cleavage of the oximino ketone) (2) was obtained instead of the oxime, upon nitrosation of **3***d* with butyl nitrite. In general, short reaction times and low temperatures minimize or avoid the formation of the above fragmentation products.

Attempts to elaborate the 2-amino-1-tetralol moiety by direct

reduction of hydroxyiminotetralones 4 were unsuccessful. Thus, hydrogenation of 4d over palladium-charcoal in acidic medium (3) afforded naphthylamine 11 as the only isolable product (Scheme 4). On the other hand, treatment of both 4d and 4f with lithium aluminum hydride (4) afforded only trace amounts of a *cis-trans* mixture of aminoalcohols 1d and 1f, respectively. In consequence, a stepwise reduction of oximinotetralones 4a, b, d-f was envisaged. Thus, treatment of crude

oximinotetralones with zinc dust in acetic acid – acetic anhydride solution (Scheme 2, pathway A), led to 2-acetamido-1-tetralones 5a, b, d-f in 55–65% yield. Reduction of 4f under the above conditions afforded a 5:1 mixture of 5f and naphthol 12 in 77% yield. Formation of 12 can be interpreted as a redox reaction between the hydroxyiminotetralone 4f and the initially formed acetamidotetralone 5f (Scheme 5). Alternative reduction of 4fby hydrogenation over Pd 10%/BaSO₄ in AcOH–Ac₂O (5) did not modify the above results.

Neber rearrangement (6) was used as the key step for the second (alternative) pathway to synthesize 2-amino-1-tetralols. The required tosyloxyderivatives 7a-e (Scheme 2, pathway B) were routinely obtained in two steps from the corresponding tetralones 3a-e. Neber rearrangement was not applied to the preparation of the 5,8-dimethoxylated aminoketone hydro-chloride 8f since it is known that the steric hindrance exerted by the 8-OCH₃ group precludes formation of 7f from 3f-oxime (7). However, 8f could be obtained by acid hydrolysis of acetamidotetralone 5f.

The stereoselective course of the reduction of the carbonyl group in 2-acetamido- and 2-amino-1-tetralones to give the corresponding trans-2-acetamido- or trans-2-amino-1-tetralols is well documented (5, 8, 9, 10). As expected, sodium borohydride reduction of compounds 5a, b, d, e in CH₃OH-H₂O (Scheme 2, pathway A) afforded the corresponding trans derivatives 6a, b, d, e as the major products (about a 90:10 trans/cis ratio based on C(1)H signal integration in the high resolution ¹H nmr spectra). The stereochemistry of compounds 6a, b, d, e was also confirmed by the $W_{1/2}$ value of about 16 Hz observed for the C(1)H proton, thus indicating a C(1)H–C(2)H pseudoaxial relationship. Alkaline hydrolysis of acetamidotetralols trans-6a, b, d, e afforded the desired aminoalcohols trans-1a, b, d, e in good yields, whose stereochemistry was confirmed by derivatization into conformationally restrained oxazolidin-2-one derivatives (11) as well as on the basis of the C(1)H chemical shift and coupling constant values (12, 13) of the cycloaliphatic protons (see below). On the other hand, aminoalcohols trans-1a-e could be obtained by stereoselective

sodium borohydride reduction of 2-amino-1-tetralone hydrochlorides 8a-e (again, about a 90:10 *trans/cis* ratio based on C(1)H signal integration was found).

The reverse stereoselectivity observed in the sodium borohydride reduction of the dimethoxylated derivatives 5f and 8fdeserves comment. Thus, treatment under the above experimental conditions afforded in each case a mixture of diastereoisomers in which cis derivatives were predominant (about a 65:35 cis/trans ratio). Analysis of C(1)H signals in the high resolution ¹H nmr spectrum of the crude reaction mixture arising from sodium borohydride reduction of 5f revealed a doublet at 4.93 ppm (major isomer) whose coupling constant value (J = 4.3 Hz) was indicative of a *cis*-OH_{axial}/NHR_{equatorial} relationship. Alkaline hydrolysis of this major isomer afforded aminoalcohol cis-1f, whose stereochemistry was also confirmed on the basis of ¹H nmr data (see below). In the same way, sodium borohydride reduction of hydrochloride 8f afforded predominantly aminoalcohol cis-1f. These results are opposite to those described by other authors (14), who assigned a trans stereochemistry to compound cis-1f. The observed reversal of stereoselectivity can be rationalized according to House et al. (15, 16), assuming that the geometry of the transition state and that of the final product are similar and adequate to predict the major stereochemical course of borohydride reductions. Thus, the most stable transition state in the reduction of 5a, b, d, e and 8a-e would lead to a *trans*-OH/NHR diequatorial relationship, whereas the transition state leading to *cis*-1*f* and *cis*-6*f* from 5*f* and 8f, respectively, would be the most stable one, since steric crowding due to the "peri" effect between C(8) and C(1) groups is minimized. This interpretation does not preclude complexation between the 2-acetamido group and borane, which has been postulated in reduction of 2-amino-1-indanones (17).

In contrast to borohydride reductions, hydrogenation over Adams catalyst of 2-acetamidotetralone **5**f afforded predominantly *trans*-acetamidoalcohol **6**f (about 80:20 *trans/cis* ratio based on ¹H nmr analysis), whose stereochemistry was confirmed by alkaline hydrolysis to aminoalcohol *trans*-**1**f. The low coupling constant value (J = 4.9 Hz) between C(1)H–C(2)H for *trans*-**6**f in CDCl₃ solution was indicative of the preferred OH/NHR *trans*-diaxial conformation in which *peri* interactions between C(1)H and C(8)OCH₃ groups are avoided. Likewise, the C(1) chemical shift observed for *trans*-**6**f (see Table 3) is in agreement with the proposed OH-pseudoaxial disposition (18).

In summary, aminoalcohols *trans*-1*a*, *b*, *d*, *e* could be obtained in comparable yields from the corresponding tetralones **3** by either of the two alternative pathways outlined in Scheme 2 (overall yields: pathway A, 18–20%; pathway B: 12–15%). Finally, hydrogenolysis of aminoalcohols *trans*-1*c*-*e* over 5% palladium–charcoal (200 psi; 1 psi = 6.9 kPa) afforded the desired phenolic derivatives *trans*-1*g*-*i* in about 50% yield. Attempts to carry out hydrogenolysis under atmospheric pressure gave only starting aminoalcohols whereas hydrogenolysis of benzyl and 1-hydroxyl groups.

Aminoalcohols cis-1a, b, and f could be readily obtained by acid hydrolysis of acetamidotetralols trans-6a, b, and f, through a process that is known to proceed via an oxazoline intermediate with inversion of configuration at the C(1) carbon atom (10). Formation of the intermediate oxazoline was found to be very favourable upon acidic treatment of both cis- and trans-6f. In fact, acidic work-up after sodium borohydride reduction of 5f afforded exclusively tetrahydronaphtho[2,1-d]oxazol derivative 13 (Scheme 7). Formation of

13 could be also carried out in an ¹H nmr tube. Thus, in the presence of a few drops of TFA, both *cis*- and *trans*-6f in CDCl₃ gave an identical product whose ¹H nmr signals were superimposable on those of 13 recorded on $CDCl_3 + TFA$. On the other hand, alkaline hydrolysis of 13 afforded aminoalcohol cis-1f as the only reaction product. The straightforward formation of 13 from *trans*-6 f can be explained in the light of the major *trans*-diaxial OH/NHR conformation of the starting 2-acetamidotetralol (see below).

Isopropyl derivatives 2 were obtained in each case from the corresponding cis or trans aminoalcohols either by reductive alkylation with excess acetone in benzene followed by sodium borohydride reduction of the intermediate oxazolidine system 14 (19) or in a one-step procedure with acetone – sodium cyanoborohydride in methanol (20) (Scheme 8). As in the amino series, isopropylamino derivatives trans-2g-i were obtained by benzyl group hydrogenolysis as described above.

Conformational analysis

 CH_3

Although 2-aminotetrahydro-1-naphthols can be regarded as conformationally restrained analogues of adrenergic arylethanolamines, two limited half-chair conformations are still possible for each compound. Since interpretation of pharmacological data requires the knowledge of the preferred conformation in solution of the molecule under study, we have carried out a conformational analysis of the target aminotetrahydronaphthols by means of nmr data and theoretical calculations.

Assignment of the cis or trans OH/NHR relationship in amino or isopropylaminotetralols 1 and 2 can usually be carried out by simple inspection of ¹H nmr spectra, on the basis of C(1)H chemical shift and coupling constant differences in each diastereomer (12, 13). Thus, whereas compounds cis-1a, b, fand *cis*-2*a*, *b*, *f* showed a mean $\delta_{C(1)H}$ (\pm SD) of 4.68 (\pm 0.16) ppm and a mean coupling constant $J_{1-2} = 3.7 \ (\pm 0.3)$ Hz, trans derivatives 1a - i and 2a - i (except for *trans*-1f and *trans*-2f, see

CH₃O

TABLE 1. Chemical shifts (ppm) and coupling constants (Hz) for *cis*-1b, *trans*-1b, and *trans*-1f obtained from the LAOCOON/3 analysis*

Protons	cis-1b†	trans-1b†	trans-1f†	trans-1f‡
δΗ1	4.55	4.30	4.68	4.63
δH_2	3.03	2.92	3.17	3.13
δH_3	1.84	2.00	2.07	2.06
δH3	1.92	1.68	1.69	1.64
δH₄	2.57	2.79	2.67	2.64
δH_4	2.91	2.83	2.90	2.66
$J(H_1 - H_{2\alpha})$	3.2	8.9	7.2	3.6
$J(H_{2\alpha}-H_{3\alpha})$	3.2	3.2	3.2	2.9
$J(H_{2\alpha}-H_{3\beta})$	10.4	11.3	10.8	5.5
$J(H_{3\alpha}-H_{4\alpha})$	6.8	11.9	5.3	7.0
$J(H_{3\alpha}-H_{4\beta})$	4.3	5.6	4.3	9.0
$J(H_{3\beta}-H_{4\alpha})$	10.1	5.9	10.4	4.6
$J(\mathrm{H}_{3\beta}-\mathrm{H}_{4\beta})$	5.9	3.6	5.3	5.6

*Intensity threshold in all cases was 0.05. The total number of transitions above the intensity threshold was 80, and 60-65 transitions were used in the fitting.

†CDCl₃ solution.

 $DMSO-d_6$ solution.

below) showed average values of $\delta_{C(1)H} = 4.26 (\pm 0.13)$ ppm and $J_{1-2} = 8.6 (\pm 0.8)$ Hz. Finally, stereochemistry of 2-amino-1-tetralols has also been confirmed independently by derivatization into the corresponding tricyclic oxazolidin-2-one derivatives (11).

The cycloaliphatic region of the ¹H nmr spectra of *cis* derivatives 1a, b, f and 2a, b, f was almost superimposable. Consequently, we decided to carry out the spin system analysis by means of the LAOCOON-3 program of compound *cis*-1*b*, which was taken as standard for this purpose (Table 1). Coupling constant values between C(2)H and C(3)H_{α}/C(3)H_{β} indicate a C(2)H axial disposition and, accordingly, a major or exclusive conformation in which the OH group is pseudoaxial and the NHR group is pseudoequatorial. In this conformation, *peri* interaction between the C(1)OH and C(8) groups (H in *cis*-1*b*) is avoided and intramolecular OH–NHR hydrogen bonding can be established. Pseudoequatorial C(1)H disposition in *cis* derivatives was confirmed by a nuclear Overhauser effect (nOe) (21) enhancement. Thus, irradiation of the C(8)OCH₃

group of cis-1f gave rise to a C(1)H nOe enhancement of 13%. On the other hand, a long-range W coupling (22) (J = 0.9 Hz) was also observed for C(1)H with C(3 α)H in cis-1f and cis-2f derivatives, thus indicating a pseudoequatorial disposition for the above proton.

Theoretical calculations may be used as an independent criterion for performing conformational analysis. By means of the highly reliable Allinger's MM2 force field program (23), energies and geometries of both limited conformers *cis*-A and *cis*-B (Scheme 9) of compounds *cis*-1b and *cis*-1f have been calculated (Table 2). In both cases, *cis*-A conformers turned out to be more stable than the corresponding *cis*-B ones; the observed steric energy differences between them indicate a *cis*-A/*cis*-B relative population of 99:1, which is in agreement with the results of the ¹H nmr study. Moreover, application of the Karplus-Altona equation (24) to the dihedral angles obtained from MM2 analysis afforded a set of coupling constants (Table 2) very similar to those experimentally found (Table 1).

As in the *cis* series, *trans* derivatives 1a-e and 2a-e showed a nearly superimposable cycloaliphatic region in their ¹H nmr spectra. Spin system analysis of the model compound trans-1b (Table 1) indicates a pseudoaxial C(2)H disposition and, consequently, a dipseudoequatorial relationship between amino and hydroxyl groups. This conformation is stabilized by intramolecular hydrogen bonding (broad signal between 3500 and 3000 cm⁻¹ in the ir spectra), which overcomes the low *peri* interaction between C(1)OH and C(8)H groups. Accordingly, MM2 calculations for trans-A and trans-B conformers indicate the higher stability of the diequatorial *trans*-B conformer ($\Delta E =$ 1.21 kcal/mol) as well as a relative population of about 90:10 trans-B vs. trans-A. Once again, application of the Karplus-Altona equation to the predicted C(2)H coupling constants afforded mean J values in agreement with the experimental ones

Dimethoxylated derivatives *trans*-1*f* and *trans*-2*f* were exceptional, since C(1)H protons showed lower J_{1-2} coupling constant and chemical shift values (0.3–0.4 ppm) with respect to C(8) unsubstituted derivatives, such as *trans*-1*b* (Table 1). This is consistent with an equilibrium between *trans*-A and *trans*-B conformers in which participation of *trans*-A would be important to avoid the strong *peri* interaction between C(1)OH and C(8)OCH₃ groups. This situation stands out in DMSO- d_6

Compound		Co	onformer A	*	Co	nformer B	k			
	Protons	θ	J calcd.	Steric energy	θ	Steric J calcd. energy		$\Delta E = E_{\rm A} - E_{\rm B}$ (kcal/mol)	% A/B	J average
cis-1b	$\begin{array}{c} H_1 - H_{2\alpha} \\ H_{2\alpha} - H_{3\alpha} \\ H_{2\alpha} - H_{3\beta} \end{array}$	-49.08 65.66 -174.43	3.06 2.88 11.82	6.27	45.30 -60.25 59.29	4.69 2.59 3.73	8.97	-2.70	99/1	3.08 2.89 11.73
cis- 1 f	$\begin{array}{c} H_1 - H_{2\alpha} \\ H_{2\alpha} - H_{3\alpha} \\ H_{2\alpha} - H_{3\beta} \end{array}$	-49.99 65.90 -174.02	2.96 2.85 11.81	9.89	35.75 -60.11 59.74	5.82 2.61 3.66	13.51	-3.62	99/1	2.97 2.85 11.79
trans-1b	$\begin{array}{c} H_1 - H_{2\alpha} \\ H_{2\alpha} - H_{3\alpha} \\ H_{2\alpha} - H_{3\beta} \end{array}$	-74.45 -59.57 59.85	1.96 2.67 3.65	7.93	-168.15 65.92 -174.07	8.63 2.85 11.81	6.72	1.21	10/90	7.87 2.83 10.88
trans-1f	$\begin{array}{c} H_1 - H_{2\alpha} \\ H_{2\alpha} - H_{3\alpha} \\ H_{2\alpha} - H_{3\beta} \end{array}$	-74.00 -59.78 59.80	2.01 2.65 3.66	11.57	-158.41 64.98 -174.64	7.49 2.96 11.82	12.64	-1.07	85/15	2.78 2.69 4.81

 TABLE 2. Selected coupling constants, dihedral angles, and relative energies of cis-1b, trans-1b, cis-1f, and trans-1f (from MM2 analysis and the Karplus-Altona equation)

*See Scheme 9.

solution $(J_{1-2} = 3.5 \text{ Hz} \text{ for } trans-1f)$ more than in CDCl₃ solution $(J_{1-2} = 7.2 \text{ Hz} \text{ for } trans-1f \text{ and } 6.2 \text{ Hz} \text{ for } trans-2f)$, probably due to the solvating properties of DMSO, which stabilizes the *trans*-A conformation by intermolecular hydrogen bonding. As expected, intramolecular hydrogen bonding is reinforced by protonation of the amino group. Thus, the J_{1-2} value for *trans*-1f in DMSO- d_6 + TFA rises to 6.4 Hz, which is in agreement with a major *trans*-B conformation as in *trans*-1a-e derivatives. The major *trans*-A conformation of *trans*-1f in DMSO- d_6 solution was confirmed by a C(1)H nOe enhancement of 10% on irradiation of the C(8)OCH₃ group. However, although these findings are indicative of conformational equilibrium, no variation of J_{1-2} coupling constants was observed in the temperature range between -60° C (CDCl₃) and $+60^{\circ}$ C (DMSO- d_6).

As above, results of MM2 force field calculations of *trans-1f* (Table 2) were in agreement with ¹H nmr experimental data. Thus, the *trans-A* diaxial conformer turned out to be more stable than the *trans-B* ($\Delta E = 1.07 \text{ kcal/mol}$), and a relative population of about 85% could be estimated for the former. Coupling constant values derived from the Karplus–Altona equation (Table 2) correlate well with those found experimentally in DMSO- d_6 (Table 1). However, spin system analysis of *trans-1f* in CDCl₃ afforded a set of coupling constants similar to those found for *trans-1b* by MM2 calculations, which implies the predominance of the diequatorial *trans-B* conformation in nonpolar solvents.

Finally, ¹³C nmr data (Table 3) are also in good agreement with the above results. Thus, in CDCl₃ solution, carbon atom C(1) is observed at 73.2 (\pm 1.4) ppm in *trans* isomers and at 66.5 (\pm 3.2) ppm in *cis* ones. The upfield shift found in *cis* isomers is consistent with the known shielding effect exerted by a pseudoaxial C(1)OH group upon the benzylic carbon atom in a tetralol system (18). On the other hand, carbon atom C(3) is also shielded in some *cis* isomers with respect to *trans* ones, due to a γ -gauche effect exerted by the pseudoaxial C(1)OH group. As expected, the C(1) chemical shift of *trans*-1f in DMSO-d₆ solution showed an upfield shift of about 6 ppm, whereas C(3) and C(4) carbon atoms were shielded 3.8 and 2.9 ppm, respectively. Once again, this is consistent with the major *trans*-A diaxial conformation expected for trans-1f in this solvent.

Experimental

Melting points were determined in a capillary tube on a Buchi apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1430 spectrophotometer. Proton magnetic resonance spectra were measured at 60 MHz with a Perkin-Elmer R 24B instrument or at 200 MHz with a FT Varian XL-200 spectrometer. Signal positions are reported in ppm downfield from tetramethylsilane (δ scale) as an internal standard, and CDCl₃ as a solvent, unless otherwise indicated. The ¹³C nmr spectra were measured at 50.3 MHz with a Varian XL-200 spectrometer, with internal tetramethylsilane as a reference. Multiplicity of the signal was determined by the ADEPT program (25). Homonuclear chemical shift correlation ${}^{1}H/{}^{1}H$ was determined by the HOMCOR program (26) and heteronuclear chemical shift correlation ¹³C/¹H by the HETCOR program (27). MM2 calculations were performed on an IBM/3083 computer. Mass spectra were recorded on a Hewlett-Packard 5930 A spectrometer. Solutions in organic solvents were dried over anhydrous sodium sulfate and stripped of solvent with a rotary evaporator connected to a water aspirator. Microanalyses were performed by the Departamento de Quimica Organica Biologica (C.S.I.C.), Barcelona.

General synthetic methods

Benzyl-3,4-dihydro-2H-1-naphthalenones (3c-e) Method A

To a mixture of 0.1 mol of the corresponding hydroxytetralone 3g (28), 3h (29), or 3i (30) and 0.25 mol of anhydrous potassium carbonate, 0.1 mol of benzyl chloride in 150 mL of dry dimethyl-formamide was added dropwise. The reaction mixture was stirred at 80–100°C for 4 h, poured into ice-water and extracted with ether. The organic extracts were washed with brine, dried, and evaporated to afford 3c-e. Compound 3c (see also Table 4), ir (CHCl₃): 1680 (C=O); ¹H nmr (CCl₄): 2.0 (m, 2H, C(3)H₂), 2.4 (m, 2H, C(2)H₂), 2.8 (m, 2H, C(4)H₂), 4.9 (s, 2H, CH₂C₆H₅), 6.7–7.5 (m, 3H, ArH), 7.1 (s, 5H, C₆H₅). Compound 3d (see also Table 4), ir (KBr): 1660 (C=O), 1600; ¹H nmr (CCl₄): 2.0 (m, 2H, C(3)H₂), 2.4 (t, 2H, C(2)H₂), 2.7 (t, 2H, C(4)H₂), 4.8 (s, 2H, OCH₂C₆H₅), 6.5 (s, 1H, C(5)H), 6.6 (dd, 1H, C(7)H), 7.1 (s, 5H, C₆H₅), 7.6 (d, 1H, C(8)H). Compound 3e (10) (80%).

2-Hydroxyimino-3,4-dihydro-2H-1-naphthalenones (4a,b,d-f) Method B

An ice-cooled solution of 30 mmol of potassium tert-butoxide,

TABLE 3. ¹³C nuclear magnetic resonance data (tetrahydronaphthalene carbon atoms) of 2-amino-1,2,3,4-tetrahydro-1-naphthalenols (CDCl₃ solution)

Compound	R	R′	C(1)	C(2)	C(3)	C(4)	C(4a)	C(5)	C(6)	C(7)	C(8)	C(8a)
trans-1a	н	н	74.8	53.8	29.1	27.7	135.6#	126.0*	126.9*	127.0*	128.1*	137.9#
cis- 1 a	Н	Н	69.8	50.7	(28.0)	(27.5)	135.9#	126.2*	127.8*	128.6*	130.2*	137.2#
trans-1b	5-OCH ₃	Н	74.7	53.4	28.5	22.0	124.6	156.5	108.2	126.6	118.8	139.4
cis-1b	5-OCH ₃	Н	69.7	50.3	25.9	21.6	124.9	156.8	108.8	126.7	122.0	138.5
trans- 1 c	5-OBzl	Н	74.3	53.2	28.7	21.9	124.6	155.0	109.3	126.0	119.8	141.0
trans-1d	6-OBzl	Н	74.2	54.1	29.0	27.7	137.4	112.8*	157.0	113.4*	127.8	132.3
trans- 1 e	7-OBzl	Н	74.7	53.9	29.4	26.8	128.3	128.9	113.6*	156.7	113.4*	141.1
trans-1f	$5,8-(OCH_3)_2$	Н	72.6	52.6	27.4	21.5	127.2*	151.1#	(107.7)	(108.6)	152.0#	127.3*
cis-1f	$5,8-(OCH_3)_2$	Н	63.7	50.9	25.1	23.7	126.1*	151.8#	(108.1)	(109.0)	150.8#	128.8*
trans-2a	Н	i-Pr	73.2	57.9	28.3	26.8	138.0#	126.9*	127.0*	128.2*	126.2*	135.5#
cis- 2 a	Н	i-Pr	67.2	54.4	24.4	27.7	136.9#	126.2*	127.7*	128.5*	130.6*	135.9#
trans- 2 b	5-OCH ₃	i-Pr	72.4	56.9	25.3	21.9	124.5	156.4	108.2	126.6	119.1	139.2
cis- 2 b	5-OCH ₃	i-Pr	67.3	53.9	23.7	21.5	125.1	156.8	108.8	126.8	122.5	138.4
trans-2c	5-OBzl	i-Pr	72.9	57.5	23.1	22.7	124.4	155.7	109.7	126.7	119.3	139.6
trans-2d	6-OBzl	i-Pr	72.4	57.8	26.2	28.0	137.1	113.8*	157.7	113.1*	128.6	130.7
trans-2e	7-OBzl	i-Pr	73.2	58.1	(27.5)	(27.1)	127.5	127.7	114.7*	157.4	112.1*	139.2
trans- 2 f	$5,8-(OCH_3)_2$	i-Pr	69.7	55.6	22.7	21.0	128.4#	151.2*	(107.8)	(108.7)	152.3*	127.5#
cis-2f	5,8-(OCH ₃) ₂	i-Pr	61.6	53.9	(23.4)	(23.6)	127.0#	151.3*	(107.7)	(109.3)	152.6*	127.3#

Parentheses and the superscripts * and # imply that the values may be interchanged.

in 35 mL of tert-butanol and 150 mL of dry ether under a nitrogen atmosphere, was treated with 28 mmol of the appropriate tetralone 3a-f and 36.5 mmol of freshly distilled butyl nitrite or isoamyl nitrite. After heating at reflux temperature (3 h for tetralones 3a, 3c, and 3d, and 10 min for tetralone 3e) or stirring at room temperature for 30 min (tetralones 3b and 3f) the reaction mixture was quenched with water and washed with ether. The aqueous phase was made acidic with 2 M HCl and extracted with dichloromethane to afford hydroxyiminotetralones. Compounds 4a (5) (85%), 4b (66%), and 4f (52%) were used without further purification. Compound 4b, ir (KBr): 3300-3100 (OH), 1720 (C==O), 1580 (C==N); ¹H nmr: 2.9 (m, 4H, C(3)H₂ + C(4)H₂), 3.8 (s, 3H, OCH₃), 6.6-7.7 (m, 3H, arom.). Compound 4d (E isomer) (see also Table 4), ir (KBr): 3500-3000 (OH), 1680 (C=O), 1590 (C=N); ¹H nmr (DMSO- d_6): 2.9 (s, 4H, C(3)H₂ + $C(4)H_2$, 4.9 (s, 2H, OCH₂C₆H₅), 6.6 (s, 1H, C(5)H), 6.7 (dd, J = 8 Hz and J = 2 Hz, 1H, C(7)H), 7.1 (s, 5H, C₆H₅), 7.7 (d, J =8 Hz, 1H, C(8)H); ms, m/e (relative intensity): 281 (0.2), 91 (100). Compound 4e, (10) (60%). Compound 4f, ir (KBr): 3200 (OH), 1695 (C=O); ¹H nmr: 2.9 (s, 4H, C(3)H₂ + C(4)H₂), 3.7 (s, 3H, OCH₃), 6.7 (s, 2H, arom.), 7.8 (br, 1H = N - OH).

Evaporation of the ethereal washings from reaction of tetralone 3dwith isoamyl nitrite afforded a residue, which was chromatographed on silica gel. On elution with benzene - ethyl acetate (95:5), the Z isomer of oxime 4d was isolated (Table 4); ir (CHCl₃): 2900-2800 (OH str), 1600 (N=O); ¹H nmr: 2.9 (s, 4H, C(3)H₂ + C(4)H₂), 4.9 (s, 2H, $OCH_2C_6H_5$), 6.6 (s, 1H, C(5)H), 6.8 (dd, J = 9 Hz and J = 2 Hz, 1H, C(7)H), 7.2 (s, 5H, C₆H₅), 7.8 (d, J = 9 Hz, 1H, C(8)H), 15.2 (s, 1H, =NOH); ms, m/e (relative intensity): 281 (0.2), 91 (100). On elution with benzene - ethyl acetate (90:10), a mixture of E- and Z-4-benzyloxy-2-(2-formylethyl) isopentyl benzoate oximes (9d) was isolated (Table 4); ir (NaCl): 3500-3150 (N-OH), 1710 (C=O), 1610 (C=N); ¹H nmr: 0.9 (d, 6H, CH₃-ipr), 1.5 (m, 3H, CH₂CH), 2.5 (m, 2H, CH₂CH=N), 3.1 (m, 2H, CH₂Ar), 4.1 (m, 2H, COOCH₂), 4.9 (s, 2H, CH₂C₆H₅), 6.6 (m, 1H, CH==N), 6.6 (s, 1H, C(5)H), 7.2 (s, 5H, C₆H₅), 7.2 (m, 1H, C(7)H), 7.8 (d, 1H, C(8)H), 8.3 (br, 1H, N—OH); ms, m/e (relative intensity): 369 (0.05), 91 (100).

Ethereal washings from reaction of tetralone 3*d* with butyl nitrite afforded a residue, which was chromatographed on silica gel. On elution with benzene – ethyl acetate (90:10), butyl 4-benzyloxy-2-(2-cyanoethyl)benzoate **10** (Table 4) was obtained; ir (NaC1): 2240 (CN), 1710 (C==O); ¹H nmr (CCl₄): 0.9 (m, 3H, CH₃), 1.1–1.8 (m, 4H, CH₂CH₂CH₃), 2.5 (t, 2H, CH₂CN), 3.1 (t, 2H, CH₂Ar), 4.1 (t, 2H, COOCH₂), 4.9 (s, 2H, OCH₂C₆H₅), 6.6 (dd, 1H, C(7)H), 6.7 (s, 1H, C(5)H), 7.1 (s, 5H, C₆H₅), 7.7 (d, 1H, C(8)H); ms, *m/e* (relative intensity): 337 (1), 105 (20), 91 (100).

Similarly, ethereal washings from reaction of tetralones 3b and 3f with butyl nitrite afforded oximes 9b and 9f, respectively (Table 4). Compound 9b, ir (KBr): 3300–3100 (OH), 1720 (C=O), 1580 (C=N); ¹H nmr: 0.8–1.9 (m, 7H, CH₂CH₂CH₃), 2.5 (m, 2H, CH₂=CH), 3.1 (m, 2H, ArCH₂), 3.7 (s, 3H, OCH₃), 4.2 (m, 2H, COOCH₂-), 6.5–7.5 (m, 4H, CH=N + 3H arom.), 8.3 (br, 1H, OH). Compound 9f, ir (CHCl₃): 3550, 3300, 1725, 1610; ¹H nmr: 0.7–1.9 (m, 7H, CH₂CH₂CH₃), 2.2–3.0 (m, 4H, ArCH₂CH₂), 3.6 (s, 6H, 2OCH₃), 4.2 (t, 2H, COOCH₂), 6.6 (s, 2H, arom.), 7.2 (m, 1H, CH=N), 8.3–9.3 (br, 1H, =NOH); ms, m/e (relative intensity): 309 (13), 236 (24), 218 (50), 193 (100).

2-Acetamido-3,4-dihydro-2H-naphthalenones (5a,b,d-f) Method C

Zinc dust (190 mmol) was added portionwise to an externally cooled solution of 2-hydroxyiminotetralone (65 mmol) in 110 mL of acetic anhydride and 150 mL of acetic acid. After stirring for 1 h at room temperature, solids were removed by filtration and the solution was evaporated *in vacuo*. The residue was made alkaline with 2 *M* sodium hydroxide solution and extracted with dichloromethane. Evaporation of the organic phase afforded crude acetamidotetralones **5**. Acetamidotetralones **5***a* (5) (65%) and **5***b* (31) (62%) afforded analytical data comparable to those described in the literature. Compound **5***d* (see also Table 4), ir (KBr): 3320 (NH amide), 1680 (C=O), 1645–1620 (CONH); ¹H nmr: 1.3–2.0 (m, 1H, C(3)H_e), 2.0 (s, 3H, CH₃), 2.4–3.2 (m, 3H, C(3)H_a + C(4)H₂), 4.2–4.7 (m, 1H, C(2)H), 5.0 (s, 2H, OCH₂C₆H₅), 6.4–6.8 (dd, 1H, C(5)H), 6.5 (s, 1H, NHCO), 6.5 (s, 1H, C(7)H), 7.1 (s, 5H, C₆H₅), 7.7 (d, 1H, C(8)H). Compound

	Molecular formula	Calculated				Found						
Compound			H	N	X*	C	H	Ν	X*	(method)	Melting point (°C)	solvents
cis-1a	$C_{10}H_{13}NO \cdot (C_2H_2O_4)$	56.91	5.97	5.53		57.15	6.19	5.71		60(J)	163–165	Ethanol
tranc-1b	C. H. NO. HCI	57 50	7.02	6.00	15 42	57 55	7 21	6.02	15 61	45(U)/42(I)	(Iit. (35) 213, HCl) = 224, 226	Ethanol athar
cis-1b	$C_1H_15NO_2$ HCl	57.52	7.02	6.09	15.45	57.55	7.21	6.18	15.01	$43(\Pi)/43(\Pi)$	224-220	Ethanol ether
trans-1c	C ₁ H ₁ SNO ₂ HCl	66 77	6 50	1 58	11 50	66 70	6 57	4 61	11.70	01(1)	230-240	Ethanol ether
trans-10		00.77	0.59	4.50	11.59	00.79	0.57	4.01	11.70	91(1)	(1)t (14) 139 - 141 base)	Ethanoi-ethei
trans-1d	$C_{17}H_{10}NO_{2}$	74 56	7 18	5 1 1		74 34	7 35	5.05		60(H)/75(I)	(111. (14) 159 - 141, base) 97_98	Ether_bexane
nuns iu		74.50	7.10	5.11		74,04	1.55	5.05		00(11)/ / 5(1)	(lit (32) 210 - 212 HCl)	Ether-nexalie
trans-1e	$C_{12}H_{10}NO_{2}\cdot\frac{1}{2}H_{2}O$	73 35	7 24	5.03		73 33	7 17	4 88		80(H)/90(1)	115–118	Ether – ethyl acetat
in tants I to		15.55	1.24	5.05		15.55	7.17	4.00		00(11)/ 00(1)	(1it (10) 125 - 126)	Ether – ethyr acetai
trans-1 f	CuaHuaNOa HCl	55 49	6 98	5 39	13.65	55 34	6.98	5 36	13 72	80(H)	195-196†	Ethanol-ether
cis-1f	C ₁₂ H ₁₇ NO ₂ ·HCl	55 49	6.98	5 39	13.65	55 32	6 97	5 38	13.62	57(I)/71(H)	220-221†	Ethanol_ether
trans-19	C ₁₀ H ₁₀ NO ₂ ·HCl	55 69	6 54	6 4 9	16 44	55.68	6 55	6 54	16.21	85(M)	234-236	Ethanol_ether
trans-1h	$C_{10}H_{13}NO_2$	67.02	7 31	7.81		67.05	7 40	7 50		46(M)	187-189	Methanol
trans-1i	$C_{10}H_{12}NO_2$	67.02	7 31	7.81		67.09	7.61	7.50		50(M)	183-185	Ethanol_ether
in units It		07.02	1.51	7.01		07.07	7.01	1.11		50(141)	(101, 100, 100, 100, 100, 100, 100, 100,	Ethanor ener
trans-2a	CueHaaNOa+HCl	59 69	8 01	4 64	11 74	59 69	8 11	4 64	11.82	75(L)	217-219	Ethanol-ether
cis-2a	$C_{15}H_{25}HO_{3}HO_{1}$	59.69	8 01	4.64	11 74	59 39	8 07	4 60	11.02	68(L)	204-205	Ethanol_ether
trans-2h	$C_{14}H_{23}NO_{2}HCl$	61.87	8 16	5 15	13.04	61.59	8 15	5.06	13.21	98(K)	190-193	Ethanol_ether
cis-2h	$C_{14}H_{21}NO_{2}HCl$	61.87	8 16	5 15	13.04	61.62	8.05	5 21	13.16	98(K)	255-256	Ethanolether
trans-2c	$C_{20}H_{20}NO_2 HCl$	69.05	7 53	4 02	10.19	68.88	7 83	3 90	10.20	91(K)	203-204	Ethanol_ether
		07.05	1.55	4.02	10.17	00.00	1.05	5.70	10.20		(1it (14) 220 - 223)	Ethanor ether
trans-2e	CaoHacNOa · HCl	69.05	7 53	4 02	10.19	68 81	7 70	3 97	10.22	85(K)	185-187	Ethanol-ether
trans-2f	$C_{16}H_{23}NO_{2}HCl$	59.69	8.01	4 64	11 74	59.79	7 98	4 63	11 61	75(L)	217-219	Ethanol_ether
cis-2f	$C_{12}H_{22}NO_2 HC1$	59.69	8.01	4 64	11.74	50 30	8.07	4.60	11.01	68(L)	203-204	Ethanol ether
trans-2.9	C ₁₂ H ₁₂ NO ₂ ·HCl	60.57	7 82	5 43	13 75	60.81	8.16	5 71	13 64	85(M)	Oil	(Chromatography)
trans-2i	CurHueNO2 HCl	60.57	7.82	5 43	13.75	60.61	7.90	5 40	13.04	91(M)	195-197	Ethanol_ether
3d	CurtheOn	80.92	6 39		15.15	81.05	6 51	5.40	15.47	$78(\Lambda)$	95_96	Hexane
3e-oxime	CiaHiaNOa	73.68	6 4 1	5 24		76 49	6 52	5 26		89(F)	103-106	Ether_hexane
E-4d	CiaHieNOa	72 58	5 37	4 98	_	72 41	5 33	4 90		58(B)	172 (dec)	Ethel acetate
Z-4d	CuaHueNOa	72.58	5 37	4.98		72.35	5 21	4.96		3(B)	115-117	Ether
$\frac{2}{5d}$	CuoHuoNO	73 76	6 19	4 52		73 77	6 19	4.56		65(C)	156-158	Ether
5 f	CuHuaNO	63.86	6 50	5 32		63 59	6 50	5 32		55(C)	175-176	Ethyl acetate
trans-6d	CupHanNOa	73.20	6.80	4 50		73 20	6.83	4 53		70(D)	175-170	Methanol_ether
trans-6f	CuHioNO	63 38	7 21	5 28		63 17	7 23	5 22		94	191_192	Fthyl acetate
cis- 6 f	$C_1 H_{10} NO_4$	63 38	7.21	5 28	_	63 34	7 47	5.18		51	137_138	Ether – ethyl acetat
7h	CurHueNO4S	59.10	5 54	4 05	9.28	59.23	5.60	4 02	9.10	77(F)	150-152	A cetone
. с 7е	$C_{24}H_{22}NO_4S \cdot \frac{1}{2}H_2O$	66 95	5 61	3 25	7 44	67.07	5 51	3 28	7 21	85(F)	112-115	Fther_acetone
8b	$C_{11}H_{13}NO_{2}HCl$	58 02	6.19	6 15	15 57	58 17	6 44	5 94	15 63	54(G)	210-212	Ethanol_ether
9h	C ₁₆ H ₂₁ NO ₄	64 49	7 57	5 01		64 77	7.68	5 16		14(B)	84_85	Ether_hevane
9 d	$C_{12}H_{21}NO_4$	71.52	7 36	3 79		71 71	7 44	3 78		8(B)	59-61	Ether_hexane
9 <i>f</i>	$C_{14}H_{22}NO_{5}$	62 12	7 48	4 52		62 04	7 52	4 46		10(B)	64-66	Ether_hexane
12	C14H16NO4	64 36	5 78	5 36		64 58	5 90	5 32		12(C)	130-131	Ether – ethyl acetat
13	C_{14} H_{15} NO_{2}	67.99	6 92	5.66		68 12	7 15	5.84		70	102-103	Ether_hexane

*Cl or S according to the formula.

[†]Literature (7) mp 199–202°C, mixture of *cis*-1*f* and *trans*-1*f* hydrochlorides.

5 $_{e}$ (10) (60%). Compound **5** $_{f}$ (see also Table 4), ir (KBr): 3300, 3100, 1705, 1670, 1640; ¹H nmr: 2.0 (s, 3H, CH₃CO), 2.6–3.3 (m, 4H, C(3)H₂ + C(4)H₂), 3.73 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 4.6 (m, 1H, C(2)H), 6.8 (dd, 3H, C(6)H + C(7)H + NHCO).

Reduction of acetamidotetralone **5***f* also afforded 2-acetamido-5,8dimethoxy-1-naphthol **12** (Table 4) after chromatography of the crude reaction mixture (elution system: hexane – ethyl acetate 1:1); ir (KBr): 3430, 3340, 2850, 1690, 1530; ¹H nmr (200 MHz): 2.23 (s, 3H, CH₃CO), 3.91 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.57 (dd, 2H, C(6)H + C(7)H), 7.71 (d, J = 8 Hz, 1H, C(3)H), 7.84 (br, 1H, NHCO), 8.51 (d, J = 8 Hz, 1H, C(4)H), 9.69 (s, 1H, OH); ¹³C nmr (CDCl₃): 28.4 (CH₃), 101.7, 103.7 (C-6 or C-7), 113.6 (C-3), 115.0 (C-4a), 120.1 (C-4), 122.8 (C-8a), 124.2 (C-2), 141.0 (C-1), 149.3, 150.3 (C-5 and C-8), 168.2 (CO).

trans-2-Acetamido-1,2,3,4-tetrahydro-1-naphthalenols (trans-6a,b,d,e) Method D

A solution of 285 mg (75 mmol) of sodium borohydride in 4 mL of water was added dropwise with external cooling to a solution of 15 mmol of the corresponding acetamidotetralone **5** in 15 mL of methanol. After stirring at room temperature until formation of a white precipitate, the resulting solid was washed with water and dried to afford *trans*-**6***a* (5) (80%), *trans*-**6***b* (31) (82%), *trans*-**6***d* (Table 4), and *trans*-**6***e* (10) (95%). Compound *trans*-**6***d*, ir (KBr): 3400–3100 (OH, NHCO), 1630; ¹H nmr (DMSO-*d*₆): 1.7 (s, 3H, CH₃CO), 1.8 (m, 2H, C(3)H₂), 2.7 (m, 2H, C(4)H₂), 3.4–4.0 (m, 2H, C(2)H), 4.3 (m, 1H, C(1)H), 4.9 (s, 2H, OCH₂C₆H₅), 6.5 (s, 1H, C(5)H), 6.7 (dd, 1H, C(7)H), 7.2 (d, 1H, C(8)H), 7.3 (s, 5H, C₆H₅), 7.6 (d, 1H, NH).

trans-2-Acetamido-5,8-dimethoxy-1,2,3,4-tetrahydro-1-naphthalenol (trans-6f)

A solution of 2.0 g (7.6 mmol) of acetamidotetralone **5***f* in 125 mL of methanol was hydrogenated (1 atm, 25°C) over 153 mg (0.78 mmol) of Adams catalyst. After absorption of the theoretical volume, the solution was filtered and the solvent was removed to afford a mixture of diastereomeric acetamidotetralols **6***f* (*trans/cis* ratio 9:1, based on ¹H nmr). Successive crystallizations afforded pure *trans*-**6***f* (Table 4), ir (KBr): 3350, 2950, 1660, 1540; ¹H nmr (200 MHz): 1.80 (m, 1H, C(3)H_a), 1.93 (s, 3H, CH₃CO), 2.16 (m, 1H, C(3)H_a), 2.76 (m, 2H, C(4)H_a + C(4)H_e), 3.78 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.20 (m, 1H, C(2)H), 4.84 (d, J = 4.97 Hz, 1H, C(1)H), 6.74 (s, 2H, C(6–7)H); ¹³C nmr (CDCl₃): 20.0 (C-4), 22.7 (CH₃ and C-3), 50.7 (C-2), 66.1 (C-1), 108.6, 109.9 (C-6 and C-7), 126.2, 127.4 (C-4a and C-8a), 151.6, 153.1 (C-5 and C-8), 172.2 (CO).

cis-2-Acetamido-5,8-dimethoxy-1,2,3,4-tetrahydro-1-naphthalenol (cis-6f)

To an ice-cooled stirred suspension of 2.0 g (7.6 mmol) of 2-acetamidotetralone 5f in 20 mL of methanol, a solution of 144 mg (3.8 mmol) of sodium borohydride in 4 mL of water was added dropwise. After 1 h stirring at room temperature the reaction mixture was poured into 100 mL of water, and the methanol was removed in vacuo. The aqueous phase was extracted with dichloromethane and the organic extracts afforded a residue, which was chromatographed on silica gel. On elution with ethyl acetate, 1.4 g of a cis-trans mixture of acetamidotetralols 6f were obtained (cis/trans ratio, 65:35 based on ¹H nmr). Analytically pure cis-6f was obtained by crystallization (Table 4); ir (KBr): 3350, 2950, 1640; ¹H nmr (200 MHz): 1.9 (m, C(3)H_{a+c}), 2.01 (s, 3H, CH₃CO), 2.58 (m, 1H, C(4)H_a), 2.95 (m, 1H, C(4)H_e), 3.78 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.02 (m, 1H, C(2)H), 4.93 (d, J = 4.25 Hz, 1H, C(1)H), 6.74 (m, 2H, C(6-7)H); ¹³C nmr (CDCl₃): 22.7, 23.2 (C-3 and C-4), 23.5 (CH₃), 48.9 (C-2), 63.2 (C-1), 107.7, 109.5 (C-6 and C-7), 126.8, 127.0 (C-4a and C-8a), 151.4, 151.7 (C-5 and C-8), 169.6 (CO).

When the above reaction mixture was poured into 6 *M* hydrochloric acid, and the methanol was removed *in vacuo* on a steam-bath, similar work-up afforded *cis*-2-methyl-6,9-dimethoxy-3a,4,5,9b-tetrahydronaphtho[2,1-*d*]oxazol (**13**) (Table 4); ¹H nmr (200 MHz): 1.84 (m, 1H, C(3)H_a), 1.96 (s, 3H, CH₃), 2.10 (m, 1H, C(3)H_e), 2.48 (m, 1H, C(4)H_a), 2.89 (m, 1H, C(4)H_e), 3.84 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 4.48 (m, 1H, C(3)H_a), 5.87 (d, J = 9.7 Hz, 1H, C(9b)H),

6.74 (d, J = 8.9 Hz, 1H, arom.), 6.83 (d, J = 8.9 Hz, 1H, arom.); ms, m/e (relative intensity): 248 (6), 247 (30), 188 (100), 173 (96); ¹³C nmr (CDCl₃): 14.1 (CH₃), 17.5 (C-5), 27.4 (C-4), 63.2 (C-3a), 73.3 (C-9b), 108.3, 110.0 (C-7 and C-8), 122.4 (C-5a), 130.4 (C-9a), 150.4, 152.8 (C-5 and C-8), 165.7 (C-2).

3,4-Dihydro-2H-1-naphthalenone oximes (3a-e oximes) Method E

A solution of 50 mmol of tetralone 3a-e and 8.0 g (115 mmol) of hydroxylamine hydrochloride in 25 mL of dry pyridine was heated at reflux temperature for 12 h. After pouring into water, the reaction mixture was extracted with dichloromethane and the organic layers were washed with 1 *M* hydrochloric acid and 0.5 *M* sodium bicarbonate. Evaporation of the organic solvent afforded the required oximes; 3a-oxime (33) (96%), 3b-oxime (34) (84%), 3c-oxime (14) (97%), 3d-oxime (32) (97%), and 3e-oxime (Table 4); ir (KBr): 3340–3000 (OH), 1620 (C=N); ¹H nmr: 1.4–1.9 (m, 2H, C(3)H₂), 2.4–2.8 (m, 4H, C(2)H₂ + C(4)H₂), 4.8 (s, 2H, OCH₂C₆H₅), 6.6–7.5 (m, C(5) + C(6) + C(8)), 7.2 (s, 5H, C₆H₅), 9.3 (br, 1H, N—OH).

3,4-Dihydro-2H-1-naphthalenone O-tosyloximes (7a-e) Method F

A solution of 43 g (75 mmol) of p-toluenesulfonyl chloride in 80 mL of dry pyridine was added dropwise to an ice-cooled solution of the requisite naphthalenone 6a-e oxime (75 mmol) in 80 mL of dry pyridine. After stirring for 16 h at room temperature, the reaction mixture was poured into water and extracted with dichloromethane. The organic layers were washed with 2 M hydrochloric acid, 0.5 M sodium bicarbonate, and dried. Evaporation afforded crude tosyloximes 7a (5) (83%), 7c (14) (90%), 7d (32) (89%), 7b, and 7e (Table 4). Compound 7b, ir (KBr): 1600, 1575; ¹H nmr: 1.5-2.0 $(m, 2H, C(3)H_2), 2.4 (s, 3H, CH_3-Ar), 2.5-2.7 (m, 4H, C(2)H_2 +$ $C(4)H_2$, 3.7 (s, 3H, OCH₃), 6.6–7.4 (m, 3H, C(6–8)H), 7.2 (d, J = 8 Hz, 2H, C(3')H + C(5')H), 7.8 (d, J = 8 Hz, 2H, C(2')H + C(6')H). Compound 7*e*, ir (KBr): 1590; ¹H nmr: 1.7 (m, 2H, C(3)H₂), 2.3 (s, 3H, CH₃-Ar), 2.6 (m, 4H, $C(2)H_2 + C(4)H_2$), 4.9 (s, 2H, OCH₂C₆H₅), 6.7-7.3 (complex, 3H, C(5-8)H), 7.2 (s, 5H, C₆H₅), 7.4 (dd, 4H, C₆H₄—CH₃).

2-Amino-3,4-dihydro-2H-1-naphthalenone hydrochlorides (8a-e) Method G

To a stirred suspension of 16 mmol of tosyloxime 7a-e in 15 mL of dry benzene a solution of 16.5 mmol of potassium ethoxide in 10 mL of absolute ethanol was added at 0°C under a nitrogen atmosphere. After 24 h at room temperature, the reaction mixture was filtered and the filtrates were poured into 100 mL of 5 *M* hydrochloric acid. After 15 min stirring at room temperature, the aqueous phase was evaporated *in vacuo* (to afford crude hydrochlorides 8a, b) or the resulting precipitate was collected and dried (hydrochlorides 8c-e). In each ease, crystallization from ethanol-ether afforded analytically pure samples. Compound 8a (33) (35%), 8c (14) (75%), 8d (32) (65%), 8e(10) (60%). Compound 8b (see also Table 4), ir (KBr): 3100, 2800, 1690–1640; ¹H nmr (D₂O): 2.1–3.3 (m, 4H, C(3)H₂ + C(4)H₂), 3.7 (s, 3H, OCH₃), 4.3 (dd, 1H, C(2)H), 7.2 (m, 3H, C(6–8)H).

2-Amino-3,4-dihydro-5,8-dimethoxy-2H-1-naphthalenone hydrochloride (8f)

A solution of 250 mg (0.95 mmol) of 2-acetamidotetralone 5f in 20 mL of 0.3 *M* hydrochloric acid was heated at reflux temperature. After 5 h, the reaction mixture was evaporated *in vacuo* to afford crude hydrochloride 8f (14), which was purified by crystallization from ethanol-ether 1:1 (overall yield, 75%).

trans-2-Amino-1,2,3,4-tetrahydro-1-naphthalenols (trans-1a-f) Method H

Alkaline hydrolysis of *trans*-6a, b, d-f: To a solution of 7.5 mmol of the requisite acetamidotetralol *trans*-6a, b, d-f in 80 mL of ethanol, a solution of 6.3 g (110 mg) of potassium hydroxide in 30 mL of water was added dropwise under nitrogen. After 12 h at reflux temperature, the reaction mixture was poured into water, and the ethanol was removed *in vacuo*. The residue was made acidic with 2 *M* hydrochloric acid and washed with ether. The aqueous layer was basified and

extracted with dichloromethane. The organic extracts were dried and evaporated to afford aminoalcohols trans-1a-f (Table 4).

Method I

Sodium borohydride reduction of hydrochlorides 8a-f: Hydrochloride 8a-f (4 mmol) was added portionwise to an ice-cooled solution of sodium borohydride (200 mmol) in 5 M sodium hydroxide (4 mL) and methanol (40 mL). When the addition was complete, the reaction mixture was treated with another 20 mmol of sodium borohydride. After 15 min stirring, 100 mL of water were added, methanol was removed in vacuo, and the aqueous phase was extracted with dichloromethane. Evaporation of the aqueous layer afforded crude aminotetralols trans-1a-f, which were purified by crystallization of the corresponding hydrochloride.

Compound trans-1a (35) (Methods H and I, 45%), trans-1c (14) (Method I, 91%), trans-1d (32) (Method H, 75%; Method I, 60%). Compound *trans-1b* (Table 4), ir (KBr): 3250, 1610, 1590; ¹H nmr (200 MHz, base, see also Table 1): 1.64 (m, 1H, C(3)H_a), 2.04 (m, 1H, C(3)H_c), 2.60 (m, 1H, C(4)H_a), 2.80 (m, 1H, C(4)H_c), 2.88 (m, 1H, C(2)H), 3.81 (s, 3H, OCH₃), 4.33 (d, J = 8.6 Hz, 1H, C(1)H), 6.72 (m, 1H, C(6)H), 7.18 (m, 2H, C(7-8)H); ¹³C nmr: Table 3. Compound trans-1e (Table 4), ir (KBr): 3310, 3250, 1610; ¹H nmr (200 MHz, base): 1.56-1.82 (m, 1H, C(3)H_a), 1.94-2.10(m, 1H, C(3)H_e), 2.76–3.00 (m, 3H, C(4)H₂ + C(2)H), 3.10 (3H, exch.), 4.30 (d, J = 8.8 Hz, 1H, C(1)H), 5.06 (s, 2H, OCH₂C₆H₅), 6.82 (dd, $J_o = 8.43$ Hz, $J_m = 2.72$ Hz, 1H, C(6)H), 6.99 (d, $J_o =$ 8.43 Hz, 1H, C(5)H), 7.19 (d, $J_m = 2.72$ Hz, 1H, C(8)H), 7.31–7.46 (m, 5H, C₆H₅); ¹³C nmr: Table 3. Compound trans-1f (Table 4), ir (KBr): 3400-3300, 2950, 1610; ¹H nmr (200 MHz, base, see also Table 1): 1.64 (m, 1H, C(3)H_a), 2.01 (m, 1H, C(3)H_c), 2.60 (m, 1H, $C(4)H_a$, 2.84 (m, 1H, $C(4)H_c$), 3.17 (m, 1H, C(2)H), 3.78 (s, 3H, OCH_3 , 3.84 (s, 3H, OCH_3), 4.68 (d, J = 7.2 Hz, 1H, C(1)H), 6.70 (s, 2H, C(6-7)H); ¹³C nmr (CDCl₃): Table 3; ¹³C nmr (DMSO-d₆): 18.6 (C-4), 23.6 (C-3), 50.8 (C-2), 66.8 (C-1), 107.9, 108.6 (C-6 and C-7), 126.3, 127.1 (C-4a and C-8a), 150.5, 152.7 (C-5 and C-8).

cis-2-Amino-1,2,3,4-tetrahydro-1-naphthalenols (cis-1a,b,f) Method J

A suspension of 650 mmol of acetamidotetralol trans-6a, b, f in 15 mL of 0.3 M hydrochloric acid was heated under nitrogen at reflux temperature. After 5 h, the reaction mixture was washed with ether and the aqueous phase was evaporated in vacuo. The resulting crude hydrochloride was purified by crystallization from ethanol-ether. Compound cis-1a (5) (60%). Compound cis-1b (Table 4), ir (KBr): 3300, 1590, 1520; ¹H nmr (200 MHz, base, see also Table 1): $1.72-2.06 (m, 2H, C(3)H_{a+e}), 2.86 (m, 2H, C(4)H_{a+e}), 3.66 (m, 1H, 1.72-2.06 (m, 2H, C(3)H_{a+e})), 2.86 (m, 2H, C(4)H_{a+e}), 3.66 (m, 1H, 1.72-2.06 (m, 2H, C(3)H_{a+e})), 3.66 (m, 2H, C(3)H_{a+e}))$ C(2)H, 4.90 (d, J = 3.9 Hz, 1H, C(1)H), 7.30 (m, 5H, arom.); ¹³C nmr: Table 3. Compound *cis*-1*f* (Table 4), ir (KBr): 3330, 3280, 1600; ¹H nmr (200 MHz, base, see also Table 1): 1.82 (m, 2H, $C(3)H_{a+c}$, 2.50 (m, 1H, C(4)H_a), 2.92 (m, 2H, CH-iPr + C(2)H), 3.78 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.87 (d, J = 3.9 Hz, 1H, C(1)H, 6.70 (s, 2H, C(6)H + C(7)H); ¹³C nmr: Table 3.

Alkaline hydrolysis of cis-6f (Method H) also afforded aminoalcohol *cis*-1f(Table 4). Alkaline hydrolysis of crude *cis*-6f(*cis*/*trans* ratio 65:35) afforded a mixture of aminoalcohols *cis*-1*f* and *trans*-1*f*, which were separated by chromatography on neutral alumina (activity III) on elution with methanol.

2-Isopropylamino-1,2,3,4-tetrahydro-1-naphthalenols (2a-f) Method K

To a suspension of 0.8 mmol of the corresponding 2-amino-1-tetralol in 7 mL of dry benzene, 4.5 mmol of anhydrous acetone was added. After 3 h stirring at reflux temperature, the solvent was removed in vacuo, the residue was dissolved in 5 mL of absolute ethanol, and sodium borohydride (2.1 mmol) was added portionwise to the above solution with external cooling. After 2 h stirring at room temperature, the reaction mixture was quenched with 2 M hydrochloric acid and the ethanol was removed in vacuo. The aqueous phase was washed with ether, made alkaline with 5 M sodium hydroxide, and extracted with dichloromethane. The organic extracts were dried and evaporated to afford isopropylamino derivatives trans-2c (14) (85%), trans-2d (32) (82%), cis-2b, trans-2b, and trans-2e (Table 4). Compound cis-2b, ir (KBr): 3250, 2890, 1560; ¹H nmr (200 MHz, base): 0.70 (d, 3H, CH₃CH), 1.10 (d, 3H, CH₃CH), 1.70 (m, 1H, C(3)H), 1.92 (m, 1H, C(3)H', 2.60 (m, 1H, $C(4)H_a$), 2.86 (m, 1H, $C(4)H_c$), 3.04 (m, 2H, $C(2)H + CH(CH_3)_2$, 3.81 (s, 3H, OCH₃), 4.57 (d, J = 4.0 Hz, 1H, C(1)H), 6.76 (d, 1H, C(6)H), 7.08 (d, 1H, C(8)H), 7.18 (d, 1H, C(7)H); ¹³C nmr: Table 3. Compound trans-2b, ir (KBr): 3310, 2990, 1580; ¹H nmr (200 MHz, base): 0.98 (d, J = 6.2 Hz, 3H, CH₃CH), 1.05 (d, J = 6.2 Hz, 3H, CH₃CH), 1.46 (m, 2H, C(3)H_{a+c}), 2.12 (m, 1H, C(3)H_a), 2.68 (m, 3H, C(2)H + C(4)H₂), 2.96 (m, 1H, $CH(CH_3)_2$), 3.72 (s, 3H, OCH₃), 4.30 (d, J = 8.9 Hz, 1H, C(1)H), 6.64 (m, 1H, C(6)H), 7.12 (m, 2H, C(7-8)H); ¹³C nmr: Table 3. Compound trans-2e, ir (KBr): 3500-3100 (NH), 3100-2500 (OH); ¹H nmr (200 MHz, base): 1.06 (d, J = 6.1 Hz, 3H, CH₃CH), 1.13 $(d, J = 6.1 \text{ Hz}, 3\text{H}, \text{CH}_3\text{CH}), 1.49 \text{ (m, 1H, C(3)H}_a), 1.65 \text{ (m, 1H, C(3)H}_a)$ C(3)H_e), 2.20 (m, 1H, C(4)H_a), 2.71 (m, 1H, C(2)H), 2.83 (m, 3H, $C(4)H_{c} + exch.)$, 3.06 (m, 1H, CH—CH₃), 4.32 (d, J = 9.02 Hz, 1H, C(1)H), 5.06 (s, 2H, OCH₂C₆H₅), 6.83 (dd, $J_o = 8.47$ Hz, $J_m = 2.79 \text{ Hz}, 1\text{H}, C(6)\text{H}), 6.99 \text{ (d}, J_o = 8.47 \text{ Hz}, 1\text{H}, C(5)\text{H}), 7.22$ (d, $J_m = 2.79$ Hz, 1H, C(8)H), 7.46 (m, 5H, C₆H₅); ¹³C nmr: Table 3. Method L

To a solution of 2-amino-1-tetralol (0.7 mmol) in 6 mL of methanol under nitrogen, sodium cyanoborohydride (3.5 mmol), acetone (3.5 mmol), and molecular sieve 3Å were added. After 18 h stirring at room temperature, the reaction mixture was poured into water and the methanol was removed in vacuo. The aqueous phase was made alkaline with 2 M sodium hydroxide and extracted with dichloromethane. The organic extracts were washed with water, dried, and evaporated to afford the corresponding isopropyl derivative (Table 4). Compound *cis-2a*, ¹H nmr (200 MHz, base): 1.10 (d, 3H, CH₃CH), 1.14 (d, 3H, CH₃CH), 1.70 (m, 1H, C(3)H), 1.98 (m, 1H, C(3)H'), 2.84 (m, 2H, $C(4)H_2$, 3.06 (m, 2H, CH-iPr + C(2)H), 4.60 (d, J = 4.1 Hz, 1H, C(1)H), 7.30 (m, 5H, arom.); ¹³C nmr: Table 3. Compound trans-2a, ¹H nmr (200 MHz, base): 1.07 (d, J = 6.2 Hz, 3H, CH₃CH), 1.13 (d, J = 6.2 Hz, 3H, CH₃CH), 1.58 (m, 2H, C(3)H₂), 2.18 (m, 1H, C(4)H_a), 2.76 (m, 1H, C(2)H), 2.84 (m, 2H, C(4)H_e), 3.0 (m, 1H, CH-iPr), 4.37 (d, J = 9.1 Hz, 1H, C(1)H), 7.14 (m, 4H, C(5–8)H; ¹³C nmr: Table 3. Compound *cis*-2*f*, ¹H nmr (200 MHz, base): 1.09 (d, 3H, CH₃CH), 1.12 (d, 3H, CH₃CH), 1.74 (m, 2H, C(3)H_{a+e}), $2.50 (m, 1H, C(4)H_a), 2.84 (m, 1H, C(4)H_c), 2.92 (m, 1H, C(2)H),$ 3.09 (m, 1H, CH-iPr), 3.76 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.87 (d, J = 3.9 Hz, 1H, C(1)H), 6.71 (s, 2H, C(6–7)H; ¹³C nmr: Table 3. Compound *trans-2f*, ¹H nmr (200 MHz, base): 1.10 (t, 6H, CH-iPr), 1.61 (m, 1H, C(3)H_a), 2.04 (m, 1H, C(3)H_e), 2.67 (m, 2H, $C(4)H_{a+e}$, 3.05 (m, 2H, C(2)H + CH-iPr), 3.77 (s, 3H, OCH_3), 3.82 (s, 3H, OCH₃), 4.76 (d, J = 6.2 Hz, 1H, C(1)H), 6.69 (s, 2H, C(6-7)H); ¹³C nmr: Table 3.

trans-2-Amino-1,2,3,4-tetrahydronaphthalenediols (trans-Ig-i and trans-2g-i)

Method M

A solution of 3.5 mmol of the corresponding benzyloxy-2-amino-1-tetralol trans-1c-e or trans-2c-e in 100 mL of absolute methanol was hydrogenated in a Parr apparatus in the presence of 5% palladium on charcoal (350 mg) at 300 psi. After 24 h, the reaction mixture was filtered and the methanol was removed in vacuo to afford debenzylated aminotetralols 1g-i and 2g-i (Table 4). Compound *trans*-1g, ¹H nmr (hydrochloride, D₂O, 200 MHz): 1.60 (m, 1H, C(3)H_a), 2.05 (m, 1H, $C(3)H_e$), 2.43 (m, 1H, $C(4)H_a$), 2.63 (m, 1H, $C(4)H_e$), 3.13 (m, 1H, C(2)H, 4.50 (d, J = 8.8 Hz, 1H, C(1)H), 6.59 (dd, J = 1.9 Hz, and J = 7.8 Hz, 1H, C(6)H or C(8)H), 6.84 (dd, J = 1.9 Hz, and J = 7.8 Hz, 1H, C(6)H or C(8)H), 6.96 (t, 1H, C(7)H). Compound trans-2g, ¹H nmr (hydrochloride, D₂O, 200 MHz): 1.37 (d, J =6.36 Hz, 3H, CH₃-iPr), 1.46 (d, J = 6.46 Hz, 3H, CH₃-iPr), 1.95 $(m, 1H, C(3)H_a), 2.36 (m, 1H, C(3)H_c), 2.71 (m, 1H, C(4)H_a), 2.95$ (m, 1H, C(4)H_e), 3.24 (dd, 1H, C(2)H), 3.58 (m, 1H, CH-iPr), 4.89 (d, J = 9.4 Hz, 1H, C(1)H), 6.73 (dd, 1H, C(7)H), 7.06-7.10 (m, 2H)C(6)H + C(8)H). Compound trans-1h (10) (47%). Compound *trans-2h* (32) (85%). Compound *trans-1i*, ¹H nmr (base, 200 MHz): $1.65 (m, 1H, C(3)H_a), 1.99 (m, 1H, C(3)H_e), 2.80 (m, 3H, C(4)H_2 +$ C(2)H), 4.16 (br, 4H, exch.), 4.27 (d, J = 8.87 Hz, 1H, C(1)H), 6.67 (dd, $J_o = 8.39$ Hz, $J_m = 2.57$ Hz, 1H, C(6)H), 6.91 (d, $J_o = 8.39$ Hz, 1H, C(5)H), 6.96 (d, $J_m = 2.57$, 1H, C(8)H). Compound *trans-2i* (hydrochloride, D₂O, 200 MHz): 1.17 (d, J = 6.5 Hz, 3H, CH₃-iPr), 1.22 (d, J = 6.5 Hz, 3H, CH₃-iPr), 1.28 (m, 1H, C(3)H_a), 1.65 (m, 1H, C(3)H_c), 2.19 (m, 2H, C(4)H₂), 2.72 (m, 1H, C(2)H), 3.03 (m, 1H, CH-iPr), 4.04 (d, J = 11.2 Hz, 1H, C(1)H), 6.64 (dd, $J_o = 8.4$ Hz, $J_m = 2.6$ Hz, 1H, C(6)H), 6.8 (d, $J_m = 2.6$ Hz, 1H, C(8)H), 6.92 (d, $J_o = 8.4$ Hz, 1H, C(5)H).

6-Amino-5,6,7,8-tetrahydro-2-naphthalenol (11)

A solution of 1.35 g (4.7 mmol) of hydroxyiminotetralone 4*d* in 50 mL of absolute methanol was hydrogenated (1 atm) in the presence of 5% palladium on charcoal (450 mg) and 9 mL of 2 *M* hydrochloric acid at 30–40°C until hydrogen uptake ceased. Filtration and evaporation of the reaction mixture afforded naphthol 11 (HCl) in quantitative yield (Table 4); ¹H nmr (DMSO-*d*₆): 1.3–3.6 (m, 7H, C(5–8)H), 6.3 (s, 1H, C(1)H), 6.4 (dd, 1H, C(3)H), 6.7 (d, 1H, C(4)H), 8.2 (br, 3H, NH₃⁺), 9.0 (br, 1H, OH); ms, *m/e* (relative intensity): 164 (8), 163 (39), 146 (68), 120 (100).

Acknowledgements

We are grateful to the Comisión Asesora de Investigación Científica y Técnica for financial support. We thank Dr. Carlos Jaime for helpful discussions about MM2 calculations.

- 1. C. A. GROB. Angew. Chem. Int. Ed. Engl. 8, 535 (1969).
- 2. D. MAULEON, R. GRANADOS, and C. MINGUILLON. J. Org. Chem. 48, 3105 (1983).
- 3. K. ITOH, H. SUGIHARA, A. MIYAKE, N. TADA, and Y. OKA. Chem. Pharm. Bull. 26, 504 (1978).
- B. LAL, J. M. KHANNA, and N. ANAND. J. Med. Chem. 15, 23 (1972).
- 5. F. ZYMALKOWSKI and H. J. RIMEK. Arch. Pharm. 294, 581 (1961).
- 6. C. O'BRIEN. Chem. Rev. 64, 81 (1964).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by 67.52.49.38 on 11/18/14 For personal use only.

- C. F. BARFKNECHT, D. E. NICHOLS, D. B. RUSTERHOLZ, J. P. LONG, J. A. ENGELBRECHT, J. M. BEATON, R. J. BRADLEY, and D. C. DYER. J. Med. Chem. 16, 804 (1973).
- 8. R. I. THRIFT. J. Chem. Soc. (C), 288 (1967).
- 9. K. ITOH, M. MOTOHASHI, H. KURIKI, H. SUGIHARA, N. INATOMI, M. NISHIKAWA, and Y. OKA. Chem. Pharm. Bull. 25, 2917 (1977).
- 10. T. CHIEMPRASERT, H. J. RIMEK, and F. ZYMALKOWSKI. Ann. Chem. 685, 141 (1965).
- 11. A. DELGADO, D. MAULEON, C. MINGUILLON, M. FELIZ, M. PERICAS, and A. RIERA. Can. J. Chem. 65, 868 (1987).
- Y. OKA, M. MOTOHASHI, H. SUGIHARA, O. MIYASHITA, K. ITOH, M. NISHIKAWA, and S. YURUGI. Chem. Pharm. Bull. 25, 632 (1977).

- 13. M. MOTOHASHI, E. MIZUTA, and M. NISHIKAWA. Chem. Pharm. Bull. **29**, 1501 (1981).
- 14. К. Ітон, А. Міуаке, N. Тада, М. Ніката, and Y. Ока. Chem. Pharm. Bull. **32**, 130 (1984).
- H. O. HOUSE, R. G. CARLSON, H. MULLER, A. W. NOLTES, and C. D. SLATER. J. Am. Chem. Soc. 84, 2614 (1962).
- H. O. HOUSE, H. BARDA, R. B. TOOTHILL, and A. NOLTES. J. Org. Chem. 27, 4141 (1962).
- D. E. MCCLURE, B. H. ARISON, J. H. JONES, and J. J. BALDWIN. J. Org. Chem. 46, 2431 (1981).
- Y. SENDA, J. ISHIYAMA, S. IMAIZUMI, and K. HANAYA. J. Chem. Soc. Perkin Trans. I, 217 (1977).
- 19. J. E. SAAVEDRA. J. Org. Chem. 50, 2271 (1985).
- (a) R. F. BORCH and H. D. DURST. J. Am. Chem. Soc. 91, 3996 (1969); (b) R. F. BORCH, M. D. BERUSTEIN, and H. D. DURST. J. Am. Chem. Soc. 93, 2897 (1971).
- 21. J. H. NOGGLE and R. E. SCHIRMER. *In* The nuclear Overhauser effect. Academic Press, New York. 1971.
- L. M. JACKMAN and S. STERNHELL. In Nuclear magnetic resonance spectroscopy in organic chemistry. 2nd ed. Pergamon Press, Oxford. 1969.
- 23. V. BURKERT and N. L. ALLINGER. Molecular mechanics. A.C.S. Monograph, no. 177. Washington, DC. 1982.
- 24. (a) C. A. G. HAASNOT, F. A. A. M. DE LEEUW, and C. ALTONA. Tetrahedron, **36**, 2783 (1980); (b) E. OSAWA and C. JAIME. QCPE program no. 367 (1984).
- (a) R. RICHARG, W. AMMAN, and T. WIRTHLIN. Varian Application Note 2-15. Zug, Switzerland. August 1982; (b) D. M. DODDELL, D. T. PEGG, and M. R. BENDALL. Org. Magn. Reson. 8, 323 (1982).
- 26. A. BAX, R. FREEMAN, and G. MORRIS. J. Magn. Reson. 42, 169 (1981).
- 27. A. BAX and G. MORRIS. J. Magn. Reson. 42, 501 (1981).
- 28. K. NAKAMURA. J. Pharm. Soc. Jpn. 61, 292 (1941).
- 29. N. L. ALLINGER and E. S. JONES. J. Org. Chem. 27, 70 (1962).
- V. VESELY and F. STURSA. Collect. Czech. Chem. Commun. 5, 170 (1933).
- J. H. JONES, P. S. ANDERSON, J. J. BALDWIN, B. CINESCHMIDT, D. E. MCCLURE, G. LUNDELL, W. RANDALL, G. MARTIN, M. WILLIAMS, H. HIRSHFIELD, G. SMITH, and P. LUMMA. J. Med. Chem. 27, 1607 (1984).
- A. MIYAKE, K. ITOH, N. TADA, M. TANABE, M. HIRATA, and Y. OKA. Chem. Pharm. Bull. 31, 2329 (1983).
- 33. P. W. NEBER, A. BUGARD, and W. THIER. Ann. Chem. 526, 77 (1936).
- E. HARDEGER, D. REDLICH, and A. GAL. Helv. Chim. Acta, 28, 628 (1945).
- 35. F. ZYMALKOWSKI, T. YUPRAPHAT, and K. SCHMEISSER. Arch. Pharm. 301, 321 (1968).