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Abstract: 2-Trimethylsiloxyfuran underwent a vinyl-
ogous Mannich-type reaction with aldimines under
the action of a new chiral phosphoric acid, bearing
iodine on the 6,6’-positions of the binaphthyl group,
as a chiral Brønsted acid to give g-butenolide deriv-
atives bearing an amino functionality with high dia-
stereo- and enantioselectivity.

Keywords: addition to imines; amines; asymmetric
catalysis; asymmetric synthesis; C�C bond forma-
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The g-butenolide skeleton is one of the most ubiqui-
tous structures found in natural products. Thus, the
development of novel methods for the stereoselective
synthesis of butenolide derivatives has continuously
attracted the attention of synthetic organic chemists.[1,2]

The vinylogous Mannich-type reaction of trimethyl-
siloxyfuran with aldimine is a useful means to prepare
g-butenolide derivatives bearing an amine functionali-
ty. A wide range of Lewis acids has been developed
as catalysts for the reaction.[3,4]

In contrast, the enantioselective, catalyzed-version
of the vinylogous Mannich-type reaction has been
little explored. Martin and co-workers reported the
enantioselective synthesis of g-butenolide derivatives
catalyzed by the Ti ACHTUNGTRENNUNG(O-i-Pr)4/(S)-BINOL system,[3f] but
the enantioselectivities and the chemical yields were
moderate. In this regard, the development of an effi-
cient catalyst for the synthesis of g-butenolide deriva-
tives in terms of both yields and optical purity is still
desired. Recently, Hoveyda and co-workers reported
a highly enantioselective vinylogous Mannich-type re-
action catalyzed by a silver salt, in which only aromat-
ic aldimines were employed.[5] Organocatalyzed vinyl-
ogous Mannich-type reactions have been also report-
ed lately.[6]

Chiral Brønsted acid catalysts have recently
emerged as a new class of environmentally benign
chiral catalysts.[7] We have reported that chiral phos-
phoric acid 1 (Figure 1) is a useful chiral Brønsted
acid catalyst for the electrophilic activation of aldi-
mines.[8] The phosphoric acid has recently been recog-
nized to be an efficient chiral catalyst for a number of
enantioselective reactions.[9,10] We focused our atten-
tion on the application of chiral Brønsted acid cata-
lysts to the vinylogous Mannich-type reaction. We
report herein the use of the novel phosphoric acid 2b
(Figure 1), bearing iodine groups on the 6,6’-positions
in the vinylogous Mannich-type reaction, producing g-
butenolides with high enantioselectivities.[11] Aliphatic
aldimines as well as aromatic aldimines proved to be
good substrates.

At the outset, we examined the catalytic activity of
chiral phosphoric acids 1a–c. Aldimine 3a underwent
a vinylogous Mannich-type reaction with trimethylsi-
loxyfuran 4 in the presence of 5 mol% of 1a to afford
g-butenolide derivative 5a in 98% yield in favor of
the anti isomer (anti/syn 79/21). Chiral HPLC analysis
revealed that the anti isomer was obtained preferen-
tially in 48% ee (Table 1, entry 1). The introduction of
a bulky aryl group to 3,3’-positions improved the
enantioselectivity, while use of 2,4,6-(i-Pr)3C6H2-sub-
stituted phosphoric acid 1c gave 5a in 74% ee
(entry 3). Interestingly, the introduction of halogen
atoms onto the 6,6’-positions of the binaphthyl rings

Figure 1.
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had a beneficial effect on the enantioselectivity
(entry 4) and use of 2b bearing iodine groups on the
6,6’-positions resulted in the formation of 5a in 82%
ee (entry 5).

These conditions were applicable to the synthesis of
g-butenolide derivatives using various aldimines as
substrates (Table 2). The use of aldimines derived
from aromatic aldehydes gave addition products in
high yields, good to high diastereoselectivities, and ex-
cellent ee (up to 99% ee) (entries 2–8). Furthermore,
we found that 2b is effective for the reaction with al-
dimine 3i bearing a basic pyridine moiety (entry 9).
An aldimine derived from a heteroaromatic aldehyde
also gave an adduct with high enantioselectivity
(entry 10). It is noted that aliphatic aldimines 3k–l
gave g-butenolide derivatives with high enantioselec-
tivities (entries 11 and 12). The absolute stereochem-
istry of 5c (R=p-BrC6H4; entry 3) was determined by
X-ray crystallographic analysis, while those of the
other g-butenolide derivatives were assigned by anal-
ogy.[12]

g-Butenolide 5a was readily transformed into d-
lactam 6 via three successive reactions: reduction of
the olefinic double bond, protection of the phenolic
hydroxy group, and treatment with a base. A good
yield was obtained without sacrificing the enantiomer-
ic purity (Scheme 1).

We surmise that the present vinylogous Mannich-
type reaction proceeded via a 9-membered transition
state (Figure 2) similar to the Mannich-type reaction
previously proposed by us based on theoretical calcu-
lations.[8a,g] In order to gain an insight into the effect
of the iodine substituents of 2b, the dihedral angles of
1c and 2b were calculated with Spartan (HF 3-
21G*)[13] to be 52.98 and 52.88, respectively. Based on
these results, we suppose that an electronic effect ex-

erted by the iodine substituents on the phosphoric
acid moiety might played a role rather than a steric
effect.

In summary, we have developed a method for the
enantioselective synthesis of g-butenolide derivatives,
which involves the vinylogous Mannich-type reaction
catalyzed by a novel chiral phosphoric acid bearing
iodine groups at the 6,6’-positions. Aliphatic as well
as aromatic aldimines turned out to be good sub-
strates and g-butenolide derivatives were obtained in
high yields, with good to high diastereo-and enantio-
selectivities.

Table 1. Effect of the 6,6’-substituents of the chiral Brønsted
acid.[a]

Entry Catalyst Time [h] Yield [%][b] anti/syn ee [%][c]

1 1a 7 98 79/21 48
2 1b 15 100 77/23 38
3 1c 13 100 93/7 74
4 2a 19 69 84/16 79
5 2b 19 100 91/9 82

[a] 3.0 equiv. of trimethylsiloxyfuran were employed.
[b] Isolated yield.
[c] The ee of the anti isomer.

Table 2. Enantioselective synthesis of g-butenolide deriva-
tives catalyzed by chiral Brønsted acid.[a]

Entry R Time
[h]

Yield
[%][b]

anti/
syn

ee
[%][c]

1 Ph (3a) 19 100 91/9 82
2 p-FC6H4 (3b) 24 100 95/5 87
3[d] p-BrC6H4 (3c) 31 82 92/8

ACHTUNGTRENNUNG(99/1)[e]
55
ACHTUNGTRENNUNG(>99)[e]

4[d] p-NO2C6H4 (3d) 22 85 97/3 96
5 m-NO2C6H4 (3e) 15 86 68/32 96
6[d] o-NO2C6H4 (3f) 24 100 98/2 92
7 p-CF3C6H4 (3g) 20 95 69/31 99
8 p-NCC6H4 (3h) 28 89 83/17 90
9 4-pyridyl (3i) 23 30 94/6 98
10 2-furyl (3j) 15 77 68/32 89
11[f] c-C6H11 (3k) 15 77 88/12 90
12[f] i-Pr (3l) 18 84 88/12 92

[a] 3.0 equiv. of trimethylsiloxyfuran were employed.
[b] Isolated yield.
[c] The ee of the anti isomer.
[d] 1c was used instead of 2b.
[e] After two recrystallization from benzene.
[f] Aldimine was generated in situ in the presence of

Na2SO4 and treated with siloxyfuran and 2b.

Scheme 1. Transformation of the adduct.
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Experimental Section

Typical Procedure for the Enantioselective Synthesis
of Butenolide Derivatives (Entry 7, Table 2)

To a solution of aldimine 3g (45.2 mg, 0.170 mmol) and (R)-
6,6’-diiodo-3,3’-bis(2,4,6-triisopropylphenyl)-1,1’-binaphthyl
phosphate 2b (8.9 mg, 0.00886 mmol) in toluene (1 mL) was
added trimethylsiloxyfuran 4 (88 mL, 0.507 mmol) at 0 8C.
Aftereing stirred at the temperature for 20 h and confirming
the disappearance of the aldimine by TLC, the mixture was
quenched by addition of saturated aqueous NaHCO3 solu-
tion, saturated KF solution, THF and MeOH. The solution
was extracted with ethyl acetate. The combined organic
layers were successively washed with brine, dried over anhy-
drous Na2SO4, and concentrated to dryness. The crude prod-
uct was purified by silica gel column chromatography
(hexane/EtOAc=1/1) to give the product 5g ; yield: 56.1 mg
0.163 mmol, 95%) and with 99% ee, which was determined
by chiral HPLC analysis on a Daicel Chiralcel OD-H
column.
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