# Tandem C–N Bond Formation through Condensation and Metal-Free *N*-Arylation: Protocol for Synthesizing Diverse Functionalized Quinoxalines

Yan-Xiao Jiao, Ling-Ling Wu, Hai-Miao Zhu, Jiang-Ke Qin, Cheng-Xue Pan,\* Dong-Liang Mo,\*<sup>®</sup> and Gui-Fa Su\*<sup>®</sup>

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China

**S** Supporting Information

**ABSTRACT:** Diverse functionalized quinoxalines were synthesized in good yields from arylamines and readily available  $\beta$ -keto oximes through condensation and metal-free *N*-arylation. The reaction was compatible with various functional groups, such as halides, cyano, and esters. A mechanism was proposed based on the experimental results. These quinoxalines were easily obtained on a gram scale and converted to various useful



scaffolds. Compound LASSBio-1022 was prepared in 83% yield in two steps.

uinoxaline derivatives are valuable synthetic targets because they are present in a range of compounds, including pharmaceuticals,<sup>1a-g</sup> semiconductors,<sup>1h,i</sup> and photoelectric materials.<sup>1j</sup> Since 2010, more than 8000 documents related to quinoxalines have been published.<sup>2</sup> About 50 pharmaceutical compounds contain the quinoxaline moiety,<sup>3</sup> and some representative examples of drugs, bioactive quinoxalines and their analogues are listed in Figure 1.<sup>4</sup> Many synthetic



Figure 1. Examples of bioactive quinoxalines.

methods have therefore been developed for constructing quinoxaline scaffolds. Traditionally, quinoxalines have been prepared by condensation of *ortho*-phenylenediamines with diketone derivatives,  $^{5}$  or *ortho*-functionalized arylamines with various ketones, alkynes, or their equivalents.<sup>6</sup>

Although guinoxalines have been prepared by conventional strategies using ortho-phenylenediamines or ortho-functionalized arylamines, the nitrogen sources are not always commercially available or easily obtained. Recently, Yu's group and Zeng's group developed a novel protocol for the synthesis of quinoxalines via copper-catalyzed cycloamination of N-aryl enamines with TMSN3 or NaN3 as the nitrogen sources, respectively (Scheme 1A).7,8 Although much progress has been made in the copper-catalyzed synthesis of quinoxalines using TMSN<sub>3</sub> or NaN<sub>3</sub> as the nitrogen sources, there are safety and environmental issues associated with large-scale performance of these reactions. The development of new reagents for quinoxalines synthesis to avoid using TMSN<sub>3</sub> or NaN<sub>3</sub> as the nitrogen sources is important. In 2014, Zhang and co-workers reported a novel one-pot strategy for the synthesis of 3-trifluoromethylquinoxalines from N-aryl enamines and nitromethane under metal-free conditions (Scheme 1B).<sup>9</sup> Jiao and co-workers developed a novel transition-metal-free approach to the synthesis of quinoxaline N-oxides using readily available methyl imines and tert-butyl nitrite as the nitrogen source (Scheme 1C).<sup>10</sup> Our group studied metal-free arylation of N-O bonds with diaryliodonium salts and found that the direct N-arylation of oximes could be achieved because of the ambident nucleophilicity of the N–O bond.<sup>11</sup> We hypothesized that the condensation of  $\beta$ -keto oximes with arylamines would provide N-aryl  $\beta$ -keto oximes, which could be converted to various functionalized quinoxalines through Lewis-acid-mediated intramolecular N-arylation with production of water as a byproduct (Scheme 1D). Herein, we report an efficient tandem C-N bond formation strategy for synthesizing functionalized

Received: January 3, 2017

# Scheme 1. Strategies for Synthesis of Quinoxalines Using Various Nitrogen Sources

A) Copper-catalyzed arylation of N-aryl imines with TMSN<sub>3</sub> or NaN<sub>3</sub>



quinoxalines using an oxime as the nitrogen source under mild conditions.

Initially, compound **3aa** (Table 1) was chosen as a model substrate for investigating the key step in C–N bond formation.

# Table 1. Optimization of Conditions for Quinoxaline Synthesis from Oxime<sup>a</sup>



<sup>*a*</sup>Reaction conditions: **3aa** (1.0 mmol), acid (2.0 mmol), and solvent (5 mL), 0.5–24 h. <sup>*b*</sup>Isolated yield. <sup>*c*</sup>**3aa** was not purified and the yield was based on **2a**.

**3aa** was prepared in 96% yield by the condensation of ethyl 2-(hydroxyimino)-3-oxobutanoate (1a) and *p*-methoxyaniline (2a). When  $H_2SO_4$  was used to promote the arylation reaction in THF, the desired product **4aa** was obtained in 52% yield (Table 1, entry 1). A series of acids in different solvents, the

amount of acid, and the reaction temperature were explored to optimize the conditions for this transformation (Table 1). POCl<sub>3</sub> in MeCN gave the best result (Table 1, entry 6). The optimal conditions for producing 4aa from 3aa were used in the condensation and direct N-arylation of ethyl 2-(hydroxyimino)-3-oxobutanoate (1a) and *p*-methoxyaniline (2a). Compound 3aa, without further purification after condensation, afforded the corresponding product 4aa in 78% overall yield (Table 1, entry 6). This suggests that quinoxaline 4aa can be synthesized in a one-pot reaction from ethyl 2-(hydroxyimino)-3-oxobutanoate (1a) and *p*-methoxyaniline (2a) using POCl<sub>3</sub> as a Lewis acid. Quinoxaline 4aa was prepared as follows: ethyl 2-(hydroxyimino)-3-oxobutanoate (1a) and pmethoxyaniline (2a) were refluxed in benzene with HOAc as an additive for 2 h, POCl<sub>3</sub> in MeCN was added and the reaction was performed at 100 °C, providing quinoxaline in a one-pot reaction.

The scope of quinoxaline synthesis using this condensation and arylation protocol was investigated. As shown in Table 2, a series of quinoxalines were prepared from various substituted arylamines in moderate to good yields. Arylamines containing electron-donating or electron-withdrawing groups with ortho-, meta-, or para-substituents in the aryl ring, proceeded smoothly to provide the desired products 4. When arylamine 2n was used, quinoxaline 4an was obtained in 70% yield; its structure was determined unambiguously by X-ray diffraction.<sup>12</sup> When unsymmetrical arylamines, such as meta-halo (F, Cl, Br), metaisopropyl, meta-methoxy, or 3,4-dimethoxy aniline, were used in the reaction, the desired products were obtained regioselectively, as single isomers, in high vields (Table 2, 4af, 4ag, 4ah, 4ao, and 4ak). However, the meta-methyl and 3,4-dimethyl substituted arylamines 2i and 2l gave two regioisomers in 1:1 ratios. These regioisomers were purified by using flash chromatography (Table 2, 4ai and 4al). The experimental results indicate that electronic and steric effects both play key roles in the regioselectivity of this C-N bond formation. In addition, meta-halo anilines gave the corresponding quinoxalines only in acceptable total yields, possibly because the condensation step was difficult (Table 2, 4af and 4ag). When the para-position of arylamines with strong electron-withdrawing groups, such as nitro, cyano, carbonyl, or trifluoromethyl, were tested, the intermediate 3 was not formed by condensation with 1a, therefore the corresponding quinoxalines were not obtained.

Various  $\beta$ -keto oximes were used to determine their effect on the synthesis of functionalized quinoxalines via this condensation and metal-free arylation process. The reactions of  $\beta$ keto oximes **1b**-**k** with **2a** provided the corresponding quinoxalines **4ba**-**ka** in good yields (Table 3). The R<sup>1</sup> group was compatible with alkyl, aryl, and heteroaryl groups. Electronwithdrawing groups (EWG), such as esters, ketone, and cyano group, can be used. Pleasingly, when unsymmetrical oxime **1**j was used, product **4ja** was obtained in 64% yield with high selectivity (Table 3, entry 10). Functionalized qunioxalines with ester, ketone, and cyano groups increase the range of potential applications of these compounds in organic synthesis.

Additional experiments (Scheme 2) were performed to clarify the reaction mechanism. When oxime 3da was reacted with 2.0 equiv of TEMPO under the optimal conditions, the quinoxaline was obtained in 64% yield. This suggests that *N*-arylation is not a radical process (Scheme 2-1). No desired product was observed in the reaction of the methyl-protected oxime 5da under the optimal conditions and only the oxime





"Reaction conditions: 1a (1.2 mmol), 2 (1.0 mmol), POCl<sub>3</sub> (2 mmol), and MeCN (5 mL), 0.5-2 h. <sup>b</sup>Isolated yield. <sup>c</sup>Total yield of two isomers.

### Table 3. Scope of Oximes for Synthesis of Product $4^{a}$

|       | /G <sup>+</sup> MeC | NH <sub>2</sub> 1) Ph<br>2) PC     | H / HOAc / refi<br>Cl <sub>3</sub> /MeCN | MeO |                        |
|-------|---------------------|------------------------------------|------------------------------------------|-----|------------------------|
| 1     |                     | 2a                                 |                                          |     | 4                      |
| entry | 1                   | $\mathbb{R}^1$                     | EWG                                      | 4   | yield (%) <sup>b</sup> |
| 1     | 1a                  | Me                                 | CO <sub>2</sub> Et                       | 4aa | 78                     |
| 2     | 1b                  | Et                                 | CO <sub>2</sub> Et                       | 4ba | 79                     |
| 3     | 1c                  | <i>n</i> -Pr                       | CO <sub>2</sub> Et                       | 4ca | 83                     |
| 4     | 1d                  | Ph                                 | CO <sub>2</sub> Et                       | 4da | 59                     |
| 5     | 1e                  | 4-MeOC <sub>6</sub> H <sub>4</sub> | CO <sub>2</sub> Et                       | 4ea | 49                     |
| 6     | 1f                  | $4-BrC_6H_4$                       | CO <sub>2</sub> Et                       | 4fa | 53                     |
| 7     | 1g                  | $2-MeC_6H_4$                       | CO <sub>2</sub> Et                       | 4ga | 47                     |
| 8     | 1h                  | 2-pyridinyl                        | CO <sub>2</sub> Et                       | 4ha | 61                     |
| 9     | 1i                  | Me                                 | COMe                                     | 4ia | 82                     |
| 10    | 1j                  | Me                                 | COPh                                     | 4ja | 64                     |
| 11    | 1k                  | Ph                                 | CN                                       | 4ka | 66                     |
|       |                     | ,                                  |                                          |     |                        |

<sup>*a*</sup>Reaction conditions: 1 (1.2 mmol), 2a (1.0 mmol), POCl<sub>3</sub> (2 mmol), and MeCN (5 mL), 0.5-2 h. <sup>*b*</sup>Isolated yield.

was recovered (Scheme 2-2). This result shows that the hydroxyl group was the leaving group during *N*-arylation.

Although the mechanism has not been completely elucidated, a possible mechanism for quinoxaline formation is shown in Scheme 3, based on the experimental results and literature reports.<sup>13</sup> The oxime 3 initially reacts with POCl<sub>3</sub> to

#### Scheme 2. Mechanistic Study



Scheme 3. Plausible Mechanism



provide intermediate **A**. The phosphoryl group of intermediate **A** serves as the leaving group, forming nitrogen ion intermediate **B**, which goes through an electrophilic amination to afford intermediate **C**. Alternatively, removal of the

Scheme 4. Applications of Quinoxalines



phosphoryl group and cyclization might be a concerted process. Finally, aromatization of intermediate C furnishes the qunioxaline 4.

To explore the practical applications of these functionalized quinoxalines, we found that the reaction could be performed using 2.0 g of arylamine **2a** to give 3.74 g of quinoxaline **4aa** in 76% yield (Scheme 4-1). Oxidation of **4ac** with *m*-CPBA at room temperature provided the  $N^4$ -oxides quinoxaline **5ac** in 78% yield while 1,4-dioxides quinoxaline **6ac** was obtained in 64% yield under reflux conditions (Scheme 4-2).<sup>14</sup> Treatment of **4ac** with NaBH<sub>4</sub> in MeOH afforded alcohol **7ac** in 92% yield (Scheme 4-3). The reaction of **4ac** with hydrazine gave hydrazide **8ac**, which was converted to **9ac** in 90% yield by reaction with salicylaldehyde. Compound **9ac**, named **LASS-Bio-1022**, is a potential lead compound for developing novel cruzain inhibitors.<sup>4c</sup>

In summary, we have developed an efficient one-pot protocol for the synthesis of structurally diverse functionalized quinoxalines via condensation and metal-free N-arylation. This method provides a metal-free and green route for preparation of functionalized quinoxalines from readily available common arylamines and  $\beta$ -keto oximes as the nitrogen source. The reaction can be easily performed on the gram scale and various useful scaffolds can be obtained from the obtained function-alized quinoxalines.

### EXPERIMENTAL SECTION

**General Methods.** All reactions were performed under an air atmosphere. Commercially available reagents were used without further purification. The NMR spectra were recorded in  $\text{CDCl}_3$  or  $\text{DMSO-}d_6$  on 400, 500, or 600 MHz instrument with TMS as the internal standard. NMR data are represented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in hertz (Hz), and integration. IR spectra were recorded on FT-IR spectrometer, and only major peaks are reported in cm<sup>-1</sup>. HRMS were measured in ESI mode and the mass analyzer of the HRMS was TOF. Flash column chromatography was performed on silica gel (300–400 mesh).

**Synthesis of Product 3a.** A round-bottle flask connected with water separator was charged with oxime **1a** (1.2 mmol), aniline **2a** (1.0 mmol), and AcOH (0.05 mL) in benzene (5 mL). The mixture was

refluxed for 2 h. The solvent was removed under reduced pressure to provide the crude product. The crude product was recrystallized from the solution of ethyl acetate and petroleum ether to afford compound **3a**, a gray solid, 0.253 g, 96% yield. mp: 123–124 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.51 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 3H), 2.04 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  163.6, 161.9, 156.8, 153.9, 142.4, 121.8, 114.6, 61.3, 55.6, 15.4, 14.5; IR (thin film) 3540, 3106, 2980, 2913, 1724, 1610, 1090, 758 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>13</sub>H<sub>17</sub>N<sub>2</sub>O<sub>4</sub> (M+H)<sup>+</sup> 265.1183; found: 265.1180.

General Procedure for Synthesis of Product 4 (Table 2 and Table 3). A round-bottle flask connected with water separator was charged with oxime 1 (1.2 mmol), aniline 2 (1.0 mmol), and AcOH (0.05 mL) in benzene (5 mL). The mixture was refluxed for 2 h. Then the solution of POCl<sub>3</sub> in MeCN (0.4 mol/L) was added to the reaction mixture at 0 °C and heated to reflux until the oxime intermediate was completely disappeared (monitored by TLC). At this time, the reaction mixture was poured into cool saturated aqueous NaHCO<sub>3</sub> (30 mL). The organic layer was separated and the water phase was extracted with ethyl acetate (25 mL × 2). The combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (25 mL × 1) and brine (25 mL × 1), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Purification by silica gel chromatography (petroleum ether/ethyl acetate, *V:V* = 1:4) afforded product 4.

*Ethyl 7-Methoxy-3-methylquinoxaline-2-carboxylate* (**4aa**). Yellow solid, 0.191 g, 78% yield. mp: 59–60 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 9.4 Hz, 1H), 7.51–7.28 (m, 2H), 4.57 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 2.94 (s, 3H), 1.51 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 160.6, 150.3, 144.0, 141.5, 138.9, 129.3, 125.5, 106.7, 62.4, 55.9, 23.4, 14.3; IR (thin film) 3106, 2989, 2921, 1725, 1621, 1449, 1379, 1089, 839 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> 247.1083; found: 247.1079.

*Ethyl 3,7-Dimethylquinoxaline-2-carboxylate (4ab).* Yellow solid, 0.168 g, 73% yield. mp: 40–41 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.66 (dd, J = 8.6 Hz, 1.6 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 2.94 (s, 3H), 2.58 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 151.9, 144.2, 141.0, 140.4, 139.9, 134.2, 128.5, 127.9, 62.4, 23.6, 21.8, 14.3; IR (thin film) 3104, 2978, 2914, 1723, 1635, 1380, 1234, 1088, 835 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 231.1133; found: 231.1123.

*Ethyl* 3-Methylquinoxaline-2-carboxylate (**4ac**). Yellow solid, 0.162 g, 75% yield, mp: 65–66 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 8.4 Hz, 0.9 Hz, 1H), 8.05 (dd, J = 8.4 Hz, 0.9 Hz, 1H), 7.83 (ddd, J = 8.4 Hz, 6.9 Hz, 1.4 Hz, 1H), 7.80–7.73 (m, 1H), 4.56

(q, *J* = 7.1 Hz, 2H), 2.96 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 152.8, 144.4, 142.5, 139.9, 131.8, 129.8, 129.7, 128.4, 62.3, 23.8, 14.3; IR (thin film) 3207, 2971, 2916, 1718, 1632, 1371, 1081, 851, 772, 701 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 217.0972; found: 217.0973.

*Ethyl* 7-Bromo-3-methylquinoxaline-2-carboxylate (**4ad**). Yellow solid, 0.185 g, 63% yield, mp: 63–65 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.34 (d, *J* = 1.1 Hz, 1H), 8.00–7.76 (m, 2H), 4.54 (q, *J* = 7.1 Hz, 2H), 2.91 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.3, 153.2, 145.1, 141.2, 140.4, 135.3, 132.0, 129.8, 123.7, 62.6, 23.7, 14.2; IR (thin film) 3132, 2982, 2925, 1725, 1641, 1475, 1274, 1092, 840 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>Br (M+H)<sup>+</sup> 295.0082; found: 295.0069.

*Ethyl* 7-*Fluoro-3-methylquinoxaline-2-carboxylate* (**4ae**). Pale yellow solid, 0.152 g, 65% yield, mp: 62–63 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10–8.04 (m, 1H), 7.89–7.74 (m, 1H), 7.64–7.59 (m, 1H), 4.70–4.49 (m, 2H), 2.94 (s, 3H), 1.52–1.48 (m, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 163.5 (d, *J*<sub>C-F</sub> = 252.4 Hz), 152.1 (d, *J*<sub>C-F</sub> = 3.0 Hz), 145.2, 140.5 (d, *J*<sub>C-F</sub> = 13.2 Hz), 139.8, 130.5 (d, *J*<sub>C-F</sub> = 9.9 Hz), 122.2 (d, *J*<sub>C-F</sub> = 26.2 Hz), 113.1 (d, *J*<sub>C-F</sub> = 21.7 Hz), 62.6, 23.5, 14.2; IR (thin film) 3068, 2988, 1723, 1623, 1378, 1118, 1089, 836, 753 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>F (M +H)<sup>+</sup> 235.0877; found: 235.0877.

*Ethyl 6-Chloro-3-methylquinoxaline-2-carboxylate (4af).* Yellow solid, 0.110 g, 44% yield, mp: 75–76 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, *J* = 9.0 Hz, 1H), 8.04 (d, *J* = 2.2 Hz, 1H), 7.70 (dd, *J* = 9.0 Hz, 2.3 Hz, 1H), 4.56 (q, *J* = 7.1 Hz, 2H), 2.95 (s, 3H), 1.50 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 154.0, 144.5, 142.8, 138.4, 137.8, 131.0, 130.9, 127.5, 62.6, 23.8, 14.3; IR (thin film) 3108, 2972, 1723, 1269, 1171, 1084, 866, 831, 802, 729 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>Cl (M+H)<sup>+</sup> 251.0582; found: 251.0581.

*Ethyl 6-Fluoro-3-methylquinoxaline-2-carboxylate* (**4ag**). Yellow oil, 0.107 g, 46% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.21 (dd, *J* = 9.2 Hz, 5.7 Hz, 1H), 7.69 (dd, *J* = 9.1 Hz, 2.8 Hz, 1H), 7.57 (ddd, *J* = 9.2 Hz, 8.2 Hz, 2.8 Hz, 1H), 4.58 (q, *J* = 7.1 Hz, 2H), 2.98 (s, 3H), 1.51 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.5, 165.0 (d, *J*<sub>C-F</sub> = 255.1 Hz), 154.0, 143.7 (d, *J*<sub>C-F</sub> = 3.6 Hz), 143.5 (d, *J*<sub>C-F</sub> = 13.6 Hz), 137.1, 132.1 (d, *J*<sub>C-F</sub> = 10.3 Hz), 120.5 (d, *J*<sub>C-F</sub> = 26.2 Hz), 112.1 (d, *J*<sub>C-F</sub> = 21.7 Hz), 62.5, 23.8, 14.3; IR (thin film) 3014, 2986, 1725, 1637, 1601, 1194, 1081, 868, 784, 696 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>F (M+H)<sup>+</sup> 235.0877; found: 235.0871.

*Ethyl* 6-*Isopropyl-3-methylquinoxaline-2-carboxylate* (4*a*h). White solid, 0.212 g, 82% yield, mp: 63–64 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.77–7.72 (m, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 4.24 (dt, *J* = 13.9 Hz, 6.9 Hz, 1H), 2.91 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H), 1.37 (s, 3H), 1.36 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 166.2, 151.7, 148.6, 143.3, 142.6, 138.0, 131.6, 125.9, 125.4, 62.0, 27.4, 23.5, 23.3, 14.2; IR (thin film) 3050, 2958, 1720, 1271, 1137, 1105, 1087, 834, 781, 558 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>15</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 259.1441; found: 259.1433.

*Ethyl 3,6-Dimethylquinoxaline-2-carboxylate (4ai-a).* White solid, 0.087 g, 38% yield, mp: 88–89 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, *J* = 8.6 Hz, 1H), 7.83 (s, 1H), 7.60 (dd, *J* = 8.6 Hz, 1.7 Hz, 1H), 4.57 (q, *J* = 7.1 Hz, 2H), 2.96 (s, 3H), 2.62 (s, 3H), 1.51 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 152.9, 143.4, 142.8, 142.6, 138.4, 132.2, 129. 3, 127.3, 62.3, 23.8, 22.1, 14.3; IR (thin film) 3078, 2982, 2932, 1720, 1370, 1276, 1197, 1100, 804, 792, 777 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 231.1128; found: 231.1123.

*Ethyl 3,8-Dimethylquinoxaline-2-carboxylate (4ai-b).* White solid, 0.085 g, 37% yield, mp: 82–83 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 8.4 Hz, 1H), 7.74–7.68 (m, 1H), 7.59 (d, *J* = 7.0 Hz, 1H), 4.56 (d, *J* = 7.1 Hz, 2H), 2.94 (s, 3H), 2.83 (s, 3H), 1.51 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 151.9, 143.5, 142.6, 139.2, 138.4, 131.4, 129.6, 126.2, 62.1, 23.4, 17.0, 14.2; IR (thin film) 3103, 2983, 2924, 1715, 1618, 1190, 1085, 841, 824, 753 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 231.1128; found: 231.1106.

*Ethyl 3,6,8-Trimethylquinoxaline-2-carboxylate (4aj).* White solid, 0.197 g, 81% yield, mp: 109–110 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (s, 1H), 7.42 (s, 1H), 4.54 (q, *J* = 7.1 Hz, 2H), 2.92 (s, 3H), 2.78 (s, 3H), 2.55 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.2, 152.0, 142.8, 142.5, 142.3, 137.8, 132.1, 132.0, 125.1, 62.0, 23.5, 22.1, 16.9, 14.2; IR (thin film) 3011, 2982, 2929, 2856, 1715, 1621, 1274, 1235, 1104, 866, 787 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 245.1285; found: 245.1276.

*Ethyl* 6,7-*Dimethoxy*-3-*methylquinoxaline*-2-*carboxylate* (**4ak**). Yellow solid, 0.218 g, 79% yield, mp: 115–116 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.45 (s, 1H), 7.31 (s, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 4.07 (s, 3H), 4.04 (s, 3H), 2.94 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 165.9, 154.6, 152.8, 151.2, 141.0, 140.4, 137.1, 107.1, 105.8, 62.2, 56.5, 56.5, 23.8, 14.4; IR (thin film) 3019, 2973, 2853, 1720, 1621, 1500, 1220, 1087, 846, 609 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{14}H_{16}N_2O_4Na$  (M+Na)<sup>+</sup> 299.1002; found: 299.1004.

*Ethyl* 3,6,7-*Trimethylquinoxaline-2-carboxylate* (**4al-a**). Yellow solid, 0.088 g, 36% yield, mp: 74–75 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (s, 1H), 7.79 (s, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 2.94 (s, 3H), 2.51 (s, 3H), 2.45 (s, 3H), 1.50 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 152.0, 143.2, 142.9, 141.6, 140.4, 138.9, 128.7, 127.5, 62.3, 23.8, 20.6, 20.3, 14.3; IR (thin film) 3011, 2980, 2853, 1725, 1610, 1376, 1204, 1091, 877, 752 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 245.1285; found: 245.1286.

*Ethyl* 3,7,8-*Trimethylquinoxaline-2-carboxylate* (4al-b). Yellow solid, 0.081 g, 33% yield, mp: 51-52 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.6 Hz, 1H), 7.65 (d, *J* = 8.6 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 2.93 (s, 3H), 2.76 (s, 3H), 2.53 (s, 3H), 1.51 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 150.9, 143.2, 141.2, 139.1, 137.7, 135.5, 134.8, 125.1, 62.1, 23.3, 20.4, 14.3, 13.0; IR (thin film) 3058, 2981, 2928, 1721, 1261, 1101, 839, 786, 674 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 245.1285; found: 245.1281.

*Ethyl 3,5-Dimethylquinoxaline-2-carboxylate (4am).* Yellow solid, 0.140 g, 61% yield, mp: 63–65 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92–7.88 (m, 1H), 7.54–7.51 (m, 2H), 4.48 (q, *J* = 7.0 Hz, 1H), 2.86 (s, 3H), 2.69 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 151.6, 143.8, 141.7, 139.9, 136.9, 131.6, 129.4, 127.6, 62.4, 23.9, 17.1, 14.3; IR (thin film) 3013, 2979, 2929, 1721, 1274, 1196, 1124, 862, 798, 765, 664 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 231.1128; found: 231.1121.

*Ethyl 2-Methylbenzo[f]quinoxaline-3-carboxylate (4an).* Pale yellow solid, 0.186 g, 70% yield, mp: 105–106 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.30–9.27 (m, 1H), 8.06–8.02 (m, 2H), 7.99–7.94 (m, 1H), 7.83–7.78 (m, 2H), 4.61 (q, *J* = 7.1 Hz, 2H), 3.10 (s, 3H), 1.54 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 151.1, 142.0, 140.6, 138.4, 133.0, 130.5, 129.1, 128.6, 127.0, 126.6, 125.6, 124.1, 61.3, 22.9, 13.3; IR (thin film) 3033, 2987, 2918, 1721, 1636, 1378, 1237, 1110, 845, 761, 639 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>Na (M+Na)<sup>+</sup> 289.0948; found: 289.0944.

*Ethyl 6-Methoxy-3-methylquinoxaline-2-carboxylate* (**4ao**). Yellow solid, 165 mg, 67% yield. mp: 89–90 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.00 (d, *J* = 9.2 Hz, 1H), 7.34 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.29 (d, *J* = 2.6 Hz, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 3.92 (s, 3H), 2.90 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.7, 162.7, 153.4, 144.2, 141.3, 136.2, 131.0, 123.6, 105.5, 62.3, 56.0, 23.9, 14.3; IR (thin film) 2973, 2941, 2838, 1795, 1604, 1491, 1223, 1090, 838 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for  $C_{13}H_{15}N_2O_3$  (M+H)<sup>+</sup> 247.1083; found: 247.1080.

*Ethyl 3-Ethyl-7-methoxyquinoxaline-2-carboxylate* (**4ba**). White solid, 0.205 g, 79% yield, mp: 50–51 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.92 (d, *J* = 9.1 Hz, 1H), 7.44 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.42 (d, *J* = 2.7 Hz, 1H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 3H), 3.20 (q, *J* = 7.5 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H), 1.38 (t, *J* = 7.5 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 166.2, 160.7, 154.6, 144.5, 141.5, 139.1, 129.6, 125.3, 106.8, 62.5, 56.0, 29.2, 14.4, 13.6; IR (thin film) 3089, 2988, 2924, 1728, 1620, 1492, 1216, 1085, 836, 771, 623 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> 261.1234; found: 261.1226.

*Ethyl 7-Methoxy-3-propylquinoxaline-2-carboxylate* (**4ca**). White solid, 0.227 g, 83% yield, mp: 113–115 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 9.1 Hz, 1H), 7.43–7.37 (m, 2H), 4.50 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 3H), 3.14–3.10 (m, 2H), 1.84–1.75 (m, 2H), 1.43 (d, *J* = 7.1 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 160.7, 153.5, 144.6, 141.4, 139.0, 129.6, 125.3, 106.7, 62.4, 55.9, 37.8, 23.0, 14.3, 14.2; IR (thin film) 3088, 2978, 2939, 1642, 1512, 1245, 1182, 1086, 835, 805, 768 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for C<sub>15</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> 275.1390; found: 275.1378.

*Ethyl* 7-*Methoxy*-3-*phenylquinoxaline-2-carboxylate* (**4da**). Yellow oil, 0.181 g, 59% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.08 (d, *J* = 8.9 Hz, 1H), 7.75–7.72 (m, 2H), 7.55–7.51 (m, 5H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 166.8, 161.3, 149.9, 145.5, 141.7, 138.6, 138.0, 130.3, 129.2, 128.6, 128.5, 125.4, 106.5, 62.3, 56.0, 13.8; IR (thin film) 3098, 2965, 1730, 1619, 1260, 1111, 1019, 804, 669 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub>Na (M+Na)<sup>+</sup> 331.1053; found: 331.1047.

*Ethyl 7-Methoxy-3-(4-methoxyphenyl)quinoxaline-2-carboxylate* (*4ea*). Yellow oil, 0.165 g, 49% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, *J* = 9.0 Hz, 1H), 7.67 (d, *J* = 8.6 Hz, 2H), 7.51–7.43 (m, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 3H), 3.86 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.1, 161.0, 160.7, 149.3, 145.4, 141.3, 138.7, 130.0, 129.9, 125.2, 114.2, 114.1, 106.5, 62.3, 55.9, 55.4, 13.9; IR (thin film) 3111, 2964, 1721, 1610, 1213, 1106, 1026, 835, 793 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub> (M+H)<sup>+</sup> 339.1339; found: 339.1354.

*Ethyl* 3-(4-Bromophenyl)-7-methoxyquinoxaline-2-carboxylate (**4fa**). White solid, 0.204 g, 53% yield, mp: 97–98 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.04 (d, J = 9.2 Hz, 1H), 7.65–7.62 (m, 2H), 7.61–7.58 (m, 2H), 7.52 (dd, J = 9.2, 2.8 Hz, 1H), 7.49 (d, J = 2.7 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 3.99 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 166.6, 161.5, 148.7, 145.0, 141.8, 138.6, 136.9, 131.7, 130.2, 130.2, 125.7, 123.9, 106.5, 62.5, 56.0, 13.9; IR (thin film) 3121, 2986, 1728, 1620, 1251, 1103, 1028, 829, 751 cm<sup>-1</sup>; HRMS (APCI) m/z calcd for C<sub>18</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub>Br (M+H)<sup>+</sup> 387.0344; found: 387.0324.

*Ethyl 7-Methoxy-3-(o-tolyl)quinoxaline-2-carboxylate (4ga).* Yellow oil, 0.151 g, 47% yield; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 9.0 Hz, 1H), 7.55–7.50 (m, 2H), 7.37–7.33 (m, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 7.28–7.25 (m, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 2.22 (s, 3H), 1.05 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 161.5, 151.5, 145.5, 142.0, 138.7, 138.1, 136.3, 130.4, 130.3, 129.0, 128.9, 125.8, 125.8, 106.8, 62.2, 56.1, 19.9, 13.7; IR (thin film) 3097, 2979, 2856, 1737, 1620, 1246, 1103, 837, 741, 647 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> 323.1390; found: 323.1384.

*Ethyl 7-Methoxy-3-(pyridin-2-yl)quinoxaline-2-carboxylate (4ha).* White solid, 0.155 mg, 61% yield, mp: 175–176 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.65–8.62 (m, 1H), 8.40–8.34 (m, 1H), 8.06–8.01 (m, 1H), 7.90–7.85 (m, 1H), 7.51–7.45 (m, 2H), 7.38–7.33 (m, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 161.6, 154.6, 148.4, 146.7, 146.5, 142.3, 137.9, 136.9, 130.3, 124.9, 124.0, 122.4, 106.7, 62.1, 55.9, 14.0; IR (thin film) 3093, 2977, 1731, 1619, 1248, 1111, 1025, 828, 783, 747 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>17</sub>H<sub>16</sub>N<sub>3</sub>O<sub>3</sub> (M+H)<sup>+</sup> 310.1186; found: 310.1177.

1-(7-Methoxy-3-methylquinoxalin-2-yl)ethanone (**4ia**). Yellow solid, 0.177 g, 82% yield, mp: 92–93 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.90 (d, *J* = 9.2 Hz, 1H), 7.47 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.35 (d, *J* = 2.8 Hz, 1H), 3.99 (s, 3H), 2.92 (s, 3H), 2.83 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 201.5, 160.4, 150.3, 147.0, 141.3, 138.9, 129.3, 125.5, 106.6, 55.8, 28.0, 24.0; IR (thin film) 3111, 2962, 1697, 1620, 1217, 1029, 940, 837, 653, 606 cm<sup>-1</sup>; HRMS (APCI) *m*/*z* calcd for  $C_{12}H_{13}N_2O_2$  (M+H)<sup>+</sup> 217.0972; found: 217.0973.

(7-Methoxy-3-methylquinoxalin-2-yl) (phenyl)methanone (**4ja**). White solid, 0.178 g, 64% yield, mp: 171–172 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (t, J = 9.4 Hz, 3H), 7.66 (t, J = 7.4 Hz, 1H), 7.53–7.48 (m, 3H), 7.38 (s, 1H), 3.95 (s, 3H), 2.77 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  194.3, 160.6, 150.7, 149.4, 141.0, 138.4, 135.7, 134.0, 130.6, 129.5, 128.7, 124.6, 106.7, 55.8, 22.3; IR (thin film) 3201,

2986, 1670, 1621, 1219, 1025, 903, 831 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> 279.1128; found: 279.1127.

7-Methoxy-3-phenylquinoxaline-2-carbonitrile (**4ka**). Yellow solid, 0.172 g, 66% yield, mp: 184–185 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.09 (d, *J* = 9.3 Hz, 1H), 8.07–8.02 (m, 2H), 7.63–7.58 (m, 4H), 7.43 (d, *J* = 2.8 Hz, 1H), 4.04 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 161.9, 152.1, 142.5, 139.1, 135.3, 130.5, 130.4, 129.1, 128.9, 128.1, 127.6, 116.9, 105.9, 56.1; IR (thin film) 3011, 2974, 2511, 1621, 1333, 1219, 1023, 835, 758, 692 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>12</sub>N<sub>3</sub>O (M+H)<sup>+</sup> 262.0975; found: 262.0970.

Synthesis of 3-(Ethoxycarbonyl)-2-methylquinoxaline 1-Oxide (**5ac**). A mixture of ethyl 3-methylquinoxaline-2-carboxylate **4ac** (1.0 mmol), *m*-CPBA (4.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was stirred for 3 h at room temperature. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography with eluents (petroleum ether/ethyl acetate, *V*:*V* = 1:6) to provide product **5ac** (0.181 g, 78%). A white solid, mp: 85–86 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.60–8.57 (m, 1H), 8.19–8.18 (m, 1H), 7.82–7.80 (m, 2H), 4.58 (q, *J* = 7.1 Hz, 2H), 2.80 (s, 3H), 1.50 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 147.3, 142.5, 140.1, 137.1, 131.6, 131.2, 130.7, 118.8, 62.9, 14.2; IR (thin film) 3077, 2990, 1717, 1341, 1255, 1063, 887, 773, 603 cm<sup>-1</sup>; HRMS (APCI) *m/z* calcd for C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> 233.0921; found: 233.0912.

Synthesis of 2-(Ethoxycarbonyl)-3-methylquinoxaline 1,4-Dioxide (6ac). A mixture of ethyl 3-methylquinoxaline-2-carboxylate 4ac (1.0 mmol) and m-CPBA (4.0 mmol) in DCE (5 mL) was refluxed for 4 h. The solvents were removed under reduced pressure and the crude product was purified by flash chromatography with eluents (petroleum ether/ethyl acetate, V:V = 1:2) to provide product 6ac (0.159 g, 64%). A white solid, mp: 133–134 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.65–8.53 (m, 2H), 7.92–7.82 (m, 2H), 4.58 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 1.47 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 159.8, 139.0, 137.9, 136.9, 135.6, 132.6, 131.5, 120.4, 120.1, 63.7, 14.4, 14.0; IR (thin film) 3098, 2947, 1741, 1636, 1335, 1247, 1064, 772, 634 cm<sup>-1</sup>; HRMS (APCI) m/z calcd for C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>4</sub> (M+H)<sup>+</sup> 249.0870; found: 249.0861.

Synthesis of (3-Methylquinoxalin-2-yl)methanol (**7ac**). A mixture of ethyl 3-methylquinoxaline-2-carboxylate **4ac** (1.0 mmol) and NaBH<sub>4</sub> (3.0 mmol) in MeOH (5 mL) was stirred for 15 min at room temperature. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography with eluents (petroleum ether/ethyl acetate, V:V = 1:1) to provide product **7ac** (0.160 g, 92%). A yellow solid, mp: 109–110 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.13–7.96 (m, 2H), 7.72 (dd, J = 6.5 Hz, 2.7 Hz, 2H), 4.91 (s, 2H), 4.59 (s, 1H), 2.65 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  152.7, 151.3, 141.5, 139.5, 129.5, 129.3, 128.5, 128.2, 62.0, 20.7; IR (thin film) 3455, 2896, 1640, 1382, 1163, 1060, 775, 682 cm<sup>-1</sup>; HRMS (APCI) m/z calcd for C<sub>10</sub>H<sub>11</sub>N<sub>2</sub>O (M+H)<sup>+</sup> 175.0866; found: 175.0860.

Synthesis of LAssBio-1022 (9ac). A mixture of ethyl 3methylquinoxaline-2-carboxylate 4ac (1.0 mmol) and hydrazine hydrate (85%, 20 mmol) in EtOH (5 mL) was refluxed for 0.5 h. When the 4ac was completely consumed (monitored by TLC), the mixture was cooled to room temperature and a colorless needle crystal was precipitated. The precipitate was filtered to give 8ac (0.200 g, 99%), mp: 171-172 °C.<sup>4b</sup> A round-bottle flask was charged with 8ac (0.2 g, 1.0 mmol) and EtOH (10 mL). Salicyaldehyde (0.122 g, 1.0 mmol) was added in one portion. The mixture was stirred for 1 h. At this time, the solvent was removed under reduced pressure to afford the crude product, which was crystallized from EtOH to give product 9ac (0.2 g, 90% yield).<sup>4c</sup> A white solid, mp: 228-229 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  11.02 (s, 1H), 10.90 (s, 1H), 8.48 (s, 1H), 8.02 (d, J = 8.8 Hz, 2H), 7.82–7.77 (m, 1H), 7.75–7.70 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 3.12 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 158.7, 157.7, 153.6, 150.2, 142.2, 140.6, 137.8, 131.2, 131.1, 130.0, 129.1, 128.0, 127.7, 118.4, 116.4, 23.7.

General Procedure for Synthesis of Oxime 1. A solution of ethyl acetoacetate (44 mL, 4.1 g, 31.5 mmol) in glacial acetic acid (5.2 mL) was cooled to 5 °C and a solution of sodium nitrite (3.2 g, 46.2 mol) in water (7 mL) was added dropwise at 5-10 °C. The mixture was

stirred for 1 h, then 18% solution of sodium chloride (15 mL) was added and the mixture was stirred for additional 20 min. Then it was extracted with chloroform (75 mL  $\times$  2); the extracts were sequentially washed with 18% solution of sodium chloride, 10% solution of sodium bicarbonate, 18% solution of sodium chloride; and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give 1a as yellow oil (4.5 g, 97%). All 2-oxime-1, 3-diketone derivatives  $1a^{15}$ ,  $1b^{16}$ ,  $1c^{17}$ ,  $1d^{18}$ ,  $1e^{19}$ ,  $1f^{20}$ ,  $1g^{21}$ ,  $1h^{22}$ ,  $1i^{23}$ ,  $1j^{18a}$ ,  $1k^{24}$  were obtained in a similar method and the data matched the literature.

## ASSOCIATED CONTENT

#### **S** Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00011.

Spectra of 3a, 4, 5ac, 6ac, 7ac, 9ac, and X-ray crystal structure of 4an (CIF) (PDF)

# AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: panchx@gxnu.edu.cn \*E-mail: moeastlight@mailbox.gxnu.edu.cn \*E-mail: gfysglgx@163.com

# ORCID ©

Dong-Liang Mo: 0000-0002-4005-2249 Gui-Fa Su: 0000-0003-3128-2381

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (21162002, 21462008), the Guangxi Natural Science Foundation (2014GXNSFAA118053, 2015GXNSFDA139009, 2016GXNSFFA380005), the "Overseas 100 Talents Program" of Guangxi Higher Education, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China (CMEMR2011-17, CMEMR2012-A014, CMEMR2014-A01).

# REFERENCES

(1) For some selected reviews, see: (a) Mamedov, V. A.; Zhukova, N. A. Prog. Heterocycl. Chem. 2012, 24, 55. (b) Mamedov, V. A.; Zhukova, N. A. Prog. Heterocycl. Chem. 2013, 25, 1. (c) Nageswar, Y. V. D.; Reddy, K. H. V.; Ramesh, K.; Murthy, S. N. Org. Prep. Proced. Int. 2013, 45, 1. (d) Fultz, M.; Rollyson, W. Pyrazines and Quinoxalines. In Heterocyclic Chemistry in Drug Discovery; Li, J. J. Ed.; Wiley & Sons, Inc.: Hoboken, New Jersey, 2013, 536-567. (e) Bharagava, D.; Garg, G. J. Pharm. Res. 2012, 5, 130. (f) Kamal, A.; Reddy, K. L.; Devaiah, V.; Shankaraiah, N.; Rao, M. V. Mini-Rev. Med. Chem. 2006, 6, 71. (g) Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688. (h) Marin, L.; Lutsen, L.; Vanderzande, D.; Maes, W. Org. Biomol. Chem. 2013, 11, 5866. (i) Gawrys, P.; Marszalek, T.; Bartnik, E.; Kucinska, M.; Ulanski, J.; Zagorska, M. Org. Lett. 2011, 13, 6090. (j) Gers, C. F.; Nordmann, J.; Kumru, C.; Frank, W.; Müller, T. J. J. J. Org. Chem. 2014, 79, 3296. (2) This number is based on a survey of the SciFinder database used the "quinoxalines" as research topic.

(3) Negwer, M.; Scharnow, H. G. Organic Chemical Drugs and Their Synonyms; Wiley-VCH: Weinheim, 2001; Vols. 2–3.

(4) (a) Edwards, M. L.; Bambury, R. E.; Ritter, H. W. J. Med. Chem.
1975, 18, 637. (b) Romeiro, N. C.; Aguirre, G.; Hernández, P.; González, M.; Cerecetto, H.; Aldana, I.; Pérez-Silanes, S.; Monge, A.; Barreiro, E. J.; Lima, L. M. Bioorg. Med. Chem. 2009, 17, 641.
(c) Chen, Q.; Bryant, V. C.; Lopez, H.; Kelly, D. L.; Luo, X.; Natarajan, A. Bioorg. Med. Chem. Lett. 2011, 21, 1929. (d) Wurz, R. P.; Sastri, C.; D'Amico, D. C.; Herberich, B.; Jackson, C. L. M.; Pettus, L. H.; Tasker, A. S.; Wu, B.; Guerrero, N.; Lipford, J. R.; Winston, J. T.; Yang, Y.; Wang, P.; Nguyen, Y.; Andrews, K. L.; Huang, X.; Lee, M. R.; Mohr, C.; Zhang, J. D.; Reid, D. L.; Xu, Y.; Zhou, Y.; Wang, H.-L. Bioorg. Med. Chem. Lett. 2016, 26, 5580.

(5) For some selected recent examples, see: (a) Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Green Chem. 2015, 17, 279. (b) Schmidt, B.; Krehl, S.; Hauke, S. J. Org. Chem. 2013, 78, 5427. (c) Nguyen, T. B.; Retailleau, P.; Al-Mourabit, A. Org. Lett. 2013, 15, 5238. (d) Huang, A.; Chen, Y.; Zhou, Y.; Guo, W.; Wu, X.; Ma, C. Org. Lett. 2013, 15, 5480. (e) Okumura, S.; Takeda, Y.; Kiyokawa, K.; Minakata, S. Chem. Commun. 2013, 49, 9266. (f) Yang, Y.: Ni, F.: Shu, W.-M.; Wu, A.-X. Chem. - Eur. J. 2014, 20, 11776. (g) Shi, S.; Wang, T.; Yang, W.; Rudolph, M.; Hashmi, A. S. K. Chem. - Eur. J. 2013, 19, 6576. (h) Ammermann, S.; Hrib, C.; Jones, P. G.; du Mont, W.-W.; Kowalsky, W.; Johannes, H.-H. Org. Lett. 2012, 14, 5090. (i) Wang, L.; Guo, W.; Zhang, X.-X.; Xia, X.-D.; Xiao, W.-J. Org. Lett. 2012, 14, 740. (j) Wang, W.; Shen, Y.; Meng, X.; Zhao, M.; Chen, Y.; Chen, B. Org. Lett. 2011, 13, 4514. (k) Ghorai, M. K.; Sahoo, A. K.; Kumar, S. Org. Lett. 2011, 13, 5972. (l) Vidal-Albalat, A.; Rodríguez, S.; González, F. V. Org. Lett. 2014, 16, 1752. (m) Zhang, F.; Xi, Y.; Lu, Y.; Wang, L.; Liu, L.; Li, J.; Zhao, Y. Chem. Commun. 2014, 50, 5771. (n) Jeena, V.; Sithebe, S.; Robinson, R. S. Synth. Commun. 2015, 45, 1484. (o) Xie, C.; Zhang, Z.; Yang, B.; Song, G.; Gao, H.; Wen, L.; Ma, C. Tetrahedron 2015, 71, 1831. (p) Shen, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. Org. Lett. 2016, 18, 1378.

(6) For some selected recent examples, see: (a) Meyer, C.; Zapol'skii,
V. A.; Adam, A. E. W.; Kaufmann, D. E. Synthesis 2008, 2008, 2575.
(b) Özpinar, G. A.; Erdem, S. S.; Meyer, C.; Kaufmann, D. E. J. Org. Chem. 2009, 74, 4727. (c) Maichrowski, J.; Gjikaj, M.; Hübner, E. G.; Bergmann, B.; Müller, I. B.; Kaufmann, D. E. Eur. J. Org. Chem. 2013, 2013, 2091. (d) Xekoukoulotakis, N. P.; Hadjiantoniou-Maroulis, C. P.; Maroulis, A. J. Tetrahedron Lett. 2000, 41, 10299.

(7) Ma, H.; Li, D.; Yu, W. Org. Lett. 2016, 18, 868.

(8) Chen, T.; Chen, X.; Wei, J.; Lin, D.; Xie, Y.; Zeng, W. Org. Lett. 2016, 18, 2078.

(9) Yang, Z.-J.; Liu, C.-Z.; Hu, B.-L.; Deng, C.-L.; Zhang, X.-G. Chem. Commun. 2014, 50, 14554.

(10) Chen, F.; Huang, X.; Li, X.; Shen, T.; Zou, M.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 10495.

(11) Ma, X.-P.; Shi, W.-M.; Mo, X.-L.; Li, X.-H.; Li, L.-G.; Pan, C.-X.; Chen, B.; Su, G.-F.; Mo, D.-L. J. Org. Chem. **2015**, *80*, 10098.

(12) CCDC: 1484740 (**4an**) contains the supplementary crystallographic data for this article. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

(13) For some recent reports, see: (a) Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org. Lett. 2005, 7, 2169.
(b) Kobayashi, Y.; Kuroda, M.; Toba, N.; Okada, M.; Tanaka, R.; Kimachi, T. Org. Lett. 2011, 13, 6280. (c) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005, 2005, 4505. (d) Kitamura, M.; Yoshida, M.; Kikuchi, T.; Narasaka, K. Synthesis 2003, 2003, 2415.

(14) Bartoszek, M.; Salzwedel, D.; Stumm, G.; Niclas, H.-J. Org. Mass Spectrom. 1987, 22, 259.

(15) Fershtat, L. L.; Kulikov, A. S.; Ananyev, I. V.; Struchkova, M. I.; Makhova, N. N. J. Heterocyclic Chem. **2016**, *53*, 102.

(16) Shibata, Y.; Kagechika, K.; Yamaguchi, M.; Yoshikawa, K.; Chiba, K.; Takano, H.; Akiyama, C.; Ono, M.; Nishi, M.; Kubo, H.; Kobayashi, Y.; Usui, H. *Chem. Pharm. Bull.* **2013**, *61*, 1248.

(17) Dong, J.; Chen, S.; Li, R.; Cui, W.; Jiang, H.; Ling, Y.; Yang, Z.; Hu, W. Eur. J. Med. Chem. **2016**, 108, 605.

(18) (a) Zolfigol, M. A. Molecules 2001, 6, 694. (b) Mordant, C.; Dünkelmann, P.; Ratovelomanana-Vidal, V.; Genet, J. Eur. J. Org. Chem. 2004, 2004, 3017.

(19) Fan, S.; Liu, S.; Zhang, H.; Liu, Y.; Yang, Y.; Jin, L. Eur. J. Org. Chem. 2014, 2014, 5591.

(20) Albaugh, P. A.; Dominguez-Manzanares, E.; Hong, J. E.; Hornback, W. J.; Jiang, D.; Ornstein, P. L.; Thompson, M. L.; Tromiczak, E. G.; Wu, Z.; Zarrinmayeh, H.; Zimmerman, D. M.;

G

Castano Mansanet, A. M.; Huffman, L. G.; Miller, W. D. WO 2005040110, May 6, 2005.

- (21) Yamamoto, K.; Kondoh, K.; Horiuchi, K.; Matsui, Y.; Nagamine, M. EP 761658, March 12, 1997.
- (22) Altaf, M.; Wang, Y.; Socorro, I. M.; Stoeckli-Evans, H. Inorg. Chim. Acta 2012, 383, 204.
- (23) Mlostoń, G.; Jasiński, M.; Heimgartner, H. Eur. J. Org. Chem. 2011, 2011, 2542.
- (24) Mo, K.; Kang, S. B.; Kim, Y.; Lee, Y. S.; Lee, J. W.; Keum, G. *Eur. J. Org. Chem.* **2015**, 2015, 1137.