

www.elsevier.com/locate/carres

Carbohydrate Research 334 (2001) 281-287

CARBOHYDRATE RESEARCH

Synthesis of peracetylated chacotriose

Marielba Morillo,^a Vincent Lequart,^b Eric Grand,^b Gérard Goethals,^b Alfredo Usubillaga,^a Pierre Villa,^b Patrick Martin^{b,*}

^aInstituto de Investigaciones, Facultad de Farmacia, Universidad de Los Andes, Mérida 5101, Venezuela ^bLaboratoire de Chimie Organique et Cinétique, Université de Picardie Jules Verne, 33 rue Saint-Leu, F-80039 Amiens, France

Received 6 February 2001; accepted 4 July 2001

Abstract

Steroidal glycoalkaloids of many *Solanum* species have recognized biological activities, especially those containing the glycosyl moiety α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 4)$]-D-glucopyranose (chacotriose) whose peracetate is here synthesized and characterized by complete ¹H and ¹³C NMR assignment. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Solanum; Glycoalkaloid; Chacotriose; L-Rhamnose

1. Introduction

Steroidal glycoalkaloids¹ are secondary metabolites frequently found in species of Solanum, conferring on them resistance to insects and other pests.^{2,3} Most Solanum species contain two major glycoalkaloids which share aglycone, the same bound either to chacotriose, α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 4)$]- β -D-glucopyranor solatriose, *α*-L-rhamnopyranosylose. $(1 \rightarrow 2)$ -[β -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-galactopyranose. It has been demonstrated that Solanum steroidal glycoalkaloids have antineoplasic,⁴ antifungal,⁵ as well as trypanolytic and trypanocidal activities.⁶ Glycosides containing chacotriose are consistently more actheir tive than solatriose containing counterparts.

Inactivation of *Herpes simplex* virus by Solanum glycoalkaloids has been reported by Thorne et al.⁷ who demonstrated that α chaconine, the glycoside of solanidine with chacotriose, was the most effective, whereas the corresponding aglycone was inactive. The low activity of the aglycones indicates that the role of the carbohydrate moiety is very important. The biological activity of Solanum glycoalkaloids is believed to depend on the interaction of the carbohydrate moiety with membrane sugar receptors, which allow penetration of the steroidal alkaloid and subsequent disruption of the cell metabolism of the pathogen.⁸ Solanum americanum Miller is a herbaceous plant that grows abundantly in Venezuela.⁹ The expressed fruits and leaves of this plant, commonly called 'yerbamora', are used by the rural population to treat skin injuries caused by Herpes zoster. The main steroidal glycoalkaloids in the fruits of this plant are α -solamargine and α -solasonine.¹⁰

^{*} Corresponding author. Fax: + 33-3-22827568.

E-mail address: patrick.martin@sc.u-picardie.fr (P. Martin).

Clinical tests carried out with a hydrophilic cream containing either a crude extract of *S*. *americanum* fruits or α -solamargine, applied topically, healed patients suffering from *H*. *zoster*, *H. simplex*, and *H. genitalis* after 3–10 days.¹¹

Glycoalkaloids containing chacotriose are known to be the most active of such alkaloids, and such compounds as α -chaconine and α -solamargine are not easily obtained in large quantities. Since the glycosidic moiety. chacotriose, is important for biological activity, it was decided to make it more readily available by chemical synthesis as its peracetate. Peracetylated chacotriose is more stable than unprotected chacotriose and it could be readily transformed into α -chaconine or α -solamargine on a commercial scale for inclusion into antiviral creams, which could prove cheaper alternatives to antiviral drugs already on the market. Moreover, chacotriose could be bound to other aglycones in the search for new biologically active glycosides, or be obtained as labeled derivatives which could be used to study its mechanism of action in biological systems.

2. Results and discussion

Peracetylated chacotriose was synthesized starting from D-glucose. The strategy adopted was to partially protect the glucose leaving only the 2- and 4-hydroxyl groups available for glycosidic bond formation with two Lrhamnopyranose units. The synthetic sequence started from 1,2:5,6-di-O-isopropylidene-a-Dglucofuranose¹² (1). 3-O-Benzyl-1,2-O-isopropylidene- α -D-glucofuranose (3) was prepared by the procedure of Goueth et al.¹³ in two steps from 1 in 62% yield. Compound 3 was treated with *p*-toluenesulfonyl chloride in 1:1 toluene- C_5H_5N at 4 °C to give 3-O-benzyl-1,2-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (4) in 90% yield; the presence of the tosyl group at C-6 was confirmed in the ¹³C NMR spectrum by the characteristic aryl signals. Compound 4 was treated with 2.2 equivalents of NaOH¹³ in 9:1 dioxane-water and the crude product was purified on silica gel to give 5.6-anhydro-3-O-benzyl-1.2-O-isopropylidene- α -D-glucofuranose (5) in 76% yield; the formation of the anhydro group was ascertained by signals at 46.9 ppm (C-6) and 48.1 ppm (C-5) in the ¹³C NMR spectrum. 3,6-Di-O-benzyl-1,2-O-isopropylidene-α-D-glucofuranose (7) was prepared by condensing compound 5 with benzyl alcohol (5 equiv) in the presence of KOH (6 equiv) in 1:1 toluene-Me₂SO; to facilitate its extraction, the crude product was acetylated to separate the corresponding 5-O-acetyl derivative 6 (76% yield) which treated with NaOMe in MeOH gives pure compound 7. Subsequently, 7 was treated with 9:1 CF₃CO₂OH-water¹⁴ and the crude product purified on silica gel to give 3,6-di-Obenzyl-D-glucopyranose (8) in 86% yield; the ¹³C NMR spectrum showed signals at 92.8 ppm (C-1 α) and 97.1 ppm (C-1 β) which indicated that the anomeric hydroxyl was free. Acetylation of 8 gave 1,2,4-tri-O-acetyl-3,6-di-O-benzyl-D-glucopyranose (9) in 86% yield. To obtain glucose in the required protected form for attachment of two rhamnose units at the 2- and 4-hydroxyl groups, 9 was initially benzylated at the anomeric position by reaction with benzyl alcohol in dry CH₂Cl₂ in the presence of SnCl₄¹⁵ to give benzyl 2,4-di-Oacetyl-3,6-di-O-benzyl- β -D-glucopyranoside (10) as the sole anomer in 60% yield. The ^{13}C NMR spectrum of 10 showed the signal of the anomeric carbon at 99.9 ppm (C-1). Compound 10 was then treated with NaOMe in MeOH to give benzyl 3,6-di-O-benzyl-B-Dglucopyranoside (11) in 98% yield without purification. The ¹³C NMR data of **11** showed a signal for the anomeric carbon at 102.1 ppm. The intermediate 11 was thus obtained 1,2:5,6-di-O-isopropylidene-α-D-glucofrom furanose in an overall yield of 14%.

L-Rhamnose was first peracetylated with $Ac_2O-C_5H_5N$ to give, after silica-gel chromatography, 1,2,3,4-tetra-*O*-acetyl-L-rhamnopyranose (12) in 67% yield. The anomeric carbon of 12 appeared at 90.3 (C-1 β) and 90.6 ppm (C-1 α) in the ¹³C NMR spectrum. Compound 12 was treated with 4.5 equivalents of HBr (33% in glacial acetic acid)^{16,17} to obtain 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl bromide (13) in 94% yield; the anomeric carbon appeared at 83.7 ppm in ¹³C NMR. Compound 11 was mixed with four equivalents of 13 in dry CH₂Cl₂ at 0 °C, in the presence of tetramethylurea and silver triflate.^{18–20} The product was purified on silica gel to give benzyl 2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl- $(1 \rightarrow 4)$ -3,6-di-*O*-benzyl- β -D-glucopyranoside (14) (30%) and benzyl 2,3,4-tri-Oacetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[(2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$]-3,6di-O-benzyl- β -D-glucopyranoside (15) (65%). The ¹³C NMR spectrum of 15 showed three anomeric carbons at 97.2, 97.7, and 100.3 ppm, while the spectrum of 14 showed only two at 97.4 and 98.6 ppm. A HMQC experiment indicated a correlation between C-1 of the rhamnose unit and H-4 of the glucose unit indicating $(1 \rightarrow 4)$ glycosylation in 14. Compound 15 was subjected to catalytic hydrogenolysis to remove the benzyl protecting groups and subsequently acetylated to obtain the desired peracetylated chacotriose 16 in 24% yield (Scheme 1).

3. Experimental

General methods.—Melting points were determined on an electrothermal automatic apparatus, and are uncorrected. Optical rotations for solutions in CHCl₃ or MeOH

Scheme 1.

were measured with a JASCO digital polarimeter model DIP-370 using a sodium lamp at 25 °C. NMR spectra were recorded with a Bruker WB-300 instrument for solutions in CDCl₃ (internal Me₄Si). All compounds were characterized by acquisition of ¹H, ¹³C, DEPT, ¹H-¹H COSY, and ¹H-¹³C correlated experiments. Electron (EI-MS) and fast-atom bombardment (FAB-MS) ionizations were accomplished on an AutoSpec (Micromass, UK), high-resolution mass spectrometer. Electrospray ionization (ESI-MS) was performed on a SSQ710 (ThermoFinnigan, USA), simple quadrupole mass spectrometer. For the positive ESI-MS experiments, the compound was dissolved in 100:400:0.02 water-MeOH- $CH_{3}CO_{2}NH_{4}$ at a concentration of 0.02 mg mL^{-1} and then introduced into the ion source (Analytica of Branford, USA) at a flow rate of 3 μ L min⁻¹. Reactions were monitored by either high-performance liquid chromatography (HPLC) (Waters 721) using reverse-phase column RP-18 (E. Merck), or CPG (Girdel) with OV-17 columns. Analytical thin-layer chromatography (TLC) was performed on E. Merck aluminum-backed silica gel (Silica Gel F254). Column chromatography was performed on silica gel (60 mesh, Matrex) by gradient elution with hexane-acetone or hexane-EtOAc (in each case the ratio of silica gel to product mixture to be purified was 30:1).

3-O-Benzyl-1,2-O-isopropylidene-6-O-tosyl- α -D-glucofuranose (4).—To a stirred solution of 3-O-benzyl-1,2-O-isopropylidene-α-D-glucofuranose $(3)^{13}$ (37 g, 119 mmol) in 1:1 toluene-pyridine (370 mL) was added, at -10 °C, tosyl chloride (27.3 g, 143 mmol) in toluene (50 mL). After 72 h at 6 °C, the mixture was filtered and the filtrate concentrated under reduced pressure. The residue was purified by column chromatography eluting with 4:1 hexane-acetone to give 4 in 90% yield as an oil; $[\alpha]_{\rm D} + 73.2^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.90–7.11 (m, 9 H, Ph, C₆H₄), 5.60 (d, 1 H, J_{1.2} 3.3 Hz, H-1), 4.58 (d, 1 H, J₂ 30.0 Hz, H-2), 4.50 (d, 1 H, J₃ 4 3.2 Hz, H-3), 4.30 (dd, 1 H, J_{6a,6b} 10.0 Hz, H-6a), 4.20 (m, 1 H, J_{5,6a} 1.8 Hz, H-5), 4.10 (dd, 1 H, J_{5.6b} 2.5 Hz, H-6b), 4.00 (m, 1 H, J_{4,5} 4.0 Hz, H-4), 2.37 (s, 3 H, CH₃C₆H₄), 1.20, 1.30 (2s, 6 H, CMe₂); ¹³C NMR (CDCl₃, 75.5

MHz): δ 144.9 (C_{ipso}), 137.0–127.8 (CH₂*Ph*), 132.4–129.8 (C₆H₄), 111.8 (*C*Me₂), 105.0 (C-1), 81.9 (C-2), 81.8 (C-3), 81.6 (C-4), 79.1 (*C*H₂Ph), 72.2 (C-5), 67.1 (C-6), 26.7, 26.1 (*CMe*₂). Anal. Calcd for C₂₃H₂₈O₈S: C, 59.47; H, 6.08; S, 6.90. Found: C, 59.29; H, 5.98; S, 7.05.

5,6-Anhydro-3-O-benzyl-1,2-O-isopropylidene- α -D-glucofuranose (5).—To a stirred solution of 4 (58 g, 125 mmol) in 9:1 1,4-dioxane-water (580 mL) was added powdered NaOH (11 g, 275 mmol). After 2 h at rt, the mixture was neutralized with satd aq NH₄Cl and extracted with toluene. The organic phase was separated, washed with water (twice), dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 9:1 hexane-acetone to give 5 in 76% yield as an oil; $[\alpha]_{\rm D} = -9.7^{\circ}$ (c 1.3, CHCl₃); lit.²¹ $[\alpha]_{\rm D} = -$ 8.6° (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.33-7.23 (m, 5 H, Ph, C₆H₄), 5.92 (d, 1 H, d, J_{1.2} 3.7 Hz, H-1), 4.63 (2d, 2 H, CH_2Ph), 4.61 (d, 1 H, $J_{2,3}0.0$ Hz, H-2), 4.05 (d, 1 H, J_{34} 3.2 Hz, H-3), 3.73 (dd, 1 H, J_{45} 7.1 Hz, H-4), 3.28 (m, 1 H, J_{5.6a} 3.9 Hz, H-5), 2.89 (dd, 1 H, J_{6a.6b} 5.1 Hz, H-6a), 2.75 (dd, 1 H, J_{5.6b} 2.5 Hz, H-6b), 1.28, 1.43 (2s, 6 H, CMe_2). ¹³C NMR (CDCl₃, 75.5 MHz): δ 127.5–137.3 (Ph), 111.8 (CMe₂), 105.2 (C-1), 82.6 (C-2), 82.0 (C-3), 81.6 (C-4), 72.3 (CH₂Ph), 48.1 (C-5), 46.9 (C-6), 26.8, 26.2 (CMe_2) . Anal. Calcd for $C_{16}H_{20}O_5$: C, 65.74; H, 6.89. Found: C, 65.89; H, 7.01.

5-O-Acetyl-3,6-di-O-benzyl-1,2-O-isopropy*lidene-* α -D-*glucofuranose* (6).—To a stirred solution of 5 (26 g, 89 mmol) and benzyl alcohol (48 g, 445 mmol) in 1:1 toluene-Me₂SO (260 mL) was added powdered KOH (30 g, 534 mmol). After 48 h at rt, the mixture was filtered and the filtrate neutralized with satd aq NH₄Cl. The organic phase was separated, washed with water (twice), dried (Na_2SO_4) and concentrated under reduced pressure. A solution of the residue (59.3 g) in pyridine (593 mL) was treated with Ac_2O (41.7 mL) for 24 h at rt. Dichloromethane was added and the mixture was then washed with water (twice), dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 4:1 hexane-acetone to give 6 isolated in 76% yield as an oil; $[\alpha]_{\rm D} = 87.9^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.30-7.20 (m, 10 H, Ph, C₆H₄), 5.85 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 5.35 (m, 1 H, $J_{5,6a}$ 8.8 Hz, H-5), 4.61–4.40 (4d, 4 H, CH₂Ph), 4.51 (d, 1 H, J_{2.3}0.0 Hz, H-2), 4.40 (dd, 1 H, J_{4.5} 6.0 Hz, H-4), 3.90 (d, 1 H, J_{3,4} 2.9 Hz, H-3), 3.75 (dd, 1 H, $J_{6a 6b}$ 11.1 Hz, H-6a), 3.65 (dd, 1 H, $J_{5 6b}$ 9.4 Hz, H-6b), 1.91 (s, 3 H, CH₃CO), 1.27, 1.49 (2s, 6 H, CMe₂). ¹³C NMR (CDCl₃, 75.5 MHz): δ 169.6 (CO), 138.2–127.4 (CH₂Ph), 111.8 (CMe₂), 105.1 (C-1), 81.6 (C-2), 80.8 (C-3), 77.6 (C-4), 71.9, 73.0 (CH₂-Ph), 69.6 (C-6), 69.0 (C-5), 26.7, 26.3 (CMe₂), 21.0 (CH₃CO). Anal. Calcd for C₂₅H₃₀O₇: C, 67.86; H, 6.83. Found: C, 67.69; H, 6.98.

3,6-Di-O-benzyl-1,2-O-isopropylidene- α -Dglucofuranose (7).—To a stirred solution of **6** (29.8 g, 74 mmol) in MeOH (239 mL) was added NaOMe (290 mg, 6 mmol). After 24 h at rt, the mixture was neutralized with satd aq NH₄Cl and extracted with CH₂Cl₂. The organic phase was separated, washed with water (twice), dried (Na_2SO_4) and concentrated under reduced pressure to give 7 without further purification in 99% yield as an oil; $[\alpha]_{\rm D}$ – 24.9° (c 1.7, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.35–7.23 (m, 10 H, Ph), 5.90 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 4.67–4.49 (4d, 4 H, CH₂Ph), 4.57 (d, 1 H, J₂ 30.0 Hz, H-2), 4.09 (d, 1 H, J₃₄ 2.6 Hz, H-3), 4.17–4.08 (m, 2 H, H-4, H-5), 3.72 (dd, 1 H, J_{5.6a} 2.5, J_{6a,6b} 9.7 Hz, H-6a), 3.58 (dd, 1 H, J_{5 6b} 5.5 Hz, H-6b), 2.72 (d, 1 H, $J_{5,OH}$ 5.3 Hz, OH-5), 1.47, 1.29 (2s, 6 H, C-Me₂); ¹³C NMR (CDCl₃, 75.5 MHz): δ 138.0–127.8 (Ph), 111.7 (CMe₂), 105.1 (C-1), 82.3 (C-2), 82.0 (C-3), 79.8 (C-4), 73.4 (C-6), 72.3, 72.1 (CH₂Ph), 68.0 (C-5), 26.8, 26.3 (CMe₂). Anal. Calcd for $C_{23}H_{28}O_6$: C, 68.98; H, 7.05. Found: C, 69.11; H, 6.97.

3,6-Di-O-benzyl-D-glucopyranose (8).—The monoacetal derivative 7 (27 g, 67 mmol) was stirred solution added to а of 9:1 CF₃CO₂OH-water (54 mL). After 30 min, at rt, the solution was concentrated under reduced pressure. The residue was purified by column chromatography eluting with 3:2 hexane-EtOAc to give 8 in 86% yield as an oil, α/β 3:2; $[\alpha]_{\rm D}$ + 31.6° (c 1.8, MeOH); ¹³C NMR (CDCl₃, 75.5 MHz): δ 8 α 139.0, 138.0 (C_{ipso}), 129.4–128.4 (Ph), 92.8 (C-1), 82.5 (C-3), 75.2, 74.2 (CH₂Ph), 72.8 (C-2), 71.2 (C-4), 70.5 (C-5), 70.4 (C-6); **8** β 139.0, 138.0 (C_{ipso}), 129.4–128.4 (Ph), 97.1 (C-1), 84.3 (C-3), 75.2, 74.2 (CH₂Ph), 74.0 (C-2), 71.2 (C-4), 70.5 (C-5), 70.4 (C-6). Anal. Calcd for C₂₀H₂₄O₆: C, 66.65; H, 6.71. Found: C, 66.41; H, 6.52.

1,2,4-Tri-O-acetyl-3,6-di-O-benzyl-D-glucopyranose (9).—To a stirred solution of **8** (20.8 g, 57 mmol) in pyridine (276 mL) was added Ac₂O (27 mL, 288 mmol). After 24 h at rt, the mixture was diluted with CH₂Cl₂ and washed with water (twice), dried (Na₂SO₄) and concentrated under reduced pressure. Compound **9** was isolated without further purification in 86% yield as an oil, α/β 13:1; $[\alpha]_D$ + 28° (*c* 1.1, CHCl₃); ¹³C NMR (CDCl₃, 75.5 MHz): δ 169.5, 169.2, 168.8 CH₃CO), 137.9–127.4 (Ph), 92.0 (C-1 β), 89.4 (C-1 α), 79.9 (C-3 β) 77.4 (C-3 α) 76.9 (C-2 β) 76.5 (C-2 α) 74.5, 73.5 (CH₂Ph) 71.5 (C-5) 70.7 (C-4) 69.6 (C-6). Anal. Calcd for C₂₆H₃₀O₉: C, 64.19; H, 6.21. Found: C, 64.38; H, 6.14.

Benzyl 2,4-di-O-acetyl-3,6-di-O-benzyl- β -D-glucopyranoside (10).—To a stirred solution of 9 (24 g, 49 mmol) and benzyl alcohol (5.6 g, 54 mmol) in CH₂Cl₂ (240 mL) was added SnCl₄ (6.35 mL, 54 mmol). After 24 h at rt, the mixture was filtered and the filtrate neutralized with solid NaHCO₃. The solution was concentrated under reduced pressure. The residue was purified by column chromatography eluting with 22:3 hexane-acetone to give 10 in 60% yield as white crystals; mp $\overline{73}$ -74 °C, $[\alpha]_{D}$ – 30.9° (c 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.39–7.26 (m, 10 H, Ph), 5.15 (dd, 1 H, J_{2.3} 9.4 Hz, H-2), 5.14 (t, 1 H, J_{4.5} 9.5 Hz, H-4), 4.93–4.60 (CH₂Ph), 4.49 (d, 1 H, J_{1.2} 7.9 Hz, H-1), 3.70 (t, 1 H, J_{3.4} 9.4 Hz, H-3), 3.61 (m, 3 H, H-5, H-6), 2.03 1.92 (2s, 6 H, CH₃CO); ¹³C NMR (CDCl₃, 75.5 MHz): δ 170.0–169.7 (CH₃CO), 138.3–128.2 (Ph), 99.9 (C-1), 80.6 (C-3), 73.9 (C-2), 73.0 (C-4), 71.2 (C-5), 70.1 (C-6), 74.1, 70.8 (CH₂Ph), 21.3 (CH₃CO). Anal. Calcd for C₃₁H₃₄O₈: C, 69.65; H, 6.41. Found: C, 69.41; H, 6.17.

Benzyl 3,6-di-O-benzyl- β -D-glucopyranoside (11).—To a stirred solution of 10 (5.7 g, 105 mmol) in MeOH (45 mL) was added NaOMe (45 mg, 6 mmol). After 3 h at rt, the mixture

was neutralized with AcOH and concentrated under reduced pressure. The residue was purified by column chromatography eluting with 17:3 hexane–acetone to give **11** in 98% yield as an oil; $[\alpha]_D - 51.9^\circ$ (*c* 0.1, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 7.21–7.12 (m, 10 H, Ph), 4.78–4.45 (CH₂Ph), 4.20 (d, 1 H, J_{1,2} 7.7 Hz, H-1), 3.59 (m, 2 H, J_{6a,6b} 10.5 Hz, H-6), 3.45 (t, 1 H, J_{4,5} 9.4 Hz, H-4), 3.45 (dd, 1 H, J_{2,3} 9.1 Hz, H-2), 3.30 (m, 1 H, J_{5,6a} and J_{5,6b} 5.2 Hz, H-5), 3.23 (t, 1 H, J_{3,4} 8.9 Hz, H-3); ¹³C NMR (CDCl₃, 75.5 MHz): δ 138.3– 128.2 (Ph), 102.1 (C-1), 84.2 (C-3), 75.1, 74.1, 71.0 (CH₂Ph), 74.9 (C-2), 74.7 (C-4), 71.6 (C-5), 70.6 (C-6). Anal. Calcd for C₂₇H₃₀O₆: C, 71.98; H, 6.71. Found: C, 72.15; H, 6.82.

Benzyl 2,3,4-tri-O-acetyl- α -L-rhamnopyran $osyl-(1 \rightarrow 4)$ -3,6-di-O-benzyl- β -D-glucopyranoside (14) and benzyl 2,3,4-tri-O-acetyl- α -Lrhamnopyranosyl- $(1 \rightarrow 2)$ -[(2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$]-3,6-di-O-ben $zyl-\beta$ -D-glucopyranoside (15).—To a stirred solution of bromide derivative 13 (8.6 g, 24 mmol) and benzyl derivative 11 (2.5 g, 6 mmol) in anhyd CH₂Cl₂ (66 mL) was added, at 0 °C in the dark, tetramethylurea (2.65 mL, 24 mmol) and CF₃SO₃Ag (4.28 g, 84 mmol). After 48 h at rt in the dark, the mixture was filtered and extracted with CH₂Cl₂-water. The organic phase was separated, washed with water (twice), dried (Na_2SO_4) and concentrated under reduced pressure. Column chromatography eluting with hexane-acetone allowed to obtain first 14 in 30% yield as an oil; $[\alpha]_{D}$ -12° (c 1.2, CHCl₃); ¹³C NMR (CDCl₃, 75.5 MHz): δ glucose 137.9–127.2 (Ph), 98.6 (C-1), 81.8 (C-3), 75.6, 74.0, 71.4 (CH₂Ph), 74.6 (C-4), 73.5 (C-2), 70.9 (C-5), 68.6 (C-6), rhamnose $(1 \rightarrow 4)$ 170.7–170.3 (CH₃CO), 97.4 (C-1), 70.6 (C-4), 70.5 (C-2), 69.5(C-3), 67.1 (C-5), 21.2 $(CH_{3}CO),$ 17.3 (C-6). Anal. Calcd for C₃₉H₄₆O₁₃: C, 64.81; H, 6.41. Found: C, 65.09; Mass spectrometry: H, 6.37. FAB-MS; $[M + Li]^+$ m/z 729, $C_{12}H_{17}O_7^+$ m/z 273. Benzvl 2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$]-3,6-di-*O*-benzyl- β -D-glucopyranoside (15) was obtained next in 65%yield as an oil; $[\alpha]_{D} - 69^{\circ}$ (c 0.8, CHCl₃); ¹³C NMR (CDCl₃, 75.5 MHz): δ glucose 137.4-127.7 (Ph), 100.3 (C-1), 81.0 (C-3), 79.6 (C-2),

75.8, 73.5, 69.7 (CH₂Ph), 75.4 (C-4), 70.9 (C-5), 68.5 (C-6), *rhamnose*(1 \rightarrow 4) 170.6–169.9 (CH₃CO), 97.2(C-1), 71.2 (C-4), 70.5 (C-2), 69.3(C-3), 67.2 (C-5), 21.2 (CH₃CO), 17.3 (C-6), *rhamnose*(1 \rightarrow 2) 170.6–169.9 (CH₃CO), 97.7(C-1), 71.2 (C-4), 70.0 (C-2), 69.3(C-3), 67.2 (C-5), 21.2 (CH₃CO), 17.3 (C-6). Anal. Calcd for C₅₁H₆₂O₂₀: C, 61.56; H, 6.28. Found: C, 61.28; H, 6.03. Mass spectrometry: FAB-MS; [M + Li]⁺ *m*/*z* 1001, C₁₂H₁₇O₇⁺ *m*/*z* 273.

2,3,4-Tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[2,3,4-tri-O-acetyl- α -L-rhamnopyran $osyl - (1 \rightarrow 4) - 1, 3, 6 - tri - O - acetyl - D - gluco$ pyranose (16).—A mixture of prehydrogenated 5% Pd-C catalyst (263 mg) in EtOH and 15 (606 mg, 0.61 mmol) dissolved in EtOH (20 mL) was shaken in a hydrogen atmosphere (1 atm) during 96 h. The catalyst was filtered off and EtOH evaporated under vacuum to give an oil. The mixture was dissolved in pyridine (1 mL) and was added Ac₂O (1 mL). After 12 h at rt, iced water was added and the product extracted with EtOAc. The organic layer was washed several times with water, dried (Na_2SO_4) and evaporated under reduced pressure several times with toluene. The residue was purified by column chromatography eluting with 13:7 hexane-EtOAc to give 16 in 24% yield as an oil, α/β 2:1; $[\alpha]_{D}$ 1.5° (c 1.1, CHCl₃). Anal. Calcd for C₃₆H₅₀O₂₃: C, 50.82; H, 5.92. Found: C, 51.09; H, 5.94. Mass spectrometry: EI-MS; [M- $CH_{3}CO_{2}H]^{+\bullet} m/z$ 790, $C_{12}H_{16}O_{7}^{+\bullet} m/z$ 272, $[C_{12}H_{16}O_7 - 2CH_3CO_2H]^{+\bullet} m/z$ 152. ESI-MS; $[M + NH_4]^+ m/z$ 868, $C_{12}H_{17}O_7^+ m/z$ 273. 16a anomer. ¹H NMR (CDCl₃, 300 MHz): δ Glucose 6.27 (d, 1 H, J_{1.2} 3.7 Hz, H-1), 5.51 (t, 1 H, J_{3,4} 9.3 Hz, H-3), 4.38 (dd, 1 H, J_{5,6a} 1.9, $J_{6a,6b}$ 12.5 Hz, H-6a), 4.34 (dd, 1 H, $J_{5,6b}$ 3.3 Hz, H-6b), 4.03 (ddd, 1 H, H-5), 3.79 (t, 1 H, J_{4.5} 9.9 Hz, H-4), 3.76 (dd, 1 H, J_{2.3} 10.0 Hz, H-2), rhamnose $(1 \rightarrow 4)$ 5.23 (dd, 1 H, $J_{2,3}$ 3.2, J_{3.4} 10.1 Hz, H-3), 5.06 (t, 1 H, H-4), 5.02 (dd, 1 H, J_{1.2} 1.7 Hz, H-2), 4.83 (d, 1 H, H-1), 3.88 (dq, 1 H, J_{4.5} 9.6, J_{5.6} 6.2 Hz, H-5), 1.18 (d, 3 H, H-6), rhamnose $(1 \rightarrow 2)$ 5.16 (dd, 1 H, $J_{2,3}$ 3.4, J_{3.4} 10.1 Hz, H-3), 5.04 (t, 1 H, H-4), 5.02 (dd, 1 H, H-2), 4.82 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 3.80 (dq, 1 H, J_{4.5} 9.5, J_{5.6} 6.2 Hz, H-5), 1.18 (d, 3 H, H-6). 2.27, 2.17 (2 s, 6 H, 2 CH₃CO),

2.14 (s, 6 H, 2 CH₃CO), 2.12 (s, 3 H, CH₃CO), 2.05 (s, 6 H, 2 CH₃CO), 2.01, 1.99 (2 s, 6 H, 2 CH₃CO); ¹³C NMR (CDCl₃, 75.5 MHz): δ glucose 89.9 (C-1), 77.2 (C-4), 76.6 (C-2), 71.8 (C-3), 70.3 (C-5), 61.7 (C-6), rhamnose $(1 \rightarrow 4)$ 99.5 (C-1), 70.6 (C-4), 70.2 (C-2), 68.4 (C-3), 67.8 (C-5), 17.2 (C-6), rhamnose $(1 \rightarrow 2)$ 99.1 (C-1), 70.6 (C-4), 70.0 (C-2), 68.2 (C-3), 67.3 (C-5), 17.2 (C-6), 170.5–168.5 (CH_2CO) , 21.1–20.4 (CH₃CO). 16 β anomer. ¹H NMR (CDCl₃, 300 MHz): δ Glucose 5.68 (d, 1 H, J_{1.2} 8.1 Hz, H-1), 5.33 (t, 1 H, J_{3.4} 8.8 Hz, H-3), 4.43 (dd, 1 H, $J_{5,6a}$ 1.4, $J_{6a,6b}$ 12.6 Hz, H-6a), 4.33 (dd, 1 H, $J_{5,6b}$ 3.4 Hz, H-6b), 3.81 (t, 1 H, J₄₅ 10.8 Hz, H-4), 3.78 (ddd, 1 H, H-5), 3.64 (dd, 1 H, J_{2.3} 9.3 Hz, H-2), rhamnose $(1 \rightarrow 4)$ 5.19 (dd, 1 H, $J_{3,4}$ 10.2 Hz, H-3), 5.05 (t, 1 H, J_{4.5} 9.7 Hz, H-4), 5.01 (dd, 1 H, $J_{2.3}$ 3.2 Hz, H-2), 4.83 (d, 1 H, $J_{1.2}$ 2.1 Hz, H-1), 3.86 (dq, 1 H, J_{5.6} 6.2 Hz, H-5), 1.17 (d, 3 H, H-6), rhamnose $(1 \rightarrow 2)$ 5.11 (dd, 1 H, J_{34} 10.2 Hz, H-3), 5.07 (dd, J₂, 3.4 Hz, 1 H, H-2), 5.04 (t, 1 H, J₄₅ 9.3 Hz, H-4), 4.85 (d, 1 H, J₁₂ 1.8 Hz, H-1), 3.91 (dq, 1 H, J_{5.6} 6.3 Hz, H-5), 1.16 (d, 3 H, H-6). 2.20, 2.15 (2 s, 6 H, 2 CH₃CO), 2.14 (s, 6 H, 2 CH₃CO), 2.12, 2.05, 2.04, 2.00, 1.97 (5s, 15 H, 5 CH₃CO); ¹³C NMR (CDCl₃, 75.5 MHz): δ glucose 92.5 (C-1), 78.7 (C-2), 77.0 (C-4), 74.0 (C-3), 73.1 (C-5), 61.7 (C-6), rhamnose $(1 \rightarrow 4)$ 99.5 (C-1), 70.5 (C-4), 70.1 (C-2), 68.4 (C-3), 67.9 (C-5), 17.1 (C-6), rhamnose $(1 \rightarrow 2)$ 98.6 (C-1), 70.5 (C-4), 69.8 (C-2), 68.7 (C-3), 67.2 (C-5), 17.2 (C-6), 170.5–168.5 (CH₃CO), 21.1 - 20.4 $(CH_3CO).$

Acknowledgements

Thanks are given to the Postgraduate Cooperation Program 'PCP Surfactants and Applications' which is sponsored by CEFI (France) and CONICIT (Venezuela), G. Mackenzie for helpful discussions and S. Pilard for mass spectrometry.

References

 Ripperger, H.; Schreiber, K. *The Alkaloids*; Academic Press: New York, 1981; Vol. 9, pp. 81–192.

- 2. Tingey, W. M. Am. Potato J. 1984, 61, 157-159.
- Roddick, J. G. In 325th National Meeting. Abstracts of Papers; American Chemical Society: Washington, DC, 1987; Vol. 325, pp. 286–303.
- 4. Cham, B. E.; Daunter, B. Cancer Lett. 1990, 55, 221-225.
- 5. Fewell, A. M.; Roddick, J. G. Phytochemistry 1993, 33, 323-328.
- Chataing, B.; Concepción, J. L.; Lobatón, R.; Usubillaga, A. Planta Med. 1998, 64, 31–36.
- Thorne, H. B.; Clarke, G. F.; Skuce, R. Antivir. Res. 1985, 5, 335–343.
- Roddick, J. G.; Rijnenberg, A.; Weissenberg, M. Phytochemistry 1990, 29, 1513–1518.
- 9. Benitez de Rojas, C. Rev. Facult. Agronom. 1991, 49, 67–76.
- Lobatón, R. Ph.D. Thesis, Estudio de los Glicoalcaloides del Solanum americanum Miller, Universidad de Los Andes, Mérida, Venezuela, 1995.
- Chataing, B.; Buitrago, N.; Concepción, J. L.; Usubillaga, A. Rev. Facult. Farm. 1997, 32, 18–25.

- 12. Regnaut, I.; Villa, P.; Ronco, G. Fr. Patent no. 89 15985, 1989.
- 13. Goueth, P. Y.; Ronco, G.; Villa, P. J. Carbohydr. Chem. 1994, 13, 679-696.
- Fernandez-Bolaños, J.; Iglesias-Guerra, F.; Gomez-Herrera, C.; Lluch, M. J. *Tenside Deterg.* 1986, 23, 145–149.
- Hori, H.; Nishida, Y.; Ohrui, H. O.; Meguro, H. J. Org. Chem. 1988, 54, 1346–1353.
- 16. Lemieux, R. Methods Carbohydr. Chem. 1962, 2, 221-222.
- 17. Szabo, F.; Farkas, I.; Bognar, R.; Gross, H. Acta. Acad. Sci. Hung. 1970, 64, 67–80.
- Hannessian, S.; Banoub, J. J. Carbohydr. Res. 1977, 53, C13–C16.
- Takayama, H.; Subhadhirasakul, S.; Ohmori, O.; Kitajima, M.; Ponglux, D.; Aimi, N. *Heterocycles* 1998, 47, 87–90.
- Zhu, T.; Boons, G. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1898–1900.
- Goueth, P. Y.; Fauvin, M.; Mashoudi, M.; Ramiz, A.; Ronco, G.; Villa, P. J. Nature 1994, 6, 3–6.