

4 50-82%

Synthetic Methods

Metal-Free One-Pot Synthesis of Benzofurans

Raju Ghosh, Elin Stridfeldt, and Berit Olofsson^{*[a]}

Abstract: Ethyl acetohydroxamate was efficiently arylated with diaryliodonium salts at room temperature under transition-metal-free conditions. The obtained *O*-arylated products were reacted in situ with ketones under acidic conditions to yield substituted benzo[*b*]furans through oxime formation, [3,3]-rearrangement, and cyclization in a fast and operationally simple one-pot fashion without using excess reagents. Alternatively, the *O*-arylated products could be isolated or transformed in situ to aryloxy-amines or *O*-arylaldoximes. The methodology was applied to the synthesis of Stemofuran A and the formal syntheses of Coumestan, Eupomatenoid 6, and (+)-machaeriol B.

The benzo[*b*]furan backbone is found in a variety of natural products and pharmaceuticals, and the array of reported biological activities includes anti-inflammatory, analgesic, and anti-fungal activities (Scheme 1 A).^[1] Furthermore, benzofurans have recently been exploited in materials chemistry.^[2]

The major interest in benzofuran applications has resulted in the development of a wide range of synthetic methods towards this target. Benzofurans are commonly synthesized by transition-metal-catalyzed cross-coupling reactions of 2-halophenols and alkynes, followed by cyclization.^[3] Other metalcatalyzed cross-coupling strategies have been reported as well,^[4] but despite the efficiency of metal-catalyzed reactions, drawbacks remain that include high temperatures, prolonged reaction times, the need for complex ligands, the use of excess reagents, and trace-metal impurities remaining in the products.

Aryloxyamines are important precursors of *O*-aryloximes and benzofurans.^[5] They can be synthesized by the Cu-catalyzed arylation of *N*-hydroxyphthalimide with arylboronic acids, followed by cleavage with hydrazine (Scheme 1 B).^[6] Ketoximes with α -hydrogen atoms can be arylated under metal-catalyzed conditions to give *O*-arylketoximes,^[7] which can undergo an acid-promoted [3,3]-rearrangement/cyclization sequence, closely resembling the Fischer indole synthesis.^[8] This strategy has been employed in the synthesis of several biologically active benzofurans.^[9]

 [a] Dr. R. Ghosh, E. Stridfeldt, Prof. B. Olofsson Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, SE-106 91 Stockholm (Sweden) Fax: (+46)8-15-4908 E-mail: berit@organ.su.se
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201403523.

Scheme 1. Benzofuran structures and synthesis.

Finally, ethyl acetohydroxamate can be converted to aryloxyamines by S_NAr arylation with electron-deficient aryl fluorides, followed by acid-promoted hydrolysis.^[10] Buchwald and coworkers recently reported a more general palladium-catalyzed arylation of ethyl acetohydroxamate with aryl halides in the presence of air-sensitive alkyl-arylphosphine ligands.^[11] The products were subsequently transformed into benzofurans in one pot through *O*-arylketoximes and a [3,3]-rearrangement/ cyclization sequence.

We have recently described the metal-free arylation of *N*-hydroxyimides with diaryliodonium salts under novel hydrolytic conditions to yield aryloxyamines (Scheme 1 B).^[12] To obtain benzofurans without having to isolate the aryloxyamines, we took inspiration from Buchwald's two-step route and set out to develop a metal-free one-pot arylation of ethyl acetohydroxamate with diaryliodonium salts **1** and subsequent reaction of intermediates **2** with ketones **3** to form benzofurans **4** (Scheme 1 C).

Herein, we present our preliminary results on the first onepot arylation, hydrolysis, oxime formation, [3,3]-rearrangement, and cyclization sequence to yield benzofurans in good yields and short reaction times.

The arylation of ethyl acetohydroxamate with diphenyliodonium triflate (**1 a**) to yield *O*-phenylated product **2 a** was optimized at ambient temperature (Table 1). A solvent screening with potassium *tert*-butoxide as base revealed that acetonitrile

Chem. Eur. J. **2014**, 20, 1–6

Wiley Online Library

CHEMISTRY A European Journal Communication

EtO

Table 1. Optimization of the arylation. ^[a]									
	Eto N ^{OH}	+ Ph-	–I–X base Ph solvent a–c RT	► EtO N	0]			
Entry	1	х	Base	Solvent	Time	Yield			
	([equiv])		([equiv])		[h]	[%] ^[b]			
1	1 a (1.2)	OTf	tBuOK (1.2)	THF	15	50			
2	1 a (1.2)	OTf	tBuOK (1.2)	toluene	15	42			
3	1 a (1.2)	OTf	tBuOK (1.2)	DMF	15	73			
4	1 a (1.2)	OTf	tBuOK (1.2)	dioxane	15	68			
5	1 a (1.2)	OTf	tBuOK (1.2)	CH_2CI_2	15	78			
6	1 a (1.2)	OTf	tBuOK (1.2)	CH₃CN	15	91			
7	1 a (1.2)	OTf	tBuONa (1.2)	CH₃CN	15	93			
8	1 a (1.2)	OTf	K ₂ CO ₃ (1.2)	CH₃CN	15	82			
9	1 a (1.2)	OTf	KOH (1.2)	CH₃CN	15	80			
10	1 a (1.3)	OTf	tBuONa (1.3)	CH₃CN	15	90			
11	1 a (1.1)	OTf	tBuONa (1.1)	CH₃CN	15	91			
12	1 a (1.1)	OTf	tBuONa (1.1)	CH₃CN	0.5	93			
13 ^[c]	1 a (1.1)	OTf	tBuONa (1.1)	CH₃CN	0.5	92			
14 ^[c]	1 b (1.1)	BF_4	tBuONa (1.1)	CH₃CN	0.5	88			
15 ^[c]	1 c (1.1)	OTs	tBuONa (1.1)	CH₃CN	0.5	87			
[a] Ethyl acetohydroxamate (0.25 mmol) and base were stirred in anhydrous solvent (1.5 mL) for 15 min at RT before addition of 1. [b] ¹ H NMR yield with 1,3,5-trimethoxybenzene as internal standard. [c] 1 mL of solvent was used.									

was the best solvent (entries 1–6). Sodium *tert*-butoxide was equally efficient as potassium *tert*-butoxide, whereas other bases gave a slightly lower yield of **2a** (entries 7–9). The reaction proved as efficient with only 1.1 equivalents of salt **1a** and sodium *tert*-butoxide as base (entries 10 and 11), and a reaction time of 30 min was sufficient to obtain **2a** in excellent yield (entries 12 and 13).

Finally, iodonium tetrafluoroborate **1b** and tosylate **1c** were employed to examine the anion tolerance of the reaction. Fortunately, salts with these anions also provided **2a** in high yield, which is important because a wide anion tolerance simplifies the synthesis of substituted diaryliodonium salts.

The generality of this arylation was subsequently investigated by employing differently substituted iodonium salts **1**,^[13] and high isolated yields were obtained with a variety of salts despite the volatility of the corresponding products **2** (Table 2).^[11] Unsymmetric salts were used when this facilitated the synthesis of the salt, and complete chemoselectivity was obtained in all cases.^[14]

The electron-deficient 4-nitrophenyl group was chemoselectively transferred from unsymmetric salt **1 d** to give **2 b** in 89% yield (entry 2). Importantly, also the novel 4-methoxy product **2 c** could be obtained in good yield by slightly increasing the amount of the reagents (entry 3), which is in contrast to our previous arylation of N–O substrates to give *N*-aryloxyimides.^[12] Electron-rich products are difficult to obtain by S_NAr reactions with hydroxylamine equivalents, and metal-catalyzed arylations of this substrate class failed or are low-yielding.^[6, 11]

As expected, alkyl substituents were well tolerated (2d and 2e), and the bromo-substituted product 2f was formed in good yield (entries 4–6). Bromide substituents are difficult to

Table 2. Arylation scope of ethyl acetohydroxamate.

(1.1 equiv)

, OH

tBuONa (1.1 equiv)

CH₃CN, RT, 30 min

transfer in metal-catalyzed arylations and can serve as useful handles for further synthetic manipulations (see below). *Ortho*substituted aryl groups could be transferred in moderate yields, as exemplified by the incorporation of the 2-fluorophenyl group in **2g** (entry 7). Furthermore, heteroaryl salts could be employed, and a pyridyl group was chemoselectively transferred from unsymmetric salt **1j** to give compound **2h** in 81% yield (entry 8).

With the optimized arylation conditions at hand, we envisioned a sequential one-pot arylation and oxime ether formation/rearrangement to form benzofurans **4** without the isolation of the volatile compounds **2**. Buchwald and coworkers have reported the reaction of **2** with ketones in the presence of HCl and water in refluxing dioxane to yield benzofurans.^[11]

The feasibility of our one-pot strategy was first investigated by treating **2a** with acetophenone (**3a**) under modified Buchwald conditions by using acetonitrile instead of dioxane (Scheme 2). This gratifyingly delivered benzofuran **4a** in 91% yield through hydrolysis, *O*-aryloxime formation, [3,3]-rearrangement, and cyclization.^[8]

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMISTRY A European Journal Communication

Scheme 2. Benzofuran synthesis under modified Buchwald conditions.

Having demonstrated the solvent compatibility between the arylation and the benzofuran formation, an optimization of the second step in the envisioned one-pot reaction was performed (Table 3). To our delight, benzofuran **4a** was formed in an impressive yield of 82% when the two steps were combined (entry 1). The reaction time was screened and 2 h proved suffi-

cient (entries 2 and 3). The atom efficiency was improved by reducing the amount of **3a** to 1.2 equivalents (entry 4), while lowering the temperature to 50° C had a negative impact on the yield (entry 5).

The amount of water was important, and reactions in undried acetonitrile, without added water, delivered **4a** in a poor yield. To further simplify the protocol, the use of aqueous HCl instead of a combination of HCl/dioxane and five equivalents of water was investigated, and **4a** was obtained in an equally good yield (entry 6).

With these efficient, fast, and practical reaction conditions at hand, the one-pot synthesis of benzofurans was applied to a range of diaryliodonium salts 1 and ketones 3 (Scheme 3). By variation of iodonium salts 1, important functional groups such as nitro, trifluoromethyl, alkyl, and bromide were introduced to yield products 4a-f. In agreement with previous reports, benzofuran formation from the oxime ether intermediate was slow with electron-withdrawing substituents;^[Bd] hence,

Scheme 3. Scope of the one-pot synthesis of benzofurans. [a] Longer reaction time in step 2, see the Supporting Information.

products **4b** and **4c** required a longer reaction time to reach useful conversions.^[15]

Next, variation of the ketone structure was explored, and 2,3-diphenylbenzofuran **4g** was successfully obtained. Cyclohexanone was an excellent substrate, delivering tricyclic product **4h** in 82% yield. Considering that the overall transformation consists of five steps (arylation, hydrolysis, oxime ether formation, rearrangement, and cyclization), yields in this range correspond to an average reaction efficiency of >95% per step.

The one-pot reaction was subsequently utilized in the synthesis of several biologically active benzofurans, without the use of protective groups. Tetracyclic benzofuran **4i** can be oxidized in one step to Coumestan, which is the central core in the Coumestans, some of which show estrogenic activity.^[9b, 16] Ketones with unprotected hydroxyl groups were employed to give phenolic compounds **4j** and **4k**. Benzofuran **4j** can be converted to Eupomatenoid 6, having antifungal, insecticidal, and antioxidant activity, in one step.^[9, 17]

Stemofurans are a subgroup of 2-arylbenzofurans with hydroxyl substituents, which show antifungal activity, and are used in the treatment of respiratory disorders in traditional medicine.^[18] Stemofuran A (**4k**) was obtained in 80% yield, which also constitutes a metal-free formal synthesis of (+)-machaeriol B, an antimicrobial and antimalarial agent.^[19]

Finally, the arylation was combined with an acidic hydrolysis at room temperature to provide aryloxyamine **5** in 81% yield

Chem. Eur. J. 2014 , 20, 1–6	www.chemeurj.org			
These are not the	e final page numbers! 77	1		

3

Scheme 4. One-pot synthesis of aryloxyamine 5 and aryloxime 6.

(Scheme 4). The one-pot reaction could also be extended to the synthesis of *O*-arylaldoxime **6** by the addition of benzaldehyde under otherwise identical conditions. These reactions further illustrate the simplicity of the described protocol, which is performed under milder reaction conditions and with a shorter reaction time than previous methodologies towards **5** and **6**.^[Sa,6, 10-12]

In all cases, the arylations with unsymmetric iodonium salts 1 were completely chemoselective. As previously reported, the iodoarenes formed in the reactions with salts 1 can be recovered in excellent yields and used for the synthesis of 1, thereby further improving the atom efficiency of these arylations.

To summarize, the first one-pot synthesis of benzo[b]furans from hydroxylamine equivalents is described. The reaction is metal-free, fast, and avoids excess reagents. Furthermore, the isolation of O-aryl ethyl acetohydroxamates **2** is described with both electron-deficient and electron-rich diaryliodonium salts, and a fast one-pot arylation and hydrolysis gave aryloxyamine **5** at room temperature.

The efficiency of the protocol is demonstrated by the synthesis of Stemofuran A, and the formal syntheses of Coumestan, Eupomatenoid 6, and (+)-machaeriol B. The methodology should find vast application in the synthesis of biologically interesting benzofurans.

Experimental Section

One-pot synthesis of benzofurans 4

Ethyl acetohydroxamate (0.5 mmol) was added to an oven-dried re-sealable cap vial, dissolved in anhydrous CH_3CN (2.0 mL) and the vial was capped with a rubber septum. tBuONa (0.55 mmol) was added in one portion at 0°C and the mixture was stirred vigorously at RT for 15 min. The reaction vial was then submerged into a water bath at ambient temperature and salt 1 (0.55 mmol) was added in one portion (note: slightly exothermic reaction). The reaction mixture was stirred vigorously at RT for 30 min. Ketone 3 (0.6 mmol) was then added and the vial was purged with argon and submerged into a water bath at ambient temperature. HCl (37% (aq), 2.5 mmol) was added dropwise through a volumetric pipette. The vial was purged with argon, sealed, and stirred at RT for 15 min and then stirred at 70 °C for 2 h. The reaction mixture was diluted with diethyl ether (4 mL), guenched with NaOH (1 m, 3 mL), extracted with diethyl ether, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using pentane and Et₂O, EtOAc, or CH₂Cl₂ as eluents to give benzofuran 4.

Acknowledgements

This work was financially supported by the Wenner-Gren Foundations and Carl Trygger Foundation.

Keywords: arylat	tion •	aryloxyamines	•	cyclization •
diaryliodonium	salts	O-aryloximes	•	sigmatropic
rearrangement				

- a) D. A. Horton, G. T. Bourne, M. L. Smythe, *Chem. Rev.* 2003, *103*, 893– 930; b) M. E. Welsch, S. A. Snyder, B. R. Stockwell, *Current Opinion in Chemical Biology* 2010, *14*, 347–361; c) R. E. Ziegert, J. Toräng, K. Knepper, S. Bräse, *J. Comb. Chem.* 2005, *7*, 147–169.
- [2] a) B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, *Adv. Funct. Mater.* **2009**, *19*, 3063–3069; b) H. Tsuji, C. Mitsui, L. Ilies, Y. Sato, E. Nakamura, *J. Am. Chem. Soc.* **2007**, *129*, 11902–11903.
- [3] For reviews, see: a) S. Cacchi, G. Fabrizi, A. Goggiamani, Org. Biomol. Chem. 2011, 9, 641–652; b) M. M. Heravi, S. Sadjadi, Tetrahedron 2009, 65, 7761–7775.
- [4] For recent reports, see: a) J. Liu, W. Chen, Y. Ji, L. Wang, Adv. Synth. Catal. 2012, 354, 1585–1592; b) X. Wang, M. Liu, L. Xu, Q. Wang, J. Chen, J. Ding, H. Wu, J. Org. Chem. 2013, 78, 5273–5281; c) D.-H. Lee, K.-H. Kwon, C. S. Yi, J. Am. Chem. Soc. 2012, 134, 7325–7328; d) U. Sharma, T. Naveen, A. Maji, S. Manna, D. Maiti, Angew. Chem. 2013, 125, 12901–12905; Angew. Chem. Int. Ed. 2013, 52, 12669–12673; e) X. Guo, R. Yu, H. Li, Z. Li, J. Am. Chem. Soc. 2009, 131, 17387–17393.
- [5] a) S. M. Johnson, H. M. Petrassi, S. K. Palaninathan, N. N. Mohamedmohaideen, H. E. Purkey, C. Nichols, K. P. Chiang, T. Walkup, J. C. Sacchettini, K. B. Sharpless, J. W. Kelly, *J. Med. Chem.* 2005, *48*, 1576–1587; b) Y. Liu, J. Qian, S. Lou, Z. Xu, *J. Org. Chem.* 2010, *75*, 6300–6303; c) F. Contiero, K. M. Jones, E. A. Matts, A. Porzelle, N. C. O. Tomkinson, *Synlett* 2009, 3003–3006.
- [6] a) H. M. Petrassi, K. B. Sharpless, J. W. Kelly, Org. Lett. 2001, 3, 139–142;
 b) F. S. Gaucher-Wieczorek, L. T. Maillard, B. Badet, P. Durand, J. Comb. Chem. 2010, 12, 655–658.
- [7] a) P. De Nonappa, K. Pandurangan, U. Maitra, S. Wailes, *Org. Lett.* 2007, 9, 2767–2770; b) X.-H. Feng, G.-Z. Zhang, C.-Q. Chen, M.-Y. Yang, X.-Y. Xu, G.-S. Huang, *Synth. Commun.* 2009, *39*, 1768–1780; c) A. Ali, A. G. Meyer, K. L. Tuck, *Synlett* 2009, 955–959.
- [8] a) T. Sheradsky, Tetrahedron Lett. 1966, 7, 5225-5227; b) A. Mooradian,
 P. E. Dupont, Tetrahedron Lett. 1967, 8, 2867-2870; c) A. J. Castellino, H.
 Rapoport, J. Org. Chem. 1984, 49, 4399-4404; d) P. R. Guzzo, R. N.
 Buckle, M. Chou, S. R. Dinn, M. E. Flaugh, A. D. Kiefer, K. T. Ryter, A. J.
 Sampognaro, S. W. Tregay, Y. C. Xu, J. Org. Chem. 2003, 68, 770-778.
- [9] a) O. Miyata, N. Takeda, T. Naito, Org. Lett. 2004, 6, 1761–1763; b) N. Takeda, O. Miyata, T. Naito, Eur. J. Org. Chem. 2007, 1491–1509.
- [10] a) E. Miyazawa, T. Sakamoto, Y. Kikugawa, Org. Prep. Proced. Int. 1997, 29, 594-600; b) S. Kumar, R. Sharma, M. Garcia, J. Kamel, C. McCarthy, A. Muth, O. Phanstiel, J. Org. Chem. 2012, 77, 10835-10845.
- [11] T. J. Maimone, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 9990-9991.
- [12] R. Ghosh, B. Olofsson, Org. Lett. 2014, 16, 1830-1832.
- [13] a) M. Bielawski, B. Olofsson, Chem. Commun. 2007, 2521-2523; b) M. Bielawski, M. Zhu, B. Olofsson, Adv. Synth. Catal. 2007, 349, 2610-2618; c) M. Zhu, N. Jalalian, B. Olofsson, Synlett 2008, 592-596; d) M. Bielawski, D. Aili, B. Olofsson, J. Org. Chem. 2008, 73, 4602-4607; e) M. Bielawski, J. Malmgren, L. M. Pardo, Y. Wikmark, B. Olofsson, ChemistryOpen 2014, 3, 19-22.
- [14] For chemoselectivity investigations, see ref. [13e] and J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, *Chem. Eur. J.* 2013, 19, 10334–10342.
- [15] Formation of the oxime ether was facile, and 30% of product **7** was isolated despite a prolonged reaction time.

Chem. Eur. J. 2014, 20, 1–6 www

www.chemeurj.org

 $\ensuremath{^{\odot}}$ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

RR These are not the final page numbers!

- [16] E. M. Bickoff, R. L. Lyman, A. L. Livingston, A. N. Booth, J. Am. Chem. Soc. 1958, 80, 3969–3971.
- [17] D. C. Chauret, C. B. Bernard, J. T. Arnason, T. Durst, H. G. Krishnamurty, P. Sanchez-Vindas, N. Moreno, L. San Roman, L. Poveda, J. Nat. Prod. 1996, 59, 152–155.
- [18] T. Pacher, C. Seger, D. Engelmeier, S. Vajrodaya, O. Hofer, H. Greger, J. Nat. Prod. 2002, 65, 820-827.
- [19] a) I. Muhammad, X.-C. Li, D. C. Dunbar, M. A. ElSohly, I. A. Khan, J. Nat. Prod. 2001, 64, 1322–1325; b) H. J. Lee, Y. R. Lee, S. H. Kim, *Helv. Chim.* Acta 2009, 92, 1404–1412.

Received: May 14, 2014 Published online on **I I**, 0000

COMMUNICATION

Synthetic Methods

R. Ghosh, E. Stridfeldt, B. Olofsson*

Metal-Free One-Pot Synthesis of Benzofurans

Just add salt! A metal-free, room temperature arylation of ethyl acetohydroxamate, followed by an in situ reaction with ketones under acidic conditions yielded substituted benzo[b]furans in a fast and operationally simple one-pot fashion without using excess reagents $\begin{array}{c} R^{2} \\ R^{2} \\ HCl (aq) \\ CH_{3}CN \\ 70 \ ^{\circ}C, 2 h \end{array} R^{3} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{2} \\$

(see scheme). Alternatively, the *O*-arylated products could be isolated, hydrolyzed in situ to aryloxyamines, or transformed to *O*-arylaldoximes. The efficiency of the methodology was demonstrated by the formal synthesis of several biologically active benzofurans.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim