Accepted Manuscript

Accepted Date:

Perfluoroalkanosulfonyl Fluoride-Assisted Atherton–Todd-like Reaction of Diphenylphosphine Oxide with Alcohols Under Air Generating Diphenylphosphinate Esters

Wangyang Wang, Hongai Jin, Zhaohua Yan, Mingchuang He, Sen Lin, Weisheng Tian

PII:	\$0040-4039(17)30908-5		
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.07.052		
Reference:	TETL 49134		
To appear in:	Tetrahedron Letters		
Received Date:	2 June 2017		
Revised Date:	13 July 2017		

14 July 2017

Please cite this article as: Wang, W., Jin, H., Yan, Z., He, M., Lin, S., Tian, W., Perfluoroalkanosulfonyl Fluoride-Assisted Atherton–Todd-like Reaction of Diphenylphosphine Oxide with Alcohols Under Air Generating Diphenylphosphinate Esters, *Tetrahedron Letters* (2017), doi: http://dx.doi.org/10.1016/j.tetlet.2017.07.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below.

Leave this area blank for abstract info.					
rfluoroalkanosulfonyl Fluoride-Assisted Atherton-Todd-like Reaction of Diphenylphosphin xide with Alcohols Under Air Generating Diphenylphosphinate Esters					
Wangyang Wang ^a , Hongai Jin ^a , Zhaohua Yan ^{a,} *, Mingchuang He ^a , Sen Lin ^a , Weisheng Tian ^{b,} *					
$\begin{array}{ c c c c c }\hline & O & & O & & O & O & O & O & O & O & $					
15 examples in 52-78% yields R=primary or secondary alcohols					

Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters journal homepage: www.elsevier.com

Perfluoroalkanosulfonyl Fluoride-Assisted Atherton–Todd-like Reaction of Diphenylphosphine Oxide with Alcohols Under Air Generating Diphenylphosphinate Esters

Wangyang Wang^a, Hongai Jin^a, Zhaohua Yan^a,*, Mingchuang He^a, Sen Lin^a, Weisheng Tian^b,* ^a College of Chemistry, Nanchang University, Nanchang 330031, P. R. China ^b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Perfluoroalkanosulfonyl Fluoride alcohols diphenylphosphine oxide Phosphinate esters An efficient method for the synthesis of diphenylphosphinate esters via the Atherton–Todd-like reaction of diphenylphosphine oxide with alcohols assisted by perfluoroalkanosulfonyl fluoride in the presence of triethylamine under air is achieved affording the corresponding diphenylphosphinate esters in moderate to good yields of 52-78%. The protocol features the use of non-toxic and stable perfluoroalkanosulfonyl fluoride and metal-free reaction conditions.

2017 Elsevier Ltd. All rights reserved.

1

Introduction

Over the past decades, organophosphorus compounds have found widespread applications in medicinal chemistry¹, organic catalysis² and material sciences³. The conventional method for the preparation of organophosphorus compounds is the substitution reaction of phosphorus chlorides with a wide range of nucleophiles. The Atherton-Todd reaction provides a more efficient way to make phosphoramidates, phosphonate esters and other phosphorus-containing products, and it avoids the employment of moisture-sensitive and toxic phosphorus chlorides.⁴ Recently, Zhao and Han systematically studied the stereochemistry at the phosphorus center under the Atherton-Todd reaction conditions leading to the smooth synthesis of optically active organophosphorus compounds.⁵ However, the Atherton-Todd reaction requires the use of highly toxic carbon tetrachloride or bromotrichloromethane. To overcome this shortcoming, alternative methods have been recently developed to make organophosphorus products. In 2008, Hackenberger published a Lewis acid-catalyzed phosphorimidate rearrangement vielding secondary phosphoramidates,⁶ which was subsequently applied in the site-specific PEGylation of proteins.⁷ Hayes disclosed a straightforward synthesis of phosphoramidate starting from easily available amines and H-phosphonates using CuI as the catalyst and O₂ as the oxidant.⁸ Yang also reported a coppercatalyzed oxidative reaction of hydrophosphine oxide with nucleophiles such as NaF, ROH and RSH for the synthesis of

phosphoric fluorides, diphenylphosphinate esters and *S*-phenyl diphenylphosphinothioate esters.⁹ Prabhu disclosed a I_2/H_2O_2 -promoted phosphorylation of acohols and amines to synthesize phosphoramidates and phosphorus triesters.¹⁰ In 2014, Yin reported Cs₂CO₃-promoted *O*-deprotonation/alkylation of diphenyl phosphinic acid with alkyl halides.¹¹ Generally speaking, the direct phosphorylation of hydrophosphine oxides or *H*-phosphonates with nucleophiles (such as alcohols and amines) possesses advantage of easily availability of substrates. In view that organophosphorus compounds play more and more important roles in both academic and industrial fields, the search for more convenient, straightforward and effective approaches to make them (such as phosphonate esters and phosphoramidates, etc) is still in highly demand.

Perfluoroalkanosulfonyl fluoride (R_PSO_2F , such as $n-C_4F_9SO_2F$ and $n-C_8F_{17}SO_2F$) is a kind of commercially available and cost effective reagent. R_PSO_2F is non-toxic and moisture-tolerant compound. In industry, they have been widely applied as precusors for the synthesis of highly valued surfactants perfluoroalkanesulfonic acid salt $R_PSO_3^{-}M^+$. On the basis of the excellent leaving ability of perfluorosulfonate anion ($R_PSO_3^{-}$),¹² R_PSO_2F has been explored and used as an excellent hydroxyl group-activating reagent for fluorination of alcohols to synthesize fluorides,¹³ and for cyclodehydration of chiral vicinal diols,¹⁴ *N*acylamino alcohols, β -hydroxy sulfonamides and β -hydroxy thioamides¹⁵ for the synthesis of epoxides and other heterocyclic

Tetrahedron

compounds. When perfluoroalkanosulfonyl fluoride was used to activate hydroxyl group of α,β -unsaturated ketoximes, Beckmann rearrangement occurred leading to the smooth formation of acid-sensitive enamides.¹⁶ The dehydration of aldoximes to nitriles¹⁷ and esterification, amidation and anhydridization of carboxylic acids¹⁸ induced by R₁SO₂F as an efficient condensing reagent have been achieved. R₁SO₂F shows its unique property in mediating the homoallylic carbocation rearrangement of 19-hydroxymethyl steroid¹⁹ leading to the novel total synthesis of a naturally occurring (±)-Spiniferin.²⁰ However, to the best of our knowledge, the use of perfluoroalkanosulfonyl fluoride in the phosphorylation of alcohols with hydrophosphine oxides or H-phosphonates has not been investigated yet. In this work, we wish to report the Atherton-Todd-like reaction of diphenylphosphine oxide with alcohols under air assisted by perfluoroalkanosulfonyl fluoride resulting in the formation of diphenylphosphinate esters in moderate to good yields.

Results and discussion

Initially we chose *p*-nitrobenzyl alcohol (1a) as a model substrate and studied phosphorylation of 1a (3.0 mmol) with diphenylphosphine oxide (2, 3.0 mmol) under air. The reaction was carried out in CH₂Cl₂ (10 mL) at 25°C using n-C₄F₉SO₂F (6.0 mmol) as R_fSO₂F and Et₃N (9.0 mmol) as a base. Unfortunately, the desired product *p*-nitrobenzyl diphenylphosphinate (3a) was not detected and only pnitrobenzyl fluoride was formed in 80% yield. However, when the amounts of $n-C_4F_9SO_2F$ and Et_3N were respectively increased to 6.0 equiv. and 6.0 equiv., to our delight, 3a was smoothly obtained although in low yield of 20% (Table 1, entry 2). Thus optimization of reaction conditions was next undertaken. Solvent screening reactions revealed that CH₃CN was the best choice of solvent generating 3a in 78% yield and the employment of THF, CH₃COCH₃, CH₃COOEt, CHCl₃, PhMe and DMF as solvents only resulted in the formation of **3a** in lower 5-57% yields (Table 1, entries 3-9). Among the different bases examined, Et₃N gave the best result (Table 1, entries 10-16). Then, the effect of reaction temperature was explored. The results showed that the incomplete reaction was observed at 0°C and *p*-nitrobenzyl fluoride was the major product at 50°C (Table 1, entries 17 and 18). When $n-C_4F_9SO_2F$ was replaced by a longer carbon-chain n- $C_8F_{17}SO_2F$, **3a** was produced in a slightly lower 73% yield (Table 1, entry 19). Finally, when the reaction of 1a with 2 was run under nitrogen atmosphere, only trace of 3a was detected (Table 1, entry 20), and this result disclosed that oxygen plays an important role in this phosphorylation. Further experiments confirmed that the amount of air has effects on yield of 3a. The limited amount of air only resulted in the low yield of 3a. when the reaction **1a** with **2** was run at 25°C for 30 min under air, the highest yield of 3a was obtained, and longer reaction time or even bubbling of air into the reaction system did not improve the yield of 3a. Therefore, the optimized reaction conditions are: pnitrobenzyl alcohol (3.0 mmol), diphenylphosphine oxide (3.0 mmol), n-C₄F₉SO₂F (18.0 mmol), Et₃N (18.0 mmol), 25°C, CH₃CN as solvent and under air.

Table 1 Optimization of reaction conditions^a

	ОН	O base	\sim	0
O-N	+ H	-P-Ph temperature		O-P-Ph Ph
021	1a	Ph air 2	O ₂ N ² 3	a
Entry	Solvent	Temp. (°C)	Base	Yield ^b
				(%)
1 ^c	CH ₂ Cl ₂	25	Et ₃ N	0
2	CH_2Cl_2	25	Et ₃ N	20
3	CHCl ₃	25	Et ₃ N	5
4	CH ₃ COCH ₃	25	Et ₃ N	57
5	PhCH ₃	25	Et ₃ N	40
6	THF	25	Et ₃ N	45
7	DMF	25	Et ₃ N	23
8	CH ₃ CN	25	Et ₃ N	78
9	EtOAc	25	Et ₃ N	30
10	CH ₃ CN	25	Pyridine	0
11	CH ₃ CN	25	<i>i</i> -Pr ₂ NEt	0
12	CH ₃ CN	25	DBU	76
13	CH ₃ CN	25	NaH	trace
14	CH ₃ CN	25	KOH	43
15	CH ₃ CN	25	NaOH	58
16	CH ₃ CN	25	K_2CO_3	0
17	CH ₃ CN	0	Et ₃ N	40
18	CH ₃ CN	50	Et ₃ N	16
19 ^d	CH ₃ CN	25	Et ₃ N	73
20 ^e	CH ₃ CN	25	Et_3N	trace

^aReaction conditions: **1a** (3.0 mmol), **2** (3.0 mmol), $R_{\rm f}SO_2F$ (18.0 mmol), base (18.0 mmol), solvent (20 mL), 25°C, 0.5-2 h, under air. ^bIsolated yields. ^c6.0 mmol of *n*-C₄F₉SO₂F and 9.0 mmol of Et₃N were used. ^d18.0 mmol of *n*-C₈F₁₇SO₂F was used. ^eThe reaction was run under nitrogen atmosphere.

With the optimized conditions in hand, we continued to investigate the scope and generality of alcohol substrates for the phosphorylation with 2. The results were summarized in Table 2. We are pleased to find that a wide range of alcohols underwent phosphorylation efficiently. The reactions of benzyl alcohols bearing electron-withdrawing groups on the benzene ring with 2 afford the corresponding esters in good yields of 78% and 65% (Table 2, 3a and 3b). However, for benzyl alcohol with electrondonating methyl group on the benzene ring, the corresponding product was obtained only in moderate 52% yield (Table 2, 3c). 2-Phenylethanol and 4-phenylbutanol are suitable substrates giving 3e and 3f in 68% and 76% yields respectively (Table 2, 3e and 3f). For secondary benzylic alcohol substrates, the phosphorylation with 2 works well (Table2, 3g and 3h). In addition, when 1-hydroxymethylnaphthalene and cinnamyl alcohol were used as nucleophiles, the expected products were obtained in 60% and 65% yields (Table2, 3i and 3j). It is worth mentioning that when aliphatic primary and secondary alcohols,

such as isopropanol, *n*-butanol, *n*-heptanol, *n*-decanol, and cyclohexanol were subjected to phosphorylation with **2** under the optimized conditions, the corresponding products were offered in 58-76% yields (Table 2, **3k-30**). However, when methanol, ethanol and *tert*-butyl alcohol were tested for the phosphorylation with **2**, only trace of diphenylphosphinate esters were detected. That the low sterically hindrance caused methanol and ethanol rather than **2** to prefer to directly react with $n-C_4F_9SO_2F$ generating the volatile fluorides can probably explain this result. On the contrary, the high sterically hindrance of *tert*-butyl alcohol might be the major reason that its phosphorylation with **2** almost did not work.

^aThe reaction conditions. alcohol (3.0 mmol), diphenylphosphine oxide (3.0 mmol), *n*-C₄F₉SO₂F (18.0 mmol) and Et₃N (18.0 mmol), CH₃CN (20 mL), under air, 25°C, 0.5 h; ^bisolated yield.

Next, we explored the reactions of two other nucleophiles, phenol and morpholine, with diphenylphosphine oxide 2 under the above optimized conditions. Both reactions only provide undesired products 4 and 5 other than desired ones 6 and 7, and the reason is due to the fact that the stronger nucleophilicity of phenol and morpholine results in their direct attack on R_PSO_2F preferentially (Scheme 1).

Additionally, when the reactions of p-nitrobenzyl alcohol (1a) with two H-phosphonates (dimethyl phosphite and diethyl phosphite) instead of diphenylphosphine oxide (2) were evaluated, likewise, no desired phosphonate triesters products were detected.

Therefore, perfluoroalkanosulfonyl fluoride can neither be used to assist the phosphorylation of phenols and amines with hydrophosphine oxides or *H*-phosphonates, nor the phosphorylation of alcohols with *H*-phosphonates.

In order to put forward to a possible mechanism to interpret the phosphorylation of alcohols with diphenylphosphine oxide, a few of control experiments were conducted using p-nitrobenzyl alcohol (1a) as a model substrate (Scheme 2). When 1a and diphenylphosphine oxide (2) were mixed in CH₃CN at room temperature in the presence of Et_3N without $n-C_4F_9SO_2F$, 1a was found to keep unreacted accompanied by the formation of unidentified species probably originating from the oxidative dimerization of 2 (Scheme 2, Equation a). The oxidative dimerization of hydrophosphine oxides or H-phosphonate in the presence of organic base (such as Et₃N) and/or copper catalyst has been reported.^{8,21} In the absence of 2, the reaction of 1a with n-C₄F₉SO₂F/Et₃N in CH₃CN gave the corresponding pnitrobenzyl fluoride 8 which did not react with 1a to give 3a under the above optimized conditions (Scheme 2, Equation b). Without 1a, the reaction of 2 with $n-C_4F_9SO_2F/Et_3N$ in CH₃CN gave an unstable species A or B which was hard to isolate and not identified at this time and the subsequent reaction of species **B** with **1a** smoothly offered **3a** in 75% yield (Scheme 2, Equation c).

The results from the above control experiments and descriptions in literatures^{21,22} bring us to propose a plausible mechanism for the phosphorylation of alcohols with diphenylphosphine oxide (Scheme 3). First, the reaction of **2** with Et₃N generated anion **D**. The subsequent attack of **D** on n- $C_4F_9SO_2F$ affords species **A** which was oxidized by oxygen providing unstable species **B**. Next, substitution of alkoxyl anion RO⁻ with **B** furnished product **3**. Meanwhile, species **A** may first react with alkoxyl anion RO⁻ to give species **E** which was subsequently oxidized by oxygen yielding **3**. However, at this time the exact structure of active and unstable species **A**, **B** and **E**

Tetrahedron

have not acturally confirmed yet, and further work is now underway in our laboratory.

Scheme3. The Plausible mechanism.

Conclusions

In summary, an efficient and convenient approach for the synthesis of diphenylphosphinate esters via the Atherton–Todd-like reaction of diphenylphosphine oxide with alcohols assisted by perfluoroalkanosulfonyl fluoride in the presence of triethylamine under air has been developed. The protocol features the use of non-toxic and stable perfluoroalkanosulfonyl fluoride and metal-free reaction conditions. The use of perfluoroalkanosulfonyl fluoride in organic synthesis has been further extended.

Acknowledgements

We thank the National Natural Science Foundation of China (21362022) for the financial support.

Notes and references

- (a) Serpi, M.; Bibbo, M.; Rat, S.; Roberts, H.; Hughes, C.; Caterson, B.; Alcaraz, M. J.; Gilbert A. T.; Verson, C. R. A.; McGuigan, C. J. Med. Chem. 2012, 55, 4629-4639; (b) Yang, L.; Chen, L.; Zeng, R.; Li, C.; Qiao, R.; Hu, L.; Li, Z. Bioorg. Med. Chem. 2010, 18, 117-123; (c) Jin, P.; Liu, K.; Ji, S.; Ju, Y.; Zhao, Y. Synthesis 2007, 407-411; (d) Rose, M. G.; Farrell, M. P.; Schmitz, J. C. Clin. Colorectal Cancer 2002, 1(4), 220-229.
- 2 (a) Morales-Rojas, H.; Moss, R. A. Chem. Rev. 2002, 102, 2497-2521; (b) Molt, o.; Rubeling, D.; Schrader, T. J. Am. Chem. Soc. 2003, 125, 12086-12087; (c) Sabbatini, N.; Guardigli, M.; Bolletta, F.; Manet, I.; Ziessel, R. Angew. Chem. Int. Ed. Engl. 1994, 33, 1501–1503; (d) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; de Vries, J. G. Acc. Chem. Res. 2007, 40, 1267-1277; (e) Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; gao, L.-X.; Han, F.-S. J. Am. Chem. Soc. 2015, 137, 632-637.
- 3 (a) Granzow, A. Acc. Chem. Soc. 1978, 11, 177-183; (b) Nguyen,
 T.-M. D.; Chang, S. C.; Condon, B.; Uchimiya, M.; Fortier, C.
 Polym. Adv. Technol. 2012, 23, 1555-1563.
- 4 Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. *Beilstein J. Org. Chem.* **2014**, *10*, 1166-1196.

- 5 (a) Xiong, B.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.; Han, L.-B. *Tetrahedron* **2013**, *69*, 9373-9380; (b) Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y.; Han, L.-B. J. Org. Chem. **2010**, *75*, 3890-3892; (c) Zhou, Y.; Wang, G.; saga, Y.; Shen, R.; Goto, M.; Zhao, Y.; Han, L.-B. J. Org. Chem. **2010**, *75*, 7924-7927.
- 6 Wilkening, I.; Signore, G. D.; Hackenberger, C. P. R. Chem. Commun. 2008, 596-602.
- 7 (a) Serwa, R.; Majkut, P.; Horstmann, B.; Swiecicki, J.-M.; Gerrits, M.; Krause, E.; Hackenberger, C. P. R. *Chem. Sci.* 2010, 1, 596-602; (b) Serwa, R.; Wilkening, I.; Signore, G. D.; Mühlberg, M.; Clauβnitzer, I.; Weise, C.; Gerrits, M.; Hackenberger, C. P. R. *Angew. Chem. Int. Ed.* 2009, *48*, 8234-8239. (c) J. P. Krise and V. J. Stella, Adv. Drug Delivery Rev., 1996, *19*, 287–310.
- 8 Fraser, J.; Wilson, L. J.; Blundell, R. K.; Hayes, C. J. Chem. Commun. **2013**, 49, 8919-8921.
- 9 Liu, N.; Mao, L.-L.; Yang, B.; Yang, S.-D. Chem. Commun. 2014, 50, 10879 - 10882.
- 10 Dhineshkumar, J.; Prabhu, K. R. *Org. Lett.* **2013**, *15*, 6062 6065.
- 11 Xiong, B.; Ye, Q.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. *Tetrahedron* **2014**, *70*, 9057-9063.
- 12 Hansen, R. L. J. Org. Chem. 1965, 29, 4322-4326.
- 13 Vorbruggen, H. Synthesis 2008, 40, 1165-1174.
- 14 Yan, Z.; Wang, J.; Tian, W. Tetrahedron Lett. **2003**, 44, 9383 9384.
- 15 Yan, Z.; Guan, C.; Yu, Z.; Tian, W. *Tetrahedron Lett.* **2013**, *54*, 5788-5790.
- 16 Yan, Z.; Xu, Y.; Tian, W. *Tetrahedron Lett.* **2014**, *55*, 7186-7189.
- 17 Yan, Z.-H.; Tian, H.; Zhao, D.-D.; Jin, H.-A.; Tian, W.-S. Chin. Chem. Lett. 2016, 27, 96-98.
- 18 Yan, Z.; Tian, W.; Zeng, F.; Dai, Y. *Tetrahedron Lett.* **2009**, *50*, 2727-2729.
- 19 Tian, W. S.; Lei, Z.; Chen, L.; Huang, Y. J. Fluorine Chem. 2000, 101, 305-308.
- 20 Sun, Y. S.; Ding, K.; Tian, W. S. *Chem. Commun.* **2011**, *47*, 10437-10439.
- 21 (a) Zhou, Y.; Yin, S.; Gao, Y.; Zhao, Y.; Goto, M.; Han, L. Angew. Chem. Int. Ed. 2010, 49, 6852-6855; (b) Nycz, J. E.; Musiol, R. Heteroatom Chem. 2006, 17, 310-316.
- 22 Unoh, Y.; Hirano, K.; Miura, M. J. Am. Chem. Soc. **2017**, *139*, 6106-6109.

Supplementary Material

Supplementary material that may be helpful in the review process should be prepared and provided as a separate electronic file. That file can then be transformed into PDF format and submitted along with the manuscript and graphic files to the appropriate editorial office.

Click here to remove instruction text...

4

Highlights:

- The use of non-toxic and stable reagent
- perfluoroalkanosulfonyl fluoride reagent.
- Mild and metal-free reaction conditions for synthesis of diphenylphosphinate ester.
- Accepting • Perfluoroalkanosulfonyl fluoride-promoted