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ABSTRACT: A rhodium-catalyzed enantioselective construction of triorgano-substituted silicon-stereogenic siloxanes and
alkoxysilanes is developed. This process undergoes a direct intermolecular dehydrogenative Si−O coupling between dihydrosilanes
with silanols or alocohols, giving access to a variety of highly functionalized chiral siloxanes and alkoxysilanes in decent yields with
excellent stereocontrol, that significantly expand the chemical space of the silicon-centered chiral molecules. Further utility of this
process was illustrated by the construction of CPL-active (circularly polarized luminescence) silicon-stereogenic alkoxysilane small
organic molecules. Optically pure bis-alkoxysilane containing two silicon-stereogenic centers and three pyrene groups displayed a
remarkable glum value with a high fluorescence quantum efficiency (glum = 0.011, ΦF = 0.55), which could have great potential
application prospects in chiral organic optoelectronic materials.

Silicon-containing molecules are of great academic and
industrial importance with widespread applications in

many areas. In the past few decades, the development of new
methods for the preparation of novel types of organosilicon
compounds has been intensively studied, which has led to their
broad use in a diverse range of organic, organometallic, and
polymeric chemistry.1−3 In particular, siloxanes and alkox-
ysilanes (silyl ethers) are fundamentally important skeletons,
which are widely used as privileged monomers in silicon-based
materials, and valuable protecting groups, reagents, inter-
mediates in organic synthesis.4−10 Despite vast methods for the
synthesis of siloxanes and alkoxysilanes,1−10 the access of these
organosilicon compounds bearing silicon-stereogenic centers
in enantioenriched forms has been significantly less explored,
which severely hampers their applications in the design and
development of new chiral silicon-based materials.
Historically, the synthesis of silicon-stereogenic alkoxysilanes

relied on the optical resolution and kinetic resolution with
chiral alcohol auxiliaries.11−15 Despite the success of these
resolution methods, they are limited in substrate scope along
with low efficiency and poor atom-economy. Thus, the
development of novel synthetic methods toward silicon-
stereogenic alkoxysilanes based on asymmetric synthesis is
more attractive but was proved to be very challenging. In the
1970s, the Corriu group developed a seminal work for the
asymmetric alcoholysis of dihydrosilanes in the presence of
rhodium catalyst.16,17 When a chiral alcohol, such as
(−)-menthol, was used in the Si−O coupling reaction, a
moderate enantioselectivity of the silicon-stereogenic center
was achieved (48% ee, determined after stereospecific
nucleophilic displacement, Scheme 1a). Later, Leighton and
co-workers realized a chiral alcohol substrate- and chiral
copper catalyst-induced variant, which produced the desired
silicon-stereogenic alkoxysilanes with high diastereoselectivity
(90:10 dr, Scheme 1a).18 In addition, a number of asymmetric
substitutions of one of two amino or alkoxy groups or chlorine

atoms at the silicon atom has also been demonstrated for the
generation of silicon-stereogenic alkoxysilanes via the control
of stoichiometric chiral reagents or chiral auxiliaries.19−25 Apart
from the stoichiometric chiral substrates-induced approach,
asymmetric catalysis for the construction of silicon-stereogenic
silanes is undoubtably more fascinating.26−34 To the best of
our knowledge, the first example for the catalytic enantiose-
lective alcoholysis of dihydrosilanes with achiral alcohols was
also reported by Corriu and co-workers in the 1970s using a
chiral Rh/(S,S)-DIOP catalyst (19% ee obtained).16,17 Later,
the Xu group made several efforts to access silicon-stereogenic
alkoxysilanes via enantioselective alcoholysis of dihydrosi-
lanes35,36 (Scheme 1b). Besides the alcoholysis of dihydrosi-
lanes, a few examples of transition-metal-catalyzed enantiose-
lective hydrosilylation of ketones37−39 and desymmetrization
of tetraorganosilanes via cleavage of a Si−C bond along with
formation of a Si−O bond40,41 could also produce the silicon-
stereogenic alkoxysilanes. It is noteworthy that the catalytic
asymmetric synthesis of enantioenriched silicon-stereogenic
siloxanes has remained unknown up to date. Given the
increasing demand for the synthesis of novel functional-
materials-oriented chiral organosilicon compounds, the ex-
ploration and development of new general strategies for the
facile access of silicon-stereogenic siloxanes and alkoxysilanes
with high efficiency and enantioselectivity are highly desirable.
Recently, we have reported an enantioselective intra-

molecular C−H silylation strategy for the synthesis of
enantioenriched silicon-stereogenic silanes.42−45 With the
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continued interest in the construction of novel silicon-
stereogenic organosilicon compounds, we questioned whether
we could expand the toolbox to achieve a general
intermolecular dehydrogenative Si−H/O−H coupling, ena-
bling the streamlined synthesis of silicon-stereogenic siloxanes
and alkoxysilanes. Herein, we report the development of a
rhodium-catalyzed enantioselective intermolecular dehydro-
genative Si−O coupling reaction between dihydrosilanes with
silanols or alocohols, which gives access to a wide range of
highly functionalized chiral siloxanes and alkoxysilanes in good
to excellent yields and enatioselectivities (Scheme 1c). Further
utility of this enantioselective dehydrogenative Si−O coupling
was illustrated by the construction of CPL-active (circularly
polarized luminescence) silicon-stereogenic alkoxysilane small
organic molecules. Optically pure bis-alkoxysilane containing
two silicon-stereogenic centers and three pyrene groups
displayed a remarkable glum value with a high fluorescence
quantum efficiency (glum = 0.011, ΦF = 0.55), which could have

great potential applications in chiral organic optoelectronic
materials.
At the outset of our research, we mainly focused on the

catalytic asymmetric synthesis of enantioenriched silicon-
stereogenic siloxanes. We commenced our studies by
examining the intermolecular dehydrogenative Si−O coupling
reaction of tert-butyl(4-methoxyphenyl)silane 1a with
dimethyl(phenyl)silanol 2a in the presence of Rh catalyst. At
room temperature in the solvent of toluene, several chiral
diphosphine ligands were tested. Treatment of 1a with 2a by
using [Rh(cod)Cl]2 (1 mol %) as the catalyst and Josiphos L1
(2.2 mol %) as the chiral ligand successfully delivered the
desired Si−O coupling silicon-stereogenic siloxane product 3a
in 36% yield with good enantiocontrol (74% ee) (Table 1,

entry 1). Other Josiphos type ligands with different electronic
properties (L2 and L3) did not increase the yields and
enantioselectivities (Table 1, entries 2 and 3). Interestingly,
when exchanging the tBu-substituent and the Ph-substituent
on the two phosphine atoms of the Josiphos ligand (L4), both
the yield and enantioselectivity were sharply increased
affording 68% yield with 97% ee (Table 1, entry 4). Further
examination of the chiral ligands found that BINAP L5 and
Segphos L6 were also effective for this reaction, albeit in a
relatively lower yields and ee (Table 1, entries 5−6).
Investigation of other common solvents in the presence of
L4 disclosed that DCE (1,2-dichloroethane) and 1,4-dioxane
could also afford moderate yields of the desired siloxane 3a
with good enantioselectivities, while MeCN failed to produce
the corresponding product (Table 1, entries 7−9).
Having identified the optimized conditions for the

enantioselective dehydrogenative Si−O coupling reaction, we

Scheme 1. Asymmetric Synthesis of Si-Stereogenic
Alkoxysilanes

Table 1. Development of Reaction Conditionsa

Entry Ligand Solvent Yield (%) ee (%)

1 L1 toluene 36 74
2 L2 toluene 23 10
3 L3 toluene 33 70
4 L4 toluene 68 97
5 L5 toluene 42 70
6 L6 toluene 43 89
7 L4 CH3CN 0
8 L4 DCE 47 86
9 L4 dioxane 45 97

aConditions: 1a (0.24 mmol), 2a (0.2 mmol), [Rh(cod)Cl]2 (1 mol
%), ligand (2.2 mol %), in 2.0 mL solvent, under argon atmosphere,
12 h. The yield was determined by 1H NMR using CH2Br2 as internal
standard. The ee values were determined by chiral HPLC.
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next assessed the scope of this transformation to establish the
general methodology for the construction of enantioenriched
silicon-stereogenic siloxanes (Table 2). First, the aromatic
rings (yellow part) of dihydrosilane substrates bearing different
functional groups, including an electron-donating methoxy
group (1a), amino group (1b), electron-withdrawing fluoro
group (1c), and phenyl, naphthyl groups (1d, 1e), all reacted
smoothly with dimethyl(phenyl)silanol 2a to afford the desired
silicon-stereogenic siloxane products 3a−3e in moderate to
good yields (54−98%) with excellent enantioselectivities (96−
98% ee). Second, the scope of silanols (blue part) was
investigated under the standard conditions. Methoxy, chloro,
and fluoro groups (2f−2h) on the aromatic ring of the
dimethylphenylsilanols were well tolerated in the reaction,
producing the corresponding siloxanes 3f−3h in good yields
with 89−97% ee. Moreover, methyldiphenylsilanol (1i), tert-
butyldiphenylsilanol (1j), and trimethylsilanol (1k) were also
found to be competent substrates in the reaction, giving the
desired product 3i−3k in 56−75% yields without the loss of
enantioselectivities (92−97% ee). It is noteworthy that the
enantiopure bis-silicon-stereogenic siloxane 3l (>99% ee) could
easily be constructed via this strategy by the double coupling of
silanediol with dihydrosilane, which could be highly attractive
to organic material chemists due to their wide applications as
privileged monomers in silicon-based materials.46−48 Third,
replacing the bulky tBu group into a methyl (1m), isopropyl
(1n), cyclohexyl (1o), or 1-naphthyl (1p) group on the
dihydrosilane gave the corresponding siloxane products 3m−
3p in moderate to good yields with 63−88% ee (purple part).
Since this intermolecular dehydrogenative Si−O coupling

reaction enables the facile access to silicon-stereogenic siloxane

derivatives with high enantioselectivity, we questioned whether
we could expand this process to the coupling of dihydrosilane
with alcohol, challenging the historic problem of the catalytic
enantioselective alcoholysis of dihydrosilane for the con-
struction of architecturally complex and functionally diverse
enantioenriched silicon-stereogenic alkoxysilanes with high
efficiency and enantioselectivity. On the basis of the
established reaction conditions (for a detailed account of the
optimization study, see Supporting Information Table S1), a
wide range of alcohols displaying a variety of substituents were
found to be suitable substrates in the Rh-catalyzed
enantioselective dehydrogenative Si−O coupling reaction
(Table 3). Benzylic alcohol substrates bearing various
electron-donating or withdrawing substituents, such as methyl,
methoxy, bromo, and trifluoromethyl, were all well accom-
modated in this transformation to deliver the corresponding
silicon-stereogenic alkoxysilanes in 64−88% yields with 91−
99% ee (5a−5e). This process was also effective with
naphthalene (5f) and heterocycles such as furan (5g) and
thiophene (5h). Sterically hindered secondary and tertiary
alcohols 5i and 5j also proceeded smoothly in the reaction
without any difficulty affording the desired products with
excellent enantioselectivities (98−99% ee). Besides benzylic
alcohol, aliphatic alcohols with a number of different
substituents were also suitable substrates undergoing this
dehydrogenative Si−O coupling giving the corresponding
products 5k−5n in 66−83% yields with 96−97% ee. To further
illustrate the utility of this methodology, we then examined the
reaction employing the core structures of several bioactive
molecules, pharmaceuticals, or materials building blocks, such
as phenothiaine (4o), D-ribofuranoside (4p), β-estradiol (4q),

Table 2. Substrate Scope of Si-Stereogenic Siloxanesa

aConditions: 1 (0.24 mmol), 2 (0.2 mmol), [Rh(cod)Cl]2 (1 mol %), L4 (2.2 mol %), in 2.0 mL toluene, under argon atmosphere, 12 h. Isolated
yields. The ee values were determined by chiral HPLC.
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and pitavastatin fragment (4r). We were delighted to find that
the corresponding silicon-stereogenic alkoxysilane products
5o−5r could be obtained in good yields with excellent
stereoselectivities, irrespective of existing diverse functional
groups and complex molecular structures. Finally, the
interesting bis-silicon-stereogenic alkoxysilane 5s was also
obtained by the double coupling between 1,4-phenylenedime-
thanol with dihydrosilane in 52% yield with excellent
enantioselectivity (>99% ee).
In recent years, there has been growing interest in the

chiroptical molecules that display circularly polarized lumines-
cence (CPL), which has great potential applications in 3D
displays, communication of spin information, information
storage and processing, CPL lasers, and biological probes.49−53

Among various chiral luminescent systems, chromophores with
silicon-stereogenic centers exhibited potential intense CPL
emission properties due to their σ*−π* conjugation.54−59 To
demonstrate the utility of these interesting chiral organosilicon
compounds, we finally synthesized three enantioenriched
silicon-stereogenic alkoxysilanes 6a−6c containing pyrene
groups60 under the standard conditions (Figure 1a) and
examined their photophysical properties. Under UV light
irradiation (365 nm), the solution of 6a and 6b in CH2Cl2
exhibited blue luminescence, while 6c displays bright green
luminescence (Figure 1b). These compounds show similar

UV−vis spectra; the absorption maxima are at around 317,
332, and 349 nm, respectively (Figure 1c). The emission
maxima vary from 396 to 508 nm. Both the monomer (around
400 nm) and excimer (around 500 nm) emission peaks were
observed for 6a and 6b. However, only a red-shifted,
broadened excimer emission peak (around 500 nm) was
seen for 6c, which may originate from the multiple pyrene
units within the molecule in proximity (Figure 1d).61 It is
worthy of mention that 6c has a larger Stokes shifts (159 nm)
and a higher absolute fluorescence quantum yield (0.55)
compared with 6a and 6b (see Supporting Information Table
S2 for details), which is suitable for the potential applications
in chiroptical materials. Then, we further investigated the
chiroptical properties of these π-conjugated silicon-stereogenic
alkoxysilanes via circular dichroism (CD) and circular
polarized luminescence (CPL) spectra. The CD spectra are
mirror images of each other, in which 6a, 6b, and their
enantiomers display clear Cotton effects at about 330 and 348
nm, while (R, R)-6c and (S, S)-6c exhibit stronger opposite
signals at around 330 and 355 nm, respectively (Figure 1e).
Finally, the CPL experiment which reflected the chirality of
emitting excited states was conducted. To our delight, 6a−6c
are all CPL-active, displaying clear mirror images of each pair
of the enantiomers (Figure 1f). It is noteworthy that (R, R)-6c
and (S, S)-6c containing two silicon-stereogenic centers and

Table 3. Substrate Scope of Si-Stereogenic Alkoxysilanesa

aConditions: 1 (0.24 mmol), 4 (0.2 mmol), [Rh(cod)Cl]2 (1 mol %), L4 (2.2 mol %), in 2.0 mL toluene, under argon atmosphere, 12 h. Isolated
yields. The ee values were determined by chiral HPLC. X-ray crystallographic analysis of 5o allowed determination of the absolute configuration;
and configurations of the products 5 were assigned by analogy.
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three pyrene groups show intense CPL signals that range from
470 to 675 nm. The luminescence dissymmetry factors (glum)
were measured as −1.1 × 10−2 for (R, R)-6c and +1.1 × 10−2

for (S, S)-6c at 573 nm (Figure 1g). To the best of our
knowledge, it is fairly rare that small organic compounds with a
stereogenic center exhibit such a high glum value with a high
fluorescence quantum efficiency (glum = 0.011, ΦF = 0.55).62

To further demonstrate the importance of silicon-stereogenic
centers in these chiroptical alkoxysilanes, the chiral-at-carbon
linked pyrene analogue of 6a was synthesized and numbered as
6a′. The photophysical properties showed that the absorption
and CD spectra of 6a′ were similar to 6a. However, the
excimer emission peak of 6a′ became structureless. In addition,
both the CPL intensity and ΦF of 6a′ (glum = 0.0030, ΦF =
0.07) were lower than 6a (see Supporting Information Table
S2 and Figure S1 for details). This comparison indicates that
chromophores linked with silicon-stereogenic centers could be
quite attractive. We believe that these easily accessed silicon-
stereogenic alkoxysilanes with intense CPL properties could
have great potential application in the development of
interesting chiroptical devices in the near future.

In summary, we have developed a rhodium-catalyzed
enantioselective intermolecular dehydrogenative Si−O cou-
pling reaction between dihydrosilanes with silanols or
alocohols, which gives access to a wide range of highly
functionalized chiral siloxanes and alkoxysilanes in good to
excellent yields and enatioselectivities. Further utility of this
process was illustrated by the construction of CPL-active
silicon-stereogenic alkoxysilane small organic molecules
displaying large glum values with high emission efficiency,
which could have great potential applications in chiral organic
optoelectronic materials.
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Figure 1. Photophysical properties investigations. (a) Enantioselective synthesis of effective CPL-active silicon-stereogenic alkoxysilanes. (b)
Fluorescence images of π-conjugated silicon-stereogenic alkoxysilanes (λex = 365 nm). (c) Absorption spectra of π-conjugated silicon-stereogenic
alkoxysilanes in CH2Cl2 (10

−5 M). (d) Emission spectra of π-conjugated silicon-stereogenic alkoxysilanes in CH2Cl2 (10
−3 M). (e) CD spectra of

6a−6c and their enantiomers in CH2Cl2 (2.0 × 10−5 M) at room temperature. (f) CPL spectra of 6a−6c and their enantiomers in CH2Cl2 (1.0 ×
10−3 M) at room temperature, excited at 349 nm. (g) glum values−wavelength curve for 6a−6c and their enantiomers.
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