SYNTHESIS AND SPECTRAL FEATURES OF NEW 1-ALKYL-5-(INDOL-2(3)-YL)PYRROLIDIN-2-ONES

N. E. Mysova², A. E. Kovrov¹, A. V. Sadovoy¹*, L. A. Sviridova¹,

G. A. Golubeva¹, and N. I. Vorozhtsov¹

The mass spectrometric behavior of 1-alkyl-5-(1H-indol-2-yl)pyrrolidin-2-ones and 1-alkyl-5-(1H-indol-3-yl)pyrrolidin-2-ones was studied and the fragmentation of these compounds was established. The product of N-methylindole reaction with 1-benzyl-5-hydroxypyrrolidin-2-one was shown to be 1-benzyl-5-(1-methylindol-3-yl)pyrrolidin-2-one.

Keywords: 5-hydroxypyrrolidin-2-ones, indoles, amidoalkylation, mass spectrometry.

In previous work [1], we reported the synthesis of new 1-alkyl-5-(1H-indolyl)pyrrolidin-2-ones 1 and 2, and found that these compounds do not undergo the Plancher rearrangement during their formation.

However, in a continuation of this research, we found that the ¹H NMR signal at 6.88 ppm, which belongs to the indole system pyrrole ring proton in the product obtained from *N*-methylindole (**3e**) and 1-benzyl-5-hydroxypyrrolidin-2-one (**4a**), appears almost exactly in the middle between the signals for H-3 (6.45 ppm) and H-2 (7.26 ppm) in unsubstituted indole [2]. Thus, the spectrum does not permit us to establish the substitution pattern of the indole system, i.e., to clearly distinguish between the structures **1d** and **2b** (Table 1).

In order to resolve this problem, we investigated the mass spectrometric behavior of compounds **1a-g** and **2a**.

Compounds **1a-g** and **2a** were prepared from the indoles **3a-f** and 1-alkyl-5-hydroxypyrrolidin-2-ones **4a** and **4b** according to our published procedure [1].

The proposed schemes for electron impact fragmentation of indoles **1a-g** and **2a** are given in Figures 1-3. The numbering sequence of the fragment ions and the quantitative characteristics of this fragmentation are given in Tables 2 and 3.

*To whom correspondence should be addressed, e-mail: sadovoy@mail.ru.

¹M. V. Lomonosov Moscow State University, 1, Build. 3 Leninskie Gory, Moscow 119991, Russia. ²A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., Moscow 119991, Russia; e-mail: nemysova@yandex.ru.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1748-1754, November, 2012. Original article submitted May 3, 2012.

0009-3122/13/4811-1634©2013 Springer Science+Business Media New York

1 a R = H, $R^{1} = Me$, $R^{3} = Bn$; **b** R = H, $R^{1} = Ph$, $R^{3} = Bn$; **c** R = Me, $R^{1} = Ph$, $R^{3} = Bn$; **d** R = Me, $R^{1} = H$, $R^{3} = Bn$; **e** $R = R^{1} = Me$, $R^{3} = s$ -Bu; **f** R = H, $R^{1} = Ph$, $R^{3} = s$ -Bu; **g** R = Me, $R^{1} = Ph$, $R^{3} = s$ -Bu; **2 a** R = H, $R^{2} = Me$, $R^{3} = Bn$; **b** R = Me, $R^{2} = H$, $R^{3} = Bn$; **3 a** $R = R^{2} = H$, $R^{1} = Me$; **b** $R = R^{2} = H$, $R^{1} = Ph$; **c** $R = R^{1} = H$, $R^{2} = Me$; **d** R = Me, $R^{1} = Ph$, $R^{2} = H$; **e** R = Me, $R^{1} = R^{2} = H$; **f** $R = R^{1} = Me$, $R^{2} = H$; **4 a** $R^{3} = Bn$, **b** $R^{3} = s$ -Bu

Fig. 1. Proposed scheme for the general mass spectral fragmentation pathways of indoles 1a-g and 2a.

The mass spectral fragmentation of indoles **1e-g** differs from the fragmentation of indoles **1a-d** by greater diversity, where the additional fragmentation directions are shown in Figure 2. These features are attributed to the significant difference in the stability of *sec*-butyl and benzyl fragments. The quantitative characteristics of the additional fragmentation directions for indoles **1e-g** are given in Table 3.

C	
com-	Chemical shifts, ô, ppm (J, Hz)
1a	2.06 (3H, s, CH ₃); 2.20–2.39 (2H, m, 4'-CH ₂); 2.58–2.67 (1H, m) and 2.70–2.78 (1H, m, 3'-CH ₂); 3.41 (1H, d, $J = 14.5$) and 5.13 (1H, d, $J = 14.5$, PhC <u>H₂</u> N); 4.69 (1H, br. t, $J = 7.3$, 5'-CH); 7.04 (2H, d, $J = 7.5$, H-2,6 Ph); 7.09 (1H, t, $J = 7.0$, H Ar); 7.18 (1H, t, $J = 7.6$, H Ar); 7.22–7.30 (3H, m, H Ar); 7.34 (1H, d, $J = 8.1$, H Ar); 7.44 (1H, br. d, $J = 7.5$, H Ar); 7.96 (1H, br. s, NH)
1b	2.30-2.45 (2.H. m, 4'-CH ₂); 2.57-2.66 (1H, m) and 2.69-2.80 (1H, m, 3'-CH ₂); 3.48 (1H, d, <i>J</i> = 14.6) and 5.12 (1H, d, <i>J</i> = 14.6, PhCH ₂ N); 4.89 (1H, t, <i>J</i> = 7.9, 5'-CH); 6.89-6.94 (2H, m, H Ar); 7.06-7.18 (6H, m, H Ar); 7.26-7.30 (1H, m, H Ar); 7.32-7.36 (3H, m, H Ar); 7.46 (1H, d, <i>J</i> = 8.1, H Ar); 7.58 (1H, d, <i>J</i> = 7.9, H Ar); 8.21 (1H, br. s. NH)
1c	2.25-2.36 (2H, m, 4'-CH ₂); 2.48-2.60 (1H, m) and 2.60-2.73 (1H, m, 3'-CH ₂); 3.54 (1H, d, <i>J</i> = 14.7) and 5.11 (1H, d, <i>J</i> = 14.7, PhCH ₂ N); 3.58 (0.3H, s) and 3.59 (2.7H, s, NCH ₃); 4.53 (1H, t, <i>J</i> = 7.8, 5'-CH); 6.92-6.96 (2H, m, H Ar); 6.97-7.21 (5.4H, m, H Ar); 7.25-7.44 (5.6H, m, H Ar); 7.57 (1H, d, <i>J</i> = 8.0, H Ar)
1d	2.15-2.24 (1H, m) and $2.36-2.45$ (1H, m, 4'-CH ₂); $2.53-2.61$ (1H, m) and $2.67-2.75$ (1H, m, 3'-CH ₂); 3.62 (1H, d, $J = 14.6$) and 5.08 (1H, d, $J = 14.6$, PhCH ₂ N); 3.79 (2.7 H, s) and 3.80 (0.3 H, s, NCH ₃); 4.79 (1H, dd, $J = 8.0$, $J = 6.3$, $5'$ -CH); 6.88 (1H, s, H-2); $7.10-7.14$ (3H, m, H Ar); $7.23-7.32$ (4H, m, H Ar); $7.3-7.32$ (4H, m, H Ar); 7.36 (1H, d, $J = 8.2$, H - (71)); 7.47 (1H, d, $J = 8.0$, H - $7(4)$)
1e	0.68-0.84 (3.8H, m), 1.10-1.20 (1.7H) and 1.46-1.57 (0.5H, m, CH ₃ CH ₂ CHC <u>H</u> ₃); 1.59-1.75 (2H, m, CH ₃ CH ₂ CH); 2.16-2.47 (2H, m, 4'-CH ₂); 2.42 (3H, s, 2-CH ₃); 2.47-2.61 (1H, m) and 2.62-2.79 (1H, m, 3'-CH ₃); 3.36-3.46 (0.47H, m) and 3.81-3.90 (0.53H, m, CHN); 3.68 (1.67H, s) and 3.69 (1.33H, s, NCH ₃); 4.92-5.03 (1H, m, 5'-CH); 7.02-7.12 (1H, m, H Ar); 7.14-7.21 (1H, m, H Ar); 7.24-7.31 (1H, m, H Ar); 7.48 (0.47H, d, <i>J</i> = 7.5, H Ar); 7.52 (0.53H, d, <i>J</i> = 7.9, H Ar)
lf	0.58-0.65 (3H, m, CH ₃ CH ₂); 0.67 (1.5H, d, $J = 6.9$) and 0.99 (1.5H, d, $J = 6.9$, CHCH ₃); 1.08-1.18 (0.5H, m), 1.25-1.38 (1H, m) and 1.50-1.60 (0.5H, m, CH ₃ CH); 2.31-2.62 (3H, m, 4 ⁺ CH ₂ , 3 ⁺ CH ₃); 2.68-2.87 (1H, m, 3 ⁺ CH ₈); 3.32-3.41 (0.5H, m) and 3.77-3.86 (0.5H, m, CHN); 5.07-5.12 (1H, m, 5 ⁺ CH); 7.13 (1H, tdd, $J = 7.5$, $J = 3.1$, $J = 0.9$, H Ar); 7.21 (1H, m, H Ar); 7.59 (0.5H, m, H Ar); 7.50 (0.5H, m, H Ar); 7.50 (0.5H, m, H Ar); 7.50 (0.5H, m, H Ar); 7.59 (0.5H, m, H Ar); 7.59 (0.5H, m, H Ar); 7.50 (0.5H, m, H Ar); 7.
1g	0.57-0.56 (3.H, m, 4CH ₂ , 3): CH ₁ (1, 21, 4, <i>J</i> = 6.9) and 1.01 (1.58H, 4, <i>J</i> = 6.9, CHC <u>H</u> ₃); 1.13-1.23 (0.60H, m), 1.31-1.38 (1H, m) and 1.55-1.62 (0.40H, m, CH ₅ CH); 0.57 (1.42H, 4, <i>J</i> = 6.9) and 1.01 (1.58H, 4, <i>J</i> = 8.0) H, m, 4.01); 2.58-2.85 (1H, m, 3 ² -CH ₃); 3.27-3.55 (0.53H, m) and 3.74-3.83 (0.47H, m, CHN); 3.58 (1.42H, 8) and 3.59 (1.58H, 8, NCH ₃); 2.27-2.56 (3H, m, 4-CH ₃ ; 3 ² -CH ₃); 3.27-3.55 (0.53H, m) and 3.74-3.83 (0.47H, m, CHN); 3.58 (1.42H, 8) and 3.59 (1.58H, 8, NCH ₃); 2.77-2.56 (3H, m, 4-CH ₃ ; 7.15 (1H, tdd, <i>J</i> = 7.5, <i>J</i> = 2.1, <i>J</i> = 1.0, H Ar); 7.24-7.30 (1H, m, H Ar); 7.31-7.39 (3H, m, H Ar); 7.47-7.57 (3H, m, H Ar); 7.60 (0.47H, 8) and 7.65 (0.53H, br. d, <i>J</i> = 8.0, H Ar)
2a	2.09 (3H, s, CH ₃); 2.14-2.25 (1H, m) and 2.37-2.46 (1H, m, 4'-CH ₂); 2.56-2.65 (1H, m) and 2.69-2.76 (1H, m, 3'-CH ₃); 3.49 (1H, d, <i>J</i> = 14.5) and 5.08 (1H, d, <i>J</i> = 14.5, PhCH ₂ N); 4.79 (1H, t, <i>J</i> = 7.6, <i>S</i> '-CH); 7.10-7.16 (3H, m, H Ar); 7.21 (1H, d, t, <i>J</i> = 7.6, <i>J</i> = 1.2, H Ar); 7.25-7.33 (3H, m, H Ar); 7.37 (1H, d, <i>J</i> = 8.1, H Ar); 7.55 (1H, br. d, <i>J</i> = 7.8, H Ar); 8.96 (1H, br. s, NH)

TABLE 1. ¹H NMR Spectra of the Indoles Synthesized

	$F14^+$ $F15^+$ Others	130 91 65 (5)	(7) (41)	— 91 204 (12), 193 (8),	(74) 145 (27), 117 (7),	104 (5), 65 (6), 57 (8 55 (8)	— 91 218 (13), 207 (5),	$(31) 204 \ (5), 190 \ (6),$	145 (24), 117 (5)	130 91 171 (25), 117 (6),	(5) (40) 115 (5), 77 (5), 65 (5	- 169 (10), 168 (9),	144 (7), 128 (6),	124 (5), 83 (6), 82 (8	56 (10)	— 230 (10), 204 (12),	151 (7), 108 (6)	— — — 218 (17), 204 (7),	158 (7), 124 (6)	130 91 106 (7)	
	F13 ^{+.}	143	(9)							143	(5)									143	8
	$F12^{+}$	144	(16)	206	(15)		220	(11)		144	(21)	158	(17)			206	(14)	220	(16)	144	(11)
(%	F11 ^{+.}	145	(19)							145	(13)									145	(2)
numbers of ions, m/z ($I_{\rm rel}$, ⁹ / ₉	$F10^+$	156	(10)	218	(8)					156	(9)	170	(12)			218	(14)			156	(12)
	F9 ^{+.}	157	(52)	219	(50)		233	(26)		157	(11)	171	(22)			219	(20)	233	(19)	157	(10)
	$F8^+$	170	(34)	232	(36)		232	(22)		170	(29)	184	(89)			232	(65)	246	(99)	170	(10)
Mas	$\mathbf{F7}^{+}$	173	(51)	173	(100)		173	(100)		173	(31)	139	(61)			139	(38)	139	(74)		
	$F6^+$	—																		184	Ē,
	FS^{+}	—																		197	(11)
	$\mathbf{F4}^{+}$																			198	(15)
	$\mathbf{F3}^{+}$																			199	(10)
	$\mathbf{F2}^{+}$	213	(20)	275	(36)		289	(16)		213	(29)									213	(11)
	$\mathbf{F1}^{+}$	247	(9)	309	(6)		323	(10)		247	(13)									247	(0)
	$\mathbf{M}^{+\cdot}$	304	(100)	366	(100)		380	(100)		304	(100)	284	(100)			332	(100)	346	(100)	304	(100)
Com-	pound	1a		1b			1c			1d		1e				1f		1_{g}		2 a	

*The values of the mass numbers of ions with a relative intensity of at least 5%.

*
ŏ
<u>.</u>
S
Ĕ,
Б
5
\mathbf{v}
S
÷.
3
ă
÷.
B
Ŧ
Ĕ
2
DS D
Ö
Ξ.
ĕ
.£.
Ω
2
5
Ξ.
ta
E
g
E
g
Ë,
щ
al
Ы
ă
<u>e</u>
Ċ
Ĕ
0
S
Ē
<u>.s</u>
Ы
Ĕ.
ğ
L
~~
ha
Cha
e Cha
ive Cha
ative Cha
itative Cha
ntitative Cha
antitative Cha
uantitative Cha
Quantitative Cha
. Quantitative Cha
2. Quantitative Cha
E 2. Quantitative Cha
LE 2. Quantitative Cha
BLE 2. Quantitative Cha
ABLE 2. Quantitative Cha

1637

Fig. 2. Proposed scheme for the mass spectral fragmentation pattern of indoles **1e-g** due to the presence of *sec*-butyl group.

The data in Table 2 indicate that the mass spectral behavior of indole **2a** is similar to the behavior of indoles **1a-d**, but there are two significant differences. The most noticeable of them is the presence of fragment ions **F3-F6**, whose formation is outlined in Figure 3. However, as Figure 3 indicates, this feature cannot serve as a criterion for distinguishing between indoles **1d** and **2b**, since it is due not only to localization of the pyrrolidinone fragment at the C-2 position of indole, but also to the absence of a substituent at the indole N-1 atom.

Fig. 3. Additional mass spectral fragmentation patterns of indole 2a.

The second and most important difference in the mass spectrum of indole 2a lies in the absence of the peak corresponding to ion F7, which is strong in the spectra of all indoles 1a-g (Table 2). The decomposition direction $M^+ \rightarrow F7$ may be considered to be the reverse process to the synthesis of indoles 1a-g. Thus, we may propose that the above-mentioned Plancher type rearrangements [3, 4] are observed when the loss of a

Com-		Mass numbers of ions, m/z (I_{rel} , %)													
pound	M ^{+.}	F16 ⁺	F17 ^{+.}	F18 ⁺	F19 ⁺	F20 ^{+.}	F21 ⁺	$F22^+$	F23 ⁺	$F24^+$					
1e	284 (100)	255 (14)	228 (7)	212 (10)	199 (6)	145 (17)	111 (16)	110 (17)	84 (59)	55 (6)					
1f	332 (100)	303 (56)	276 (27)	260 (12)	247 (10)	193 (15)	111 (7)	—	84 (38)	55 (7)					
1g	346 (100)	317 (31)	290 (21)	274 (7)	261 (10)	207 (24)	111 (13)	110 (22)	84 (51)	55 (6)					

TABLE 3. Quantitative Characteristics of Additional Fragmentation Patterns of Indoles **1e-g***

*The values of the mass numbers of ions with a relative intensity of at least 5% are shown.

substituent from one indole position and its transfer to another position by any mechanism is facilitated by thermodynamic and kinetic factors. Hence, in our case, the formation of 1-alkyl-5-(indol-3-yl)pyrrolidin-2-ones 1 appears to be under kinetic rather than thermodynamic control, while 1-alkyl-5-(indol-2-yl)pyrrolidin-2-ones 2 are more stable thermodynamically. Since the peak of fragment ion F7 is lacking only in the spectrum of indole 2a and is present in the spectra of all other compounds, we may conclude that the product of the reaction of *N*-methylindole (3e) with 1-benzyl-5-hydroxypyrrolidin-2-one (4a) corresponds specifically to indole 1d, rather than indole 2b.

Thus, we conclude that, as in the case of indole itself [1], the pyrrolidinone substituent enters at the C-3 atom in *N*-methylindole.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Bruker Avance-400 spectrometer (400 MHz) in CDCl₃ with TMS as internal standard. The electron impact mass spectra at 70 eV were recorded on a VG 70-70E mass spectrometer with direct sample inlet into the ion source. The elemental analysis was carried out on a Carlo Erba ER-20 CHN analyzer. The melting points were determined on an Electrothermal IA9100 instrument with sealed capillaries. The reaction course and purity of the products were monitored by thin layer chromatography on Silufol UV-254 and Merck Silicagel 60 F_{254} precoated silica gel plates. Merck silica gel (0.035-0.070 mm, pore diameter 6 nm, 500 m²/g) was used for purification of the compounds by column chromatography. Indoles **1a**,d and **2a** were obtained according to our previous procedure [1], while the indoles **1b**,c,e-g were obtained by an analogous procedure from the corresponding indoles and 1-alkyl-5-hydroxypyrrolidin-2-ones.

1-Benzyl-5-(2-phenyl-1*H***-indol-3-yl)pyrrolidin-2-one (1b)**. Yield 83%; mp 256-258°C (Et₂O). Found, %: C 81.88; H 6.27; N 7.26. C₂₅H₂₂N₂O. Calculated, %: C 81.94; H 6.05; N 7.64.

1-Benzyl-5-(1-methyl-2-phenyl-1*H***-indol-3-yl)pyrrolidin-2-one (1c)**. Yield 82%; mp 167-168°C (hexane). Found, %: C 81.93; H 5.95; N 7.77. C₂₆H₂₄N₂O. Calculated, %: C 82.07; H 6.36; N 7.36.

1-sec-Butyl-5-(1,2-dimethyl-1*H***-indol-3-yl)pyrrolidin-2-one (1e)**. Yield 49%; mp 108-109°C (hexane). Found, %: C 75.89; H 8.36; N 10.02. C₁₈H₂₄N₂O. Calculated, %: C 76.02; H 8.51; N 9.85.

1-sec-Butyl-5-(2-phenyl-1*H***-indol-3-yl)pyrrolidin-2-one (1f)**. Yield 60%; mp 209-210°C (Et₂O). Found, %: C 79.61; H 7.18; N 8.73. C₂₂H₂₄N₂O. Calculated, %: C 79.48; H 7.28; N 8.43.

1-sec-Butyl-5-(1-methyl-2-phenyl-1*H***-indol-3-yl)pyrrolidin-2-one (1g)**. Yield 77%; mp 126-128°C (hexane). Found, %: C 79.88; H 7.32; N 8.11. C₂₃H₂₆N₂O. Calculated, %: C 79.73; H 7.56; N 8.09.

REFERENCES

- 1. A. V. Sadovoy, A. E. Kovrov, G. A. Golubeva, and L. A. Sviridova, *Khim. Geterotsikl. Soedin.*, 1505 (2010). [*Chem. Heterocycl. Compd.*, **46**, 1215 (2010)].
- 2. E. Pretsch, P. Bühlmann, and C. Affolter, *Structure Determination of Organic Compounds. Tables of Spectral Data* [Russian translation], Mir, BINOM, Moscow (2006), p. 199.
- 3. L. A. Sviridova, S. V. Afanas'eva, G. A. Golubeva, P. B. Terent'ev, and Yu. G. Bundel', *Khim. Geterotsikl. Soedin.*, 1207 (1990). [*Chem. Heterocycl. Compd.*, **26**, 1008 (1990)].
- 4. I. V. Dlinnykh, G. A. Golubeva, I. F. Leshcheva, V. V. Nesterov, M. Yu. Antipin, and L. A. Sviridova, *Khim. Geterotsikl. Soedin.*, 1323 (2004). [*Chem. Heterocycl. Compd.*, **40**, 1142 (2004)].