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Abstract: Aerobic amine oxidation is an attractive and ele-
gant process for the a functionalization of amines. However,
there are still several mechanistic uncertainties, particularly
the factors governing the regioselectivity of the oxidation of
asymmetric secondary amines and the oxidation rates of
mixed primary amines. Herein, it is reported that singlet-
oxygen-mediated oxidation of 18 and 28 amines is sensitive
to the strength of the a-C�H bond and steric factors. Estima-

tion of the relative bond dissociation energy by natural
bond order analysis or by means of one-bond C�H coupling
constants allowed the regioselectivity of secondary amine
oxidations to be explained and predicted. In addition, the
findings were utilized to synthesize highly regioselective
substrates and perform selective amine cross-couplings to
produce imines.

Introduction

Imines are valuable synthetic intermediates with a myriad of
applications, including the synthesis of pharmaceuticals, dyes,
as well as fine and agricultural chemicals.[1] Traditional methods
of imine preparation[2] (Scheme 1 a) suffer from drawbacks re-
lated to the need to remove water and the high reactivity of
aldehydes, which often result in the formation of unwanted
byproducts. For these reasons, the development of an alterna-
tive strategy for the direct oxidation of amines to imines has
attracted much interest.[3] A range of methods for the prepara-
tion of secondary imines by catalytic condensation of primary
amines with alcohols (Scheme 1 b)[4] or by homocondensation
of the corresponding primary amines (Scheme 1 c) are
known.[5–9] The reported procedures for the cross-coupling of
amines are generally limited to the use of anilines, sterically
hindered amines, or alkyl amines in superstoichiometric
amounts (Scheme 1 d).[10] The majority of procedures for the
oxidation of primary amines do not form aldimines, because
oxidative coupling with the starting material yields imines
bearing identical R groups (Scheme 1 c).

The use of singlet oxygen (1O2) is an elegant, metal-free
method for the oxidation of organic compounds.[11–13] Recently,

we developed a fast and clean method for the oxidation of pri-
mary and secondary amines in a flow photoreactor.[14, 15] Precise
control over reaction conditions allowed for divergence in
product formation in the oxidation of primary amines. The ex-
pected oxidative coupling (Scheme 1 c) occurred in CH2Cl2

(0.5 m) at room temperature; however, conditions were found
(THF, 0.1 m, �50 8C) under which nucleophilic attack of the un-
oxidized amine on the in situ-generated primary aldimine did
not occur, providing the first example of unstable primary aldi-
mines being efficiently generated from their corresponding
amines.[14] Subsequent treatment of the solution exiting the
photoflow reactor with Me3SiCN/nBu4NF or methyl
cyanoacetate resulted in the formation of a-aminonitriles[14] or
a-cyano-a-ester epoxides,[16] respectively.

Although the oxidation of amines by 1O2 has been shown to
be a powerful tool for their rapid functionalization,[13, 14, 16] fac-
tors that influence the regioselectivity of 1O2 oxidation of
mixed primary or unsymmetrical secondary amines have not

Scheme 1. Methods for the synthesis of imines from amines.
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been studied.[17] Reports of aerobic oxidations of asymmetric
para-substituted secondary benzylamines[18] did not describe
any selectivity (Scheme 2).[13, 19]

Herein, we present our findings suggesting that the rate of
1O2-mediated oxidation of primary and secondary amines is di-
rectly proportional to the bond dissociation energy (BDE) of
the C�H bonds adjacent to the nitrogen atom. The relative
BDEs can be estimated theoretically by natural bond order
(NBO) analysis or experimentally by means of 1JCH coupling
constants obtained by NMR spectroscopy.[20] These methods
provided an estimation of C�H bond hybridization, and with
these data we could predict the selectivity prior to oxidation.
In addition, we show that the inherent selectivity can be over-
ridden by significant steric hindrance (Scheme 1 e).

Results and Discussion

The commonly accepted mechanism for the oxidation of
amines by 1O2, generated by energy transfer from an excited
dye, begins with the formation of an exciplex between 1O2 and
the lone pair of the amine (Scheme 3). Subsequent single elec-
tron transfer (SET) followed by deprotonation of the methylene
proton leads to the benzylic radical shown in Scheme 3, path I.
Alternatively, hydrogen-atom abstraction also results in the

same benzylic radical (path II). This radical can then undergo
SET with a hydroperoxy radical to form an iminium ion, which
is quickly deprotonated to yield the desired imine.[21] Accord-
ing to both these mechanisms, hydrogen peroxide is formed
as a side product, the presence of which has been observed
and utilized previously.[16]

We first examined electronic control of secondary amine oxi-
dation in an attempt to determine the relevant effects and to
clarify the nature of the process (path I or II), which is beset by
inconsistencies in the prior literature. For example, Zhao
et al.[5k] reported that the stability of the radical formed on hy-
drogen-atom abstraction by 1O2 determines the selectivity
(path II), whereas Kçnig et al.[21] found that the presence of
electron-donating and electron-withdrawing groups on the
benzyl ring increased and decreased the rate of oxidation,
respectively, which indicates path I.

Evaluation of mechanistic path I

First, we explored the oxidation of N-benzyl-4-methoxybenzyl-
amine (1, Figure 1): a 5 mg mL�1 solution of amine 1 and

tetraphenylporphyrin (TPP) (0.02 mg mL�1, 1.5 mol %)[22] in THF
(2 mL min�1) was mixed with oxygen gas (2 mL min�1) via a T-
mixer prior to entering the 7.5 mL flow photooxidation
module at 25 8C.[23] A back-pressure regulator (7 bar) was
mounted at the end of the system to increase the solubility of
oxygen gas. The reaction mixtures were analyzed by 1H NMR
spectroscopy immediately following solvent evaporation, as
imines are known to be readily hydrolyzed and yields of the
isolated products are strongly dependent on the purification
process.[24] The selectivity was determined by integration of
the imine protons (CH=N) to give the relative ratio of the four
oxidation products (2 :3 :4 :5 1.00:1.14:0.94:1.04, Figure 1).[25]

Four products were observed as opposed to two as a result of
hydrolysis and cross-condensation of the initial pair of imines
(3/4) upon rotary evaporation of the crude reaction mixture in
the presence of trace amounts of water.[26]

Imines 2 and 3, formed by oxidation of the benzylamine
side, do not isomerize to imines 4 and 5,[24, 27] and thus the ini-

Scheme 2. Selected examples of aerobic oxidation of asymmetric secondary
amines and competing oxidation between electron-rich and electron-
deficient benzylamines.

Scheme 3. Proposed mechanisms for singlet-oxygen-mediated oxidation of
secondary amines.

Figure 1. Photooxidation of N-benzyl-4-methoxybenzylamine (1) and
relevant (CH=N) 1H NMR peaks.
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tial ratio of photooxidation products, and hence the selectivity,
can be quantified by the sum of the integrals for the respec-
tive peaks of the product pairs (2 + 3 and 4 + 5 ; 1.08:1.00).[28]

Other solvents such as ethyl acetate, toluene, and CH2Cl2 af-
forded the same oxidation ratio. To determine whether the oxi-
dation proceeds via a charged benzylic intermediate (path I),
several para-substituted secondary amines were investigated
(Table 1, entries 1–4).

The ratio of imine products obtained on photooxidation of
the p-nitro-monosubstituted dibenzylamine derivative (1.2:1,
Table 1, entry 1) was similar to the results obtained for the oxi-
dation of the mono p-methoxy derivative. In fact, the introduc-
tion of substituents in either the para or the meta position did
not lead to any significant differences in the oxidation selectivi-
ty, and oxidation of the unsubstituted benzyl side was slightly
favored. Based on the relative acidities of p-NO2- and p-OMe-
substituted compounds (pKa = 10.8 and 19.1 for phenols; 20.9
and 27 for anilines),[29] we expected there to be a significant
difference, as well as a switch in selectivity, if the reaction
proceeded via path I. However, this was not observed, which
suggests that the acidity of this proton does not significantly
influence the outcome of the oxidation.

From what is known computationally of benzyl radicals,[30]

extension of the conjugated systems to naphthyl groups
makes radical delocalization less efficient, and the calculated
BDEs of 1-naphthyl and 2-naphthyl C�H bonds are higher than
those of benzylic C�H bonds by about 1 kcal mol�1. This is re-
flected in the poor selectivity observed (Table 1, entries 5 and

6) and led us to investigate the influence of BDE on oxidation
selectivity.

Ortho-functionalized asymmetric dibenzylamines: a
combination of electronic and steric effects

Further investigation of substitution of the aromatic ring
revealed a good degree of selectivity for ortho-substituted
asymmetric dibenzylamines (62–69 %; Table 1, entries 7–9).[31]

Moreover, the photooxidation of ortho-disubstituted aromatics
resulted in almost complete selectivity for oxidation of the un-
substituted benzyl side (90–95 %; Table 1, entries 10–12).

Since inductive effects are only observed over short distan-
ces and electronegative substituents increase neighboring
BDEs,[32] we hypothesized that the BDE of the C�H bond is the
main determinant of selectivity. An NBO analysis of the sub-
strate scope was undertaken in an attempt to quantify this se-
lectivity trend.[33] A general trend was observed in which the
C�H bonds adjacent to the nitrogen atom in the most selec-
tive substrates had higher differences in hybridization (%s
character) than less selective substrates (Table 1). Hybrid orbital
theory explains that an increase in hybridization of the carbon-
centered orbital leads to a higher BDE (sp> sp2> sp3).[34] The
calculated differences in the %s character of the two C�H
bonds a to the nitrogen atom are summarized in Table 1.

The %s character can also be determined experimentally
from one-bond C�H coupling constants (1JCH = 5 � %s).[35, 36]

Coupled 13C NMR spectra were used to determine the 1JCH

values of the two sets of C�H bonds a to the nitrogen atom in
each substrate (Table 1). The differences in hybridization of the
C�H bonds in the substrates indicate a strong inductive effect
on hybridization. Incorporation of electronegative groups at
the ortho position increases the electronegativity of the ipso
carbon atom, and thereby p character is withdrawn from the
adjacent benzylic carbon atom.[37] As a result, less p character
is available for the benzylic C�H bonds, hence the observed in-
crease in s character. As the substrates examined only include
aromatic rings substituted with groups more electronegative
than hydrogen,[38] we did not observe any preferential oxida-
tion of the substituted side. Oxidation of the unsubstituted
benzyl side was always preferred, that is, the difference in %s
character is directly related to the rate of oxidation. Although
this difference was higher for the difluoro- than for the respec-
tive dichloro-substituted compound (Table 1, entries 11 and 10,
respectively), the observed ratio of imine products revealed
a lower selectivity. Che et al.[13] previously noted the impor-
tance of steric hindrance. In our case, the greater steric bulk of
chlorine in comparison with fluorine (A values: 0.43 versus
0.15)[39] can explain the observed selectivities.

For a more detailed investigation of steric effects, a mesityl
derivative (Table 1, entry 13) was prepared. For this substrate,
each of the benzyl C�H bonds has nearly the same %s charac-
ter and should therefore result in a poorly selective oxidation.
However, analysis of the photooxidation products revealed
that oxidation occurred predominantly (81 %) at the less hin-
dered side (A value of CH3 is 1.7),[39] demonstrating that steric
effects play an important role in selectivity as well.

Table 1. Correlation of A-side oxidation with the difference in %s
character.[a]

Entry R D%s character (B�A) % of A side [O]
NBO 1JCH/5

1 4-OMePh 0.01 0.01 52
2 4-NO2Ph �0.11 0.08 55
3 4-MePh 0.01 0.00 52
4 3,4,5-OMePh 0.03 0.02 57
5 1-naphthyl �0.19 0.00 52
6 2-naphthyl 0.34 �0.01 55
7 2-OMePh 0.26 0.36 71[c]

8 2-ClPh 0.36 0.44 62
9 2-FPh 0.41 0.42 62

10 2,6-ClPh 0.70 0.76 >95
11 2,6-FPh 0.66 0.88 90
12 2,3,4,5,6-FPh 0.75 1.14 >95
13 Mes 0.36 0.01 81
14 tBu �0.07 �0.41 43
15 leelamine –[b] �0.34 36
16 1-adamantyl �0.34 �0.51 38

[a] Full conversion was observed for all substrates. For full experimental
details, see the Supporting Information. [b] NBO analysis of this substrate
was not performed. [c] Average yield over four experiments with a range
of 4 %.
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Changing the regioselectivity

On the basis of the above results, we hypothesized that by ex-
changing one of the aromatic rings with a group that is less in-
ductively withdrawing, such as an sp3-hybridized alkyl group,
the regioselectivity of oxidation could be tuned away from the
benzylic position. However, efforts to study aliphatic amines
were challenging due to the instability of the alkyl-substituted
imines formed after oxidation,[24] which prevented quantifica-
tion of the reaction selectivity.[40]

These issues are avoided when a quaternary carbon atom is
in the b position of the alkyl chain.[41] Oxidation of secondary
amines bearing benzyl and neopentyl residues (Table 1, en-
tries 14–16) did not result in high selectivity towards the
benzyl side, as has been reported in other oxidation systems.[42]

Conversely, we observed an inversion in selectivity, with
a slight preference for oxidation of the alkyl side (57–64 %).
These results were supported by the estimated differences in
%s character, obtained by NBO analysis or 13C NMR spectrosco-
py (Table 1). The negative differences for these substrates re-
flects the stronger (higher %s character) C�H bonds of the
benzylic side than the alkyl side, which leads to the predicted
preference for oxidation away from the benzyl group.

Design of highly selective substrates

The differences in %s character could be used to design even
more selective substrates. For example, an increase in the per-
centage of oxidation at the neopentyl side could be obtained
by exchanging the benzyl group (D%s character : �0.07;
Table 1, entry 14) with a more inductively withdrawing group
such as 2-fluorobenzyl or 2,6-diflurobenzyl (D%s character:
�0.44 and �0.72, respectively, Table 2, entries 1 and 2). The
latter (Table 2, entry 2) resulted in almost complete selectivity
(92 %) for oxidation on the alkyl side. Moreover, photooxida-
tion of the dichloro derivative (Table 2, entry 3) resulted in se-
lective oxidation of the alkyl side, with only trace amounts of
benzyl-side oxidation. These results are in complete agreement
with the described stereoelectronic effects (Table 1).

To further illustrate the influence of steric hindrance on
selectivity, we replaced the benzyl group of N-benzylneopen-

tylamine with a mesityl group (Table 2, entry 4). Photooxidation
now occurred predominantly on the alkyl side with 88 % selec-
tivity. To the best of our knowledge, these results are the first
examples of selective imine formation as the result of amine
oxidation away from the benzylic position of a disubstituted
amine.

A plot of the oxidation selectivity versus the difference in %s
character is shown in Figure 2.[43] Substrates with little influ-
ence over the selectivity occupy the middle of the graph,
whereas those with groups that exhibit a slow rate of oxida-

tion relative to benzyl lie in the upper right corner. Those with
increased rates[44] resulting in selectivity towards the alkyl side
lie in the bottom left. We propose that the plot in Figure 2 can
be used as a predictive model for asymmetric secondary
amines bearing substituents that lack significant steric bulk. In
addition, we believe that relative steric effects can be account-
ed for in structurally similar groups (2,6-F/Cl/Me versus H)
according to their respective A values.[39]

The data points shown in circles (Figure 2) were not used for
the linear fit due to the influence of steric bulk on the reaction
selectivity. Figure 3 depicts the percentage of deviation of
ortho-disubstituted examples from the predictive model versus
their respective A values.[39, 45] For dibenzyl amines, positive A
values are used, placing the data point in the upper right
quadrant of the plot, whereas for benzyl alkyl amines, the op-
posite of the respective A value is used, placing the data point
in the lower left quadrant. The observed linear dependence
nicely shows that steric effects complement the inherent elec-

Table 2. Electronic and steric effects enhance oxidation selectivity away
from an aromatic ring.[a]

Entry R D %s character (B�A) % of A side [O]
NBO 1JCH/5

1 2-FPh �0.44 �0.81 29
2 2,6-FPh �0.72 �1.35 8
3 2,6-ClPh �0.76 �1.17 <5
4 Mes �0.42 �0.43 12

[a] Full conversion was observed for all substrates. For full experimental
details, see the Supporting Information.

Figure 2. Percentage A-side oxidation (see Tables 1 and 2) plotted versus the
difference in %s character between the C�H bonds on the A and B sides, as
determined experimentally. Labels for the data points x.y represent Table x,
entry y. The plot (only diamonds) was fitted by means of a linear fit with the
equation y = 34.3 x + 53.6. The uncertainty due to NMR integration is repre-
sented by the error bars (see Supporting Information for equation). Entries
for which steric hindrance has a significant impact are shown in circles (see
Figure 3).
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tronic influence (Figure 2), which allows for the prediction of
the regioselective outcome for secondary amine oxidations.

Selective cross-condensation of amines

We expected the selectivities observed above to translate into
the rates of oxidation for primary amines as well. For example,
due to the difference in their %s character (0.88), the photooxi-
dation of an equimolar mixture of 2,6-difluorobenzylamine (9,
27.78 %s) and benzylamine (8, 26.90 %s) was expected to ex-
hibit a similar degree of selectivity to that observed for the re-
spective secondary amine (90 %, Scheme 4 a).[46] To avoid for-
mation of N-benzylidenebenzylamine (4), which results from
the condensation between benzylamine and benzaldimine, the
photooxidation was performed at �50 8C in THF (conditions
for generating primary imine).[14] Imine 7 was indeed obtained

in 85 % yield,[46] corresponding to oxidation of the unsubstitut-
ed benzyl amine (Scheme 4 b).

For two amines bearing C�H bonds with similar %s charac-
ter adjacent to the nitrogen atom, such as benzylamine (8)
and p-methoxybenzylamine (12), similar rates of oxidation
would be expected, as is evidenced by the lack of selectivity in
the corresponding secondary amine (Table 1, entry 1). Accord-
ingly, when a 1:1 mixture of 8 and 12 (each with 26.90 %s) un-
derwent photooxidation under oxidative coupling conditions
(CH2Cl2, RT) four imine products were obtained in a ratio of
1.2:1 favoring the unsubstituted side. These results were simi-
lar to those reported in Table 1 (entry 1) and were consistent
with the literature reports on oxidations of amine mixtures.[19c]

The desired secondary imine 13 could, however, be efficiently
generated from amines with similar benzylic C�H bonds by
first oxidizing one of them (8, �50 8C, THF) and treating the re-
sulting primary aldimine 10 with amine 12, as shown in
Scheme 4 c, which gave 92 % of 13 as a pure compound fol-
lowing evaporation. Simply exchanging the substrates results
in the formation of the opposite imine 15 in 94 % yield.

Conclusion

We found that the selectivity observed in singlet-oxygen-medi-
ated oxidations of primary and secondary amines is deter-
mined by the BDE of the competing C�H bonds adjacent to
the nitrogen atom. This suggests that oxygen-mediated oxida-
tions likely proceed via a hydrogen-atom abstraction pathway
(Scheme 3, path II). NBO analysis and NMR spectroscopy can
be used as predictive tools to estimate the differences in %s
character. Good and excellent selectivity could be observed
with differences greater than 0.3 and 0.7 %, respectively. In ad-
dition, it was shown that steric hindrance plays an important
role in the regioselective outcome and can overpower the in-
trinsic preferences. The predictive power of these differences
can be utilized not only for photooxidation of asymmetrical
secondary amines, but also for primary amines. Finally, to the
best of our knowledge, we have given the first accounts both
of selective imine formation away from a benzylic position as
well as the selective equimolar cross-coupling of two different
amines, without the limitation of using aromatic or sterically
hindered amines.

Experimental Section

General procedure for the photooxidation of secondary
amines[47]

A solution of amine (50 mg) and TPP (1 mg) in THF (10 mL) was
pumped by a Vapourtec R2 + pump with a flow rate of 2 mL min�1.
In an ETFE T-mixer (IDEX Health and Science) the substrate solution
was mixed with oxygen (99.995 %, <3.0 ppm mol�1 H2O; ALPHA-
GAZ 1 O2, Werk DEF 2 Krefeld-Gellep), which was delivered from an
oxygen gas tank. Gas pressure was regulated to 20 bar and the
flow adjusted to 5 mL min�1 with a gas-flow controller (Influx,
SV1B5-AI05). This solution was then pumped through the 7.5 mL
photoreactor consisting of fluorinated ethylene–propylene copoly-
mer (FEP) tubing (IDEX Health and Science, natural color, 1.57 mm

Figure 3. Percentage deviation from the predictive model plotted versus the
A values. Positive A values correspond to R2 groups containing sterically
bulky substituents and negative A values to R1 groups with sterically bulky
substituents. Positive deviation means the points lie above the fitted line
and negative values correspond to points that lie below the line. Labels for
the data points x.y represent Table x, entry y.

Scheme 4. Strategies for selective oxidative imine synthesis.[46]
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outer diameter, 0.76 mm inner diameter) wrapped around a glass
plate (7 � 9 cm2) in two layers. A 30 cm piece of tubing was used
for connection of the T-mixer with a photoreactor. A 0.5 mL pre-
cooling loop covered with aluminum foil was placed additionally
in the bath before the photoreactor. An LED module (OSA Opto
Light, OLM-018 B, 420 nm emission wavelength, 72 W; Manson
HCS-3202 power supply) was mounted in front of this plate at
a distance of 3 cm. The photoreactor was suspended in a water
bath. A piece of FEP tubing (30 cm) was used for connection of
the outlet of photoreactor to a 7 bar back-pressure regulator (aver-
age pressure in the system was around 9 bar). The residence time
in the photoreactor was measured to be 2.5 min. Concentration on
the rotary evaporator was performed at 30 8C. Analysis of the prod-
uct mixture was performed by relative integration of characteristic
and non-overlapping signals of imines in 1H NMR spectra.[48]

Acknowledgements

We gratefully acknowledge financial support from the Max
Planck Society and the DAAD. We thank Stella Vukelić for the
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Factors Influencing the
Regioselectivity of the Oxidation of
Asymmetric Secondary Amines with
Singlet Oxygen

Selective imine synthesis : The influ-
ence of electronic and steric factors on
the singlet-oxygen-mediated oxidation
of 18 and 28 amines was investigated.
Estimation of the relative bond dissocia-
tion energy (BDE) by natural bond order
(NBO) analysis or from one-bond C�H
coupling constants allowed the regiose-
lectivity of secondary amine oxidations
to be explained and predicted, and the
findings were utilized to design a selec-
tive approach towards 28 imines by oxi-
dative cross-couplings of 18 imines (see
scheme).
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