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Abstract: A diastereoselective methodology for preparing trans-γ-
lactone-γ-butenolides through vinylogous aldol additions of siloxy-
furanes to enantiopure cyclopropylcarbaldehyde followed by a tin-
catalyzed retroaldol–lactonization cascade is reported. This syn-
thetic approach is applied to a short synthesis of an exo-trienol furan
lactone substructure relevant to bielschowskysin and other related
coral diterpenoid natural products.
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Adjacently linked oxygenated heterocycles and γ-butyro-
lactone motifs are prominent substructures in a number of
complex natural products. These moieties are present in
various furanocembranoid diterpenes isolated from Pseu-
dopterogorgia species such as 1–3.1 The segments high-
lighted (Figure 1) feature a 2,5-dihydrofuran or furan ring
attached to a 4,5-disubstituted butyrolactol or butyrolac-
tone. With special attention to diterpenoids 1 and 2,
strategies2 towards the synthesis of these substructures
have been developed motivated by the unique frame-
works, intriguing biogenetic origins3 and biological activ-
ity of the underlying natural products.

We report here the enantio- and diastereoselective synthe-
sis of such substructures via a highly selective vinylogous
aldol addition of 2-siloxyfurans 6 to enantiopure cyclo-
propylcarbaldehyde 4, the latter being readily available
from ethyl 2-furoate in a two-step sequence (Scheme 1).4

Previous investigations from our group demonstrated the
diastereoselective addition of allylsilanes 5 to 4, leading
after a retroaldol–lactonization sequence to 7 in stereo-
pure form. We envisioned that the construction of trans-
γ-lactone-γ-butenolides 8, which appear to be suitable
precursors for the synthesis diterpenoids 1–3, can be
achieved via Lewis acid catalyzed vinylogous Mukaiya-
ma aldol addition5 of 6 followed by our previously estab-
lished retroaldol–lactonization protocol.4

Scheme 1

Our investigation was initiated by reacting 2-trimethylsi-
loxyfurans 6 with cyclopropane 4 in the presence of
BF3·OEt2 (Table 1). Employing 6a, good conversion and
diastereoselectivity to 9a was achieved based on TLC and
1H NMR analysis of the crude, however, no attempts to
purify and isolate this intermediate were made, but rather
its direct conversion to lactone aldehyde 8a was investi-
gated. Substantial decomposition was observed when
Ba(OH)2·8H2O or triethylamine, which has been success-
ful in other transformations of this type,4 were employed
to initiate the retroaldol–lactonization cascade. Switching
to Otera’s catalyst6 10 in the presence of methanol or eth-
ylene glycol smoothly afforded 8a or 8b with perfect anti

Figure 1 Pseudopterogorgia diterpenoids with 2,5-dihydrofuran, fu-
ran-linked butyrolactone, and butyrolactol framework
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selectivity (C1/C2) and a 6:1 diastereoselectivity at C2/C3
(Table 1, entries 1 and 2). When the silyl group in 6 was
switched to a TBS group, a substantial improvement in di-
astereoselectivity for the formation of 8b (99:1) was ob-
served (Table 1, entry 3). Having established the reaction
sequence, several substituted siloxylated furan nucleo-
philes were investigated giving rise to 8c–f in acceptable
overall yields starting from 4 (Table 1, entries 4–7). Espe-
cially gratifying was that 8d,7 which is most relevant as a
precursor towards 1–3, was obtained as a single stereoiso-
mer (>99:1 de, 65% yield). The relative and absolute ste-
reochemistry of 8 was unambiguously established by X-
ray crystal structure analysis (Figure 2 for 8d)8 and chiral
ellipticity evidence.9 The butenolides displayed negative
and positive Cotton shifts for the π–π* and n–π* transi-
tions, respectively, revealing M helicity ascribed to deriv-
atives with S configuration at C3 (see the Supporting
Information). Noteworthy, from the anti arrangement of
substituents in the γ-butyrolactone moiety (C1/C2 in 8), it
is clear that addition pathways leading to the cyclopropyl
carbinol butenolides 9 are identical with those of the cy-
clic allylsilanes in accordance with the Felkin–Anh para-
digm (Scheme 2).10

Starting with butenolide-lactone 8d, transformations di-
rected towards the diterpenoids 1–3 were investigated.
DIBAL-H reduction furnished lactol-furan 11 (63%,
Scheme 3), which was reoxidized under Ley’s conditions
to afford furan lactone 12 quantitatively. Extension at the

furan C6 with an additional aldehyde unit under Vilsmei-
er–Haack conditions was unsuccessful. A Heck-inspired
Csp2–Csp2 coupling between the furan moiety of 12 and
methacrylate ethyl ester under reaction conditions de-
scribed by Miaura and co-workers11 was next investigat-
ed. Treatment of a DMF solution of 12 with ethyl
methacrylate, 5 mol% Pd(OAc)2, LiOAc (4 equiv), and
Cu(OAc)2·5H2O (2 equiv) afforded 13 (52% yield).12

Noteworthy in this transformation was the preferential
elimination of the β-hydrogen attached to the least hin-
dered carbon (C9). Finally, oxidation of the furan moiety
using bromine in methanol afforded 14 as a diastereomer-

Table 1  Butenolide-lactones 8 from Sequential Vinylogous Mukaiyama Aldol Reaction and Retro-Aldol–Lactonization Cascades

Entry Si R1 R2 Lactonization 
conditionsa

R3 Yield of 8 
(%)

drb,c

1 6a TMS H H A 8a Me 38 83:17

2 6a TMS H H B 8b (CH2)2 40 86:14

3 6b TBS H H B 8b (CH2)2 40 99:1

4 6c TBS Me H B 8c (CH2)2 44 87:13

5 6d TBS H Me B 8d (CH2)2 65 >99:1

6 6e TBS Ph Ph B 8e (CH2)2 42 91:9

7 6f TBS 4-t-BuPh 4-t-BuPh B 8f (CH2)2 50 90:10

a A: catalyst 10 (5 mol%), MeOH, reflux, 12 h; B: catalyst 10 (5 mol%), ethylene glycol, PhMe, reflux, 12 h.
b Ratio of 1S,2S,3S and 1S,2S,3R diastereomers.
c Determined by 1H NMR integral analysis.
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Figure 2 X-ray crystal structure of 8d8
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ic mixture of dimethoxylated products which, upon treat-
ment on silica, gave lactone 15.13 The Z configuration of
the newly formed alkene moiety was unambiguously as-
signed based on the H5/H7 NOESY correlation. Thus, the
exo-olefinated dihydrofuran moiety being useful as a po-
tential precursor for 1 and in core structures of other diter-
penoidal natural products such as 1614 can be easily
accessed through the aforementioned oxidative transfor-
mation utilized in this study.

In conclusion, we have developed a new stereoselective
strategy for constructing butenolide-butyrolactone and fu-
ran-butyrolactone units present in complex natural prod-
uct structures such as 1–3 through vinylogous Mukaiyama
addition of heterosiloxydienes to highly functionalized
cyclopropane carbaldehyde 4 and a lactonization se-
quence, demonstrating in a new way the power of donor–
acceptor-substituted cyclopropane building blocks.15 In
addition, the synthesis of a (Z)-exo-trienolfuran lactone
substructure 15 representing the northeastern sector of
bielschowskysin (1) was accomplished.
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