T.-f. Niu et al.

Letter

Visible-Light-Induced Chemoselective Synthesis of α-Chloro and Vinyl Sulfones by Sulfonylation of Alkenes

Α

Teng-fei Niu*[©] Dan Lin Lin-shuang Xue Ding-yun Jiang Bang-qing Ni*

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China niutf@jiangnan.edu.cn bvron ni@veah.net

Received: 28.07.2017 Accepted after revision: 11.09.2017 Published online: 20.10.2017 DOI: 10.1055/s-0036-1590925; Art ID: st-2017-w0590-I

Abstract Direct sulfonylation between alkenes and sulfonyl chloride was achieved at room temperature by a visible-light-induced photoredox process. This method allows the chemoselective synthesis of α -chloro and vinyl sulfone derivatives with moderate to high yields. The selectivity of the reaction was fully controlled by the electronic properties of the alkenes.

Key words visible-light-induced reaction, atom-transfer radical addition, sulfonylation of alkenes, chemoselectivity, α -Chloro sulfones, vinyl sulfones

Over the past decade, atom-transfer radical addition (ATRA) has attracted much attention as a versatile tool in organic synthesis.¹ Typically, ATRA represents a practical synthetic path for difunctionalization of alkenes or alkynes with activated halides in a highly atom-economic way, providing the corresponding alkyl or vinyl halides as important intermediates for further transformation.² With the combined efforts of several research groups, various modes of catalytic processes have been reported and applied in academic research laboratories and even in industry.³ Despite great progress, the development of more efficient, environment-friendly and sustainable methods for ATRA reactions are still highly desirable.

Recently, visible-light-induced processes have become a powerful tool for the ATRA reaction due to their mild conditions, high efficiency, and convenient workup.⁴ In principle, the addition of a halide ion to the radical intermediate is the key step to generate the desired radical addition product (Scheme 1, path I).^{4a,d,f,i,j,5} However, these radical cations are excellent hydrogen atom donors that can give rise to dehalogenated products especially under basic conditions (Scheme 1, path II).⁶ Thus, achieving control of the selectivity of visible-light-activated ATRA seems attractive.

Scheme 1 General sequences for ATRA and dehalogenated process

Sulfone groups are prevalent structural motifs in natural products, pharmaceuticals, agrochemicals, and materials.⁷ Despite some examples of transition-metal-catalyzed ATRA processes,⁸ the manipulation of these valuable structures under visible-light conditions in a chemoselective ATRA manner remains elusive.

In 2012, the Stephenson group reported a visible-lightinduced ATRA of 4-toluenesulfonyl chloride (TsCl) to styrene and norbornene, however, the substrate scopes of the sulfonyl chlorides and the alkenes are limited (Scheme 2, a).^{4b} On the other hand, Yu and co-workers described the direct coupling of sulfonyl chlorides with enamides in the presence of 1.5 equivalents of Na₂HPO₄(Scheme 2, b).⁹ Alternatively, the König group demonstrated a visible-lightinduced coupling of alkynes and aryl sulfinates with one equivalent of nitrobenzene as the additive (Scheme 2, c).¹⁰ Although these methods provided the desired products in attractive routes, the chemoselective synthesis of α -chloro and vinyl sulfone derivatives without additives still has T.-f. Niu et al.

Scheme 2 Visible-light-induced methods for the synthesis of α -chloro and vinyl sulfone derivatives

been elusive. Herein, we report an electronic-property-controlled visible-light-induced chemoselective sulfonylation of alkenes to access these valuable structures.

Initially, 4-nitrobenzenesulfonyl chloride 1a and styrene 2a were chosen as the model substrates. The model reaction was performed with **1a** (0.5 mmol), **2a** (0.5 mmol), and a catalytic amount of Ru(bpy)₃Cl₂ (2 mol%) in MeCN (2 mL; Table 1, entry 1). The reaction mixture was stirred at room temperature and irradiated using a blue LED (5 W) under N₂ atmosphere. After 4 h, the desired product **3a** was generated in 86% yield. Subsequently, various photocatalysts such as Ir(ppy)₃, Ir(dtbbppy)(ppy)₂PF₆, Eosin Y, Eosin B, Rhodamine B, and methylene blue hydrate were examined (Table 1, entries 2-7). Ru(bpy)₃Cl₂ was the most effective catalyst. Decreasing the amount of Ru(bpy)₃Cl₂to 1 mol% still led to a yield of 81% (Table 1, entry 8). Thus, 1 mol% of $Ru(bpy)_3Cl_2$ was used as the photocatalyst. In the solvent screening, MeCN provided the highest yield among all (Table 1, entries 8-13). It is noteworthy that the reaction was completely inhibited when a base (such as Et₃N, K₂CO₃, or Na₂HPO₄) was added to the reaction mixture. Furthermore, no desired product was achieved when the reaction was carried out in the absence of a photocatalyst and visible light (Table 1, entries 14 and 15).

В

1a 2a 3aa Entry Photocatalyst (mol%) Solvent Yield (%) ^b 1 Ru(bpy)_3Cl_2 (2) MeCN 86 2 Ir(ppy)_3(2) MeCN 63 3 Ir(dtbppy)(ppy)_2PF ₆ (2) MeCN 80 4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeCN MRd 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NRd 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	0-N	O + photocata N ₂ , solve	lyst	
Entry Photocatalyst (mol%) Solvent Yield (%) ^b 1 Ru(bpy)_3Cl_2 (2) MeCN 86 2 Ir(ppy)_3(2) MeCN 63 3 Ir(dtbppy)(ppy)_2PF_6 (2) MeCN 80 4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeCN NR ^d 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	0211	1a 2a	021	3aa
1 Ru(bpy)_3Cl_2 (2) MeCN 86 2 Ir(ppy)_3(2) MeCN 63 3 Ir(dtbbppy)(ppy)_2PF_6 (2) MeCN 80 4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeCN NR 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	Entry	Photocatalyst (mol%)	Solvent	Yield (%) ^b
2 Ir(ppy)_3(2) MeCN 63 3 Ir(dtbbppy)(ppy)_2PF_6 (2) MeCN 80 4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeCN MR 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR 15 MeCN NR 15 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	1	$Ru(bpy)_3Cl_2(2)$	MeCN	86
3 Ir(dtbbppy)(ppy) ₂ PF ₆ (2) MeCN 80 4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy) ₃ Cl ₂ (1) MeCN 81 9 Ru(bpy) ₃ Cl ₂ (1) DMF trace 10 Ru(bpy) ₃ Cl ₂ (1) DMSO trace 11 Ru(bpy) ₃ Cl ₂ (1) DCM trace 13 Ru(bpy) ₃ Cl ₂ (1) MeCN 48 14 ^c Ru(bpy) ₃ Cl ₂ (1) MeCN NR ^d 15 MeCN NR 15 16 ^e Ru(bpy) ₃ Cl ₂ (1) MeCN NR	2	lr(ppy)₃(2)	MeCN	63
4 Eosin Y (2) MeCN trace 5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) acetone 53 12 Ru(bpy)_3Cl_2 (1) MeCN 48 14 ^e Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	3	Ir(dtbbppy)(ppy) ₂ PF ₆ (2)	MeCN	80
5 Eosin B(2 MeCN trace 6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) acetone 53 12 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeCN NR ^d 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	4	Eosin Y (2)	MeCN	trace
6 Rhodamine B (2) MeCN trace 7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) acetone 53 12 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeOH 48 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 15 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	5	Eosin B(2	MeCN	trace
7 Methylene blue hydrate (2) MeCN trace 8 Ru(bpy)_3Cl_2 (1) MeCN 81 9 Ru(bpy)_3Cl_2 (1) DMF trace 10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) acetone 53 12 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeOH 48 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	6	Rhodamine B (2)	MeCN	trace
8 Ru(bpy) ₃ Cl ₂ (1) MeCN 81 9 Ru(bpy) ₃ Cl ₂ (1) DMF trace 10 Ru(bpy) ₃ Cl ₂ (1) DMSO trace 11 Ru(bpy) ₃ Cl ₂ (1) acetone 53 12 Ru(bpy) ₃ Cl ₂ (1) DCM trace 13 Ru(bpy) ₃ Cl ₂ (1) MeOH 48 14 ^c Ru(bpy) ₃ Cl ₂ (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy) ₃ Cl ₂ (1) MeCN NR	7	Methylene blue hydrate (2)	MeCN	trace
9 Ru(bpy) ₃ Cl ₂ (1) DMF trace 10 Ru(bpy) ₃ Cl ₂ (1) DMSO trace 11 Ru(bpy) ₃ Cl ₂ (1) acetone 53 12 Ru(bpy) ₃ Cl ₂ (1) DCM trace 13 Ru(bpy) ₃ Cl ₂ (1) MeOH 48 14 ^c Ru(bpy) ₃ Cl ₂ (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy) ₃ Cl ₂ (1) MeCN NR	8	$Ru(bpy)_3Cl_2(1)$	MeCN	81
10 Ru(bpy)_3Cl_2 (1) DMSO trace 11 Ru(bpy)_3Cl_2 (1) acetone 53 12 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeOH 48 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	9	$Ru(bpy)_3Cl_2(1)$	DMF	trace
11 Ru(bpy)_3Cl_2(1) acetone 53 12 Ru(bpy)_3Cl_2(1) DCM trace 13 Ru(bpy)_3Cl_2(1) MeOH 48 14 ^c Ru(bpy)_3Cl_2(1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2(1) MeCN NR	10	$Ru(bpy)_3Cl_2(1)$	DMSO	trace
12 Ru(bpy)_3Cl_2 (1) DCM trace 13 Ru(bpy)_3Cl_2 (1) MeOH 48 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	11	$Ru(bpy)_3Cl_2(1)$	acetone	53
13 Ru(bpy)_3Cl_2 (1) MeOH 48 14 ^c Ru(bpy)_3Cl_2 (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy)_3Cl_2 (1) MeCN NR	12	$Ru(bpy)_3Cl_2(1)$	DCM	trace
14 ^c Ru(bpy) ₃ Cl ₂ (1) MeCN NR ^d 15 MeCN NR 16 ^e Ru(bpy) ₃ Cl ₂ (1) MeCN NR	13	$Ru(bpy)_3Cl_2(1)$	MeOH	48
15 MeCN NR 16 ^e Ru(bpy)₃Cl₂ (1) MeCN NR	14 ^c	$Ru(bpy)_3Cl_2(1)$	MeCN	NR^d
16 ^e Ru(bpy) ₃ Cl ₂ (1) MeCN NR	15		MeCN	NR
	16 ^e	$Ru(bpy)_3Cl_2(1)$	MeCN	NR

^a Reaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), and photocatalyst in indicated solvent (2 mL) were irradiated with a 5 W blue LED at rt for 4 h. ^b Isolated yield.

^c1.5 equiv of base such as Et₃N, K₂CO₃, and Na₂HPO₄was added.

^d No reaction.

^e In the dark.

Having determined the optimal reaction conditions, we examined the scope and generality of the present method (Scheme 3).¹¹ To our delight, both aryl and aliphatic alkenes reacted well with 4-nitrobenzenesulfonyl chloride 1a, affording the corresponding products **3aa-al** in good to excellent yield. The effects from steric hindrance for alkenes were not significant, and para-, meta- or ortho-chlorinated alkenes were converted into the corresponding products in 83%, 79% and 75% yield, respectively (3ab-ad). The internal alkenes, such as β -methylstyrene and indene, afforded the corresponding products in 65% and 72% yield, respectively (Scheme 3, 3ah and 3ai). Different aromatic sulfonyl chlorides containing functional groups such as NO₂, Ph, CN, and an ester were also well tolerated under the optimal conditions, affording the desired products **3ba-da** in moderate to high yields. However, the aryl sulfinic chloride, bearing an electron-donating group such as Me, is unsuitable for the present reaction conditions. The halo substituents including ▲ C

Syn**lett**

T.-f. Niu et al.

Letter

F, Cl, and Br also did not survive the reaction conditions. Besides, aliphatic sulfonyl chloride **1h** was inert toward this transformation. It is worth noting that substrate **2m** with a strong electron-withdrawing group (CN) provided a vinyl product **4a** (78%) under the standard conditions. We assumed that the electronic property of the alkenes played a vital role in the transformation, thereby providing a route for the chemoselective synthesis of vinyl sulfone derivatives using electron-poor alkenes. The above results in Scheme 3 prompted us to explore the applicability of this method for the preparation of vinyl sulfone derivatives.¹² Aryl alkenes containing strong electron-withdrawing groups such as CN and ester were tolerated, affording the corresponding products in high yields (Scheme 4, **4a** and **4b**). Other electron-poor alkenes such as acrylonitrile, α , β -unsaturated amide and α , β -unsaturated ester also showed good compatibilities, affording the corresponding products **4c-h** in moderate to excellent yields.

with a 5 W blue LED at rt for 4 h under N₂ atmosphere; isolated yield.

Synlett

T.-f. Niu et al.

FWG Ru(bpy)₃Cl₂ N₂, MeCN EWG blue LED. rt 2 CO₂Me 0-1 0.1 4a (78%) 4b (65%) 4c (79%) O₂N O₂N **4f** (74%) 4d (76%) 4e (77%) NC = CI, Br, Me х O₂N 4g (70%) 4h (82%) NR

۸

D

Scheme 4 Photocatalyzed synthesis of vinyl sulfone derivatives. *Reagents and conditions*: **1** (0.5 mmol), **2** (0.5 mmol), $Ru(bpy)_3Cl_2 \cdot 6H_2O(1 mol\%)$ and MeCN (2 mL), irradiated with a 5 W blue LED at rt for 4 h under N₂ atmosphere; isolated yield.

Again, aryl sulfonyl chloride with halo and electron-donating group were still inert under the present reaction conditions.

According to our results and previous reports^{4b,9,10,13} a plausible mechanism is depicted in Scheme 5. Initially, excitement of the photoredox catalyst $[Ru(bpy)_3]^{2+}$ under visi-

ble light irradiation generates the strongly reducing excited state *[Ru(bpy)₃]²⁺, and subsequent single-electron transfer (SET) between this species with sulfonyl chlorides 1 generates [Ru(bpy)₃]³⁺ and sulfonyl radical I. Next, addition of sulfonyl radical I to alkene 2 affords the radical intermediate **II**, which further undergoes SET with [Ru(bpy)₃]³⁺ complex to deliver intermediate III. Finally, intermediate III with an electron-donating group may undergo nucleophilic trapping by Cl⁻ to afford the corresponding product **3** (path A), while intermediate **III** containing an electron-withdrawing group tends to generate product 4 via deprotonation (path B). The direct formation of **3** through the Cl-atom transfer from sulfonyl chloride 1 to radical intermediate II is also the possible pathway (path C). In addition, due to the electronic effect of the substituents, sulfinic chloride with electron-donating groups such as p-TsCl and halo substituents cannot be easily activated at the initial SET process to generate the sulfonyl radical in this system.

In conclusion, we have developed a visible-lightinduced chemoselective process to access α -chloro and vinyl sulfone derivatives without any additives. The selectivity of the reaction is determined by the electronic properties of the alkenes. A series of substrates survived the reaction conditions to give the corresponding products in moderate to good yields. Notably, the prepared α -chloro and vinyl sulfone derivatives can be further modified to access other useful compounds.

T.-f. Niu et al.

Funding Information

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province, China (BK20160164) for financial support.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590925.

References and Notes

- (1) (a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519.
 (b) Clark, A. J. Chem. Soc. Rev. 2002, 31, 1. (c) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087.
- (2) (a) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006, 128, 7440. (b) Weidner, G. K.; Giroult, A.; Panchaud, P.; Renaud, P. J. Am. Chem. Soc. 2010, 132, 17511. (c) Muñoz-Molina, J. M.; Belderraín, T. M.; Pérez, P. J. Eur. J. Inorg. Chem. 2011, 21, 3155. (d) Belhomme, M.-C.; Dru, D.; Xiong, H.-Y.; Cahard, D.; Besset, T.; Poisson, T.; Pannecoucke, X. Synthesis 2014, 46, 1859. (e) Cheung, C. W.; Hu, X. Chem. Eur. J. 2015, 21, 18439. (f) Che, C.; Zheng, H.; Zhu, G. Org. Lett. 2015, 17, 1617.
- (3) (a) Fang, X.; Yang, X.; Yang, X.; Mao, S.; Wang, Z.; Chen, G.; Wu, F. *Tetrahedron* 2007, 63, 10684. (b) Fernández-Zúmel, M. A.; Buron, C.; Severin, K. *Eur. J. Org. Chem.* 2011, 12, 2272. (c) Sumino, S.; Fusano, A.; Ryu, I. Org. Lett. 2013, 15, 2826. (d) Ovadia, B.; Robert, F.; Landais, Y. Org. Lett. 2015, 17, 1958. (e) Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem. Int. Ed. 2014, 53, 4910. (f) Wang, Y.-. Q.; He, Y.-T.; Zhang, L.-L.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 4280. (g) Li, G.; Cao, Y. X.; Luo, C. G.; Su, Y. M.; Li, Y.; Lan, Q.; Wang, X. S. Org. Lett. 2016, 18, 4806.
- (4) (a) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (c) Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. Chem. Eur. J. 2012, 18, 7336. (d) Knorn, M.; Rawner, T.; Czerwieniec, R.; Reiser, O. ACS Catal. 2015, 5, 5186. (e) Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem. Int. Ed. 2014, 53, 12064. (f) Riente, P.; Pericàs, M. A. ChemSusChem 2015, 8, 1841. (g) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y.-S.; Han, S. B. Org. Lett. 2014, 16, 1310. (h) Carboni, C.; Dagousset, G.; Magnier, E.; Masson, G. Synthesis 2015, 47, 2439. (i) Tang, X.-J.; Dolbier, W. R. Jr. Angew. Chem. Int. Ed. 2015, 54, 4246. (j) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, B. M.; Reiser, O. Angew. Chem. Int. Ed. 2015, 54, 6999. (k) Courant, T.; Masson, G. J. Org. Chem 2016, 81, 6945. (1) Lefebvre, Q.; Hoffmann, N.; Rueping, M. Chem. Commun. 2016, 52, 2493. (m) Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.; Ceroni, P.; Cozzi, P. G. Chem. Commun. 2017, 53, 1591. (n) Kublicki, M.; Dąbrowski, M.; Durka, K.; Kliś, T.; Serwatowski, J.; Woźniak, K. Tetrahedron Lett. 2017, 58, 2162.
- (5) (a) Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem. Int. Ed. 2014, 53, 539. (b) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. (c) Yoshioka, E.; Kohtani, S.; Jichu, T.; Fukazawa, T.; Nagai, T.; Kawashima, A.; Takemoto, Y.; Miyabe, H. J. Org. Chem. 2016, 81, 7217. (d) Wang, K.; Meng, L. G.; Wang, L. J. Org. Chem. 2016, 81, 7080. (e) Huan, F.; Chen, Q. Y.; Guo, Y. J. Org. Chem. 2016, 81, 7051.

- (6) (a) Furst, L.; Matsuura, B. S.; Narayanam, J. M.; Tucker, J. W.; Stephenson, C. R. Org. Lett. 2010, 12, 3104. (b) Chen, M.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2012, 48, 11686. (c) Demissie, T. B.; Ruud, K.; Hansen, J. H. Organometallics 2015, 34, 4218. (d) Jadhav, S. D.; Bakshi, D.; Singh, A. J. Org. Chem. 2015, 80, 10187.
- (7) (a) Xiang, J.; Ipek, M.; Suri, V.; Tam, M.; Xing, Y. Z.; Huang, N.; Zhang, Y. L.; Tobin, J.; Mansour, T. S.; McKew, J. Bioorg. Med. Chem. 2007, 15, 4396. (b) Curti, C.; Laget, M.; Carle, A. O.; Gellis, A.; Vanelle, P. Eur. J. Med. Chem. 2007, 42, 880. (c) Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2008, 130, 9238. (d) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem. Int. Ed. 2014, 53, 4205. (e) Chen, M.; Huang, Z. T.; Zheng, Q. Y. Org. Biomol. Chem. 2014, 12, 9337. (f) Liu, X.; Cong, T.; Liu, P.; Sun, P. Org. Biomol. Chem. 2016, 14, 9416. (g) Fang, Y. Y.; Luo, Z. G.; Xu, X. M. RSC Adv. 2016, 6, 59661.
- (8) (a) Muñoz-Molina, J. M.; Belderraín, T. R.; Pérez, P. J. Inorg. Chem. 2010, 49, 642. (b) Oe, Y.; Uozumi, Y. Adv. Synth. Catal. 2008, 350, 1771. (c) Nair, R. P.; Kim, T. H.; Frost, B. J. Organometallics 2009, 28, 4681. (d) Phillips, A. D.; Thommes, K.; Scopelliti, R.; Gandolfi, C.; Albrecht, M.; Severin, K.; Schreiber, D. F.; Dyson, P. J. Organometallics 2011, 30, 6119.
- (9) Jiang, H.; Chen, X.; Zhang, Y.; Yu, S. Adv. Synth. Catal. **2013**, 355, 809.
- (10) Meyer, A. U.; Jäger, S.; Prasad Hari, D.; König, B. Adv. Synth. Catal. **2015**, 357, 2050.
- (11) **1-[(2-Chloro-2-phenylethyl)sulfonyl]-4-nitrobenzene** (3aa) Typical Procedure
 - A 10 mL reaction vessel with a magnetic stirring bar was equipped with 4-nitrobenzenesulfonyl chloride (100 mg, 0.5 mmol), styrene (52 mg, 0.5 mmol), Ru(bpy)₃Cl₂·6H₂O (7.5 mg, 1 mol%), and MeCN (2 mL). The mixture was irradiated with a blue LED (5 W) and stirred at rt in an air atmosphere for 4 h. The distance of the reaction vial from the light source was about 2 cm. After the reaction, the solvent was removed under reduced pressure. Purification of the crude product was achieved by flash column chromatography using PE/EtOAc (6:1) as eluent; vield 132 mg (81%). ¹H NMR (400 MHz, CDCl₃): δ = 8.27–8.21 (m, 2 H), 7.92-7.86 (m, 2 H), 7.45 (m, 1 H), 7.35-7.27 (m, 2 H), 7.24 (d, J = 8.8 Hz, 1 H), 5.39 (t, J = 7.1 Hz, 1 H), 4.10–4.05 (m, 1 H), 4.00–3.94 (m, 1 H). ^{13}C NMR (101 MHz, CDCl_3): δ = 150.7, 144.8, 137.8, 129.7,129.5, 129.1, 127.2, 124.1, 64.2, 54.9. ESI-MS: $m/z = 326 [M+1]^+$. Anal. Calcd for $C_{14}H_{12}CINO_4S$: C, 51.62; H, 3.71; N, 4.30. Found: C, 51.75; H, 3.83; N, 4.17.
- (12) (E)-4-{2-[(4-Nitrophenyl)sulfonyl]vinyl}benzonitrile (4a) Typical Procedure
 - A 10 mL reaction vessel with a magnetic stirring bar was equipped with 4-nitrobenzenesulfonyl chloride (110 mg, 0.5 mmol), 4-vinylbenzonitrile (65 mg, 0.5 mmol), Ru(bpy)₃Cl₂-6H₂O (7. 5 mg, 1 mol%), and MeCN (2 mL). The mixture was irradiated with a blue LED (5 W) and stirred at rt in an air atmosphere for 4 h. The distance of the reaction vial from the light source was about 2 cm. After the reaction, the solvent was removed under reduced pressure. Purification of the crude product was achieved by flash column chromatography using PE/EtOAc (6:1) as eluent; yield 123 mg (78%). ¹H NMR (400 MHz, DMSO): δ = 8.50–8.45 (m, 2 H), 8.24–8.19 (m, 2 H), 7.96 (m, 5 H), 7.87 (s, 1 H). ¹³C NMR (101 MHz, DMSO): δ = 151.0, 146.0, 142.5, 137.1, 133.3, 130.7, 130.3, 129.5, 125.4, 118.8, 113.8. ESI-MS: *m/z* = 315 [M+1]⁺. Anal. Calcd for C₁₅H₁₀N₂O₄S: C, 57.32; H, 3.21; N, 8.91. Found: C, 57.14; H, 3.36; N, 8.83.
- (13) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. **2013**, 5485.