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Abstract: Six- and seven-membered benzo-fused
cyclic homoallylic alcohols can be readily synthe-
sized by a tandem chiral Brønsted acid-catalyzed
allyl (crotyl)boration/ring closing metathesis se-
quence performed under orthogonal relay catalysis
conditions. Excellent enantio- and diastereoselectiv-
ities are obtained in most of the cases. In addition,
the parent crotylboration/RCM process is also de-
scribed. The required substrates, ortho-vinylbenzal-
dehydes, are readily available in one step from com-
mercially available starting materials. Both catalysts
and reactants are also available from commercial
suppliers. The reaction shows broad functional
group compatibility and is also suitable for hetero-
aromatic substrates. Substitution at any position of
the aromatic ring is tolerated; however, substitution
at position 6 results in a substantial drop in enantio-
selectivity.

Keywords: alcohols; allylation; asymmetric cataly-
sis; fused-ring systems; relay catalysis

Tandem catalysis has attracted a great deal of interest
as it provides a quick access to molecular complexity
usually under extremely convenient reaction condi-
tions.[1] Among the several existing categories, relay
orthogonal catalysis, which involves the consecutive
action of two or more independent catalytic cycles,
deserves special attention for its experimental simplic-
ity.[2] These kinds of processes enable the combination
of organocatalysis and transition metal catalysis
giving rise to products beyond the scope of each
single catalytic systems.[3,4]

Several catalyst combinations are feasible, of which
chiral phosphoric acids[5,6] have shown broad compati-
bility with different transition metal catalysts.[7] Spe-
cifically, tandem catalysis using chiral phosphoric
acids and metathesis catalysts[8] is limited to two re-
ports on cross-metathesis/intramolecular conjugate
addition processes,[9] and a single report on a RCM/
isomerization/Pictet–Spengler cascade.[10] In most of
the examples of relay catalysis using a metal complex/
chiral phosphoric acid binary system, an intramolecu-
lar organocatalytic reaction takes places on the sub-
strate generated by the organometallic catalysis.[7,8]

We have envisioned that the careful choice of trans-
formations would permit us to reverse the order in
which both catalytic cycles take place and enable an
organocatalytic transformation to proceed in the pres-
ence of the metathesis catalyst. The organocatalytic
transformation required must leave a pendant olefin
in the intermediate for the subsequent RCM step that
would take place on the a,w-diene intermediate re-
leased by the first transformation. Asymmetric allyla-
tion[11] plays a pivotal role in organic synthesis and
fullfils the cited prerequisites. Moreover, it has never
been coupled in a relay process, as far as we know.
Among the existing methods for the asymmetric ally-
lation of carbonyl compounds, asymmetric allylbora-
tion[12] has attracted special attention as an invaluable
tool for the synthesis of homoallylic alcohols, versatile
building blocks for the synthesis of pharmaceuticals
and natural products.[12a] Recently, enantioselective
catalytic allylborations have emerged.[13] The chiral
phosphoric acid-catalyzed allylboration of aldehydes
reported by Antilla appears as an appropriate alterna-
tive for this purpose.[14]

Considering this background, we designed the fol-
lowing tandem transformation for the asymmetric
construction of cyclic homoallylic alcohols
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(Scheme 1). A suitably substituted aldehyde with
a remote olefin would react with the pinacol ester of
the allylboronic acid in the presence of a chiral phos-
phoric acid and an Ru-based olefin metathesis cata-
lyst. The chiral homoallylic alcohol obtained after the
first catalytic cycle would undergo RCM affording
cyclic benzo-fused homoallylic alcohols. Noteworthy,
the asymmetric synthesis of 1,2-dihydronaphthalen-1-
ol derivatives which are present in numerous pharma-
cologically relevant compounds such as the anti-tu-
moral podophilatoxine,[15] is rather underdeveloped,
the reported examples being limited to enzymatic/mi-
crobial processes[16] and desymmetrization reactions
which extremely narrow the substrate scope.[17]

Before essaying the relay catalysis conditions, the
sequential one-pot protocol was tested on ortho-vinyl-

benzaldehyde 1a as a model substrate (Table 1,
entry 1). Thus, under the reported optimized condi-
tions [(R)-TRIP-PA 5 mol%, toluene, �30 8C],[14] for-
mation of the desired homoallylic alcohol I is ob-
served by TLC analysis.[18] Then, Grubbs second gen-
eration catalyst (5 mol%) is added to the reaction
mixture at room temperature affording 1,2-dihydro-
naphthalen-1-ol 3a in good yield and excellent enan-
tioselectivity (Table 1, entry 1). In view of this promis-
ing result, the relay catalysis conditions were assayed.
Hence, treatment of a mixture of substrate 1a and al-
lylboronic acid pinacol ester 2 with (R)-TRIP-PA
(5 mol%) and second generation Grubbs catalyst
(5 mol%) in toluene at �30 8C gives rise to I, which
spontaneously undergoes RCM upon removing the
cooling bath, thus achieving 3a in good yield and ex-

Scheme 1. Tandem asymmetric allylboration/RCM.

Table 1. Optimization of the reaction conditions.

Entry Conditions Solvent Temperature [8C] 3a Yield [%][a] ee [%][b]

1 A toluene �30 then r.t. 78 98
2 B toluene �30 then r.t. 82 >99
3 B DCM �30 then r.t. 77 98
4 B toluene �78 then r.t. 85 98
5 B[c] toluene �30 then r.t. 80 75

[a] Isolated yields after flash chromatography.
[b] Determined by HPLC.
[c] Reaction performed with 1 mol% of (R)-TRIP-PA. Conditions A: 1) (R)-TRIP-PA (5 mol%), 1 h 2) [Ru-II] (5 mol%)

3 h. Conditions B: (R)-TRIP-PA/ACHTUNGTRENNUNG[Ru-II] (5 mol%), 4–5 h (total time for the two steps).
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Table 2. Scope and limitations.

[a] Total time for the two steps (for details, see Experimental Section).
[b] Isolated yields after flash chromatography.
[c] Determined by HPLC.
[d] Absolute configuration was determined to be R by comparison with the reported optical rotation value (see ref.[17a]).
[e] Absolute configuration determined by analysis of the 1H NMR spectra of the corresponding Mosher�s esters. Heteroaro-

matic and some aliphatic aldehydes have been reported to give the opposite configuration in (R)-TRIP-PA catalyzed al-
lylboration reactions (see ref.[14]).

[f] Determined by integration of the CF3 signals of the diastereoisomeric Mosher�s esters in their 19F NMR spectra.
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cellent enantioselectivity (Table 1, entry 2).[19] Compa-
rable results were obtained when DCM was used as
reaction solvent (Table 1, entry 3). Lowering the tem-
perature to �78 8C did not result in any noticeable
improvement (Table 1, entry 4). Therefore toluene at
�30 8C was chosen for the optimum reaction condi-
tions. Finally, the reaction was also tested with
1 mol% of the chiral Brønsted acid [(R)-TRIP-PA],
resulting in a remarkable drop in enantioselectivity
(Table 1, entry 5).

Once the optimized conditions (conditions B, tolu-
ene, �30 8C, then room temperature) had been estab-
lished, the scope and limitations of the new strategy
were studied (Table 2).

Substrates bearing electron-donating (Table 2, en-
tries 2 and 6), electron-withdrawing (Table 2, entries 3
and 4) or halogen substituents (Table 2, entries 5, 7-9)
at the 3, 4 or 5 positions readily undergo the tandem
allylboration/RCM process giving rise to the 1,2-dihy-
dro-1-naphthol derivatives 3a–i in good yields and ex-
cellent enantioselectivities. On the other hand, substi-
tution at the 6 position results in a substantial drop in
enantioselectivity (Table 2, entry 10).[20] It is worth
noting that substitution can be introduced in any posi-
tion of the aromatic ring, as exemplified by the fluo-
rine substituent (Table 2, entries 7–10). The 6-fluoro
derivative is the only one for which a drop in enantio-
selectivity is observed and steric factors may be in-
voked to explain this observation.[21] Remarkably, het-
eroarene derivatives can also participate in this
tandem transformation (Table 2, entry 11). In order to
extend the synthetic applicability of our methodology,
we then studied the synthesis of homologated 7-mem-
bered benzo-fused homoallylic alcohols using the
tandem allylboration/RCM process. Thus, when sub-
strates 1l–n were subjected to optimized conditions
homologated products 3l–n were obtained in good
yields and moderate enantioselectivities (Table 2, en-
tries 12–14).[20] Once again, electron-withdrawing
(Table 2, entry 13) and halogen (Table 2, entry 14)
substituents at the 4 position of the aromatic ring are
suitable for the transformation. Steric hindrance
seems to be the most plausible explanation for the ob-
served drop in enantioselectivity. The introduction of
a benzylic methylene renders not only longer size but
also increased flexibility to the chain in the ortho po-
sition to the reactive site (enantioselectivity is fixed
during the allylboration step). This bulkier substituent
may distort the highly ordered chair-like transition
state proposed for this transformation.[14,22] Finally, ali-
phatic aldehydes were also found to participate in the
process, albeit in moderate yields and enantioselectiv-
ities (Table 2, entries 15 and 16). It is noteworthy that
a linear aldehyde (4-pentenal 1p) was used giving rise
to a non-benzo-fused product.

As a further extension of this work, the correspond-
ing crotylboration/RCM was tested by using both

commercially available cis- and trans-crotylboronic
acid pinacol esters 4a and 4b, respectively (Scheme 2).

ortho-Vinylbenzaldehyde 1a readily undergoes
asymmetric crotylation under the usual conditions fol-
lowed by RCM to afford dihydronaphthol derivatives
bearing two consecutive stereocenters.[23] Substrate 1a
reacts with cis-crotylboronic acid pinacol ester 4a af-
fording the corresponding trans-5a in excellent yield
and enantioselectivity as a single diastereoisomer.[24]

On the other hand, reaction with the trans-crotylbor-
onic acid derivative 4b results in good but somewhat
lower chemical yield, enantioselectivity and diastereo-
meric ratio for the corresponding cis product 5b.[25] In-
terestingly, although the crotylboration step proceeds
similarly in both cases, intermediates IIa and IIb
(Figure 1) display different cyclization rates. Thus,
while IIa evolves to the final product in 4 h, after the
same reaction time IIb remains mostly unreactive and
an extra 5 mol% second generation Grubbs catalyst is
required to promote completion of the reaction. This
difference in reactivity can be explained by the con-
formational restrictions induced by the extra methyl
group (Figure 1).[26] For syn intermediate IIa, the pre-
ferred conformation should be B in which the two re-
action centers are placed gauche to each other; while
conformation A’, placing the reactive ends anti-peri-
planar to each other, is expected for anti intermediate
IIb (Figure 1).

In conclusion, a temperature-triggered tandem
Brønsted acid-catalyzed allyl ACHTUNGTRENNUNG(crotyl)boration/RCM
sequence has been developed. The new methodology
shows broad scope and allows for the synthesis of
both six- and seven-membered benzo- and heteroar-
ene-fused cyclic homoallylic alcohols, some of which
are otherwise inaccessible with the existing methodol-
ogies, in good to excellent enantioselectivities, in most
of the cases. To the best of our knowledge this report
represents the first example of a tandem asymmetric
allylation/RCM process. Moreover, no allylboration
process has ever been reported in a relay catalysis
process before. In addition, the methodology can be
extended to the analogous crotylation variant. Note-
worthy, compound 3a is a key intermediate in Laut-

Scheme 2. Tandem asymmetric crotylboration/RCM.
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ens� synthesis of the important antidepressant sertra-
line.[17] Further studies aimed at the expansion of the
scope of this transformation, with special attention to
linear substrates, are currently underway in our labo-
ratories.

Experimental Section

General Procedure for the Tandem Allylboration/
RCM

T a solution of aldehyde 1a–p in toluene (0.1M) (R)-TRIP-
PA (5 mol%) and Grubbs 2nd generation catalyst (5 mol%)
were added. The reaction mixture was then cooled to
�30 8C followed by the addition of the allylboronic acid pi-
nacol ester 2 (1.2 equiv.). After the allylboration step was
completed (1 h approx.), the reaction mixture was allowed
to reach room temperature. When the intermediate was con-
sumed (3 h approx., TLC), solvents were removed under re-
duced pressure to give crude product 3, which was purified
by flash chromatography using mixtures of hexanes and
ethyl acetate as eluent (for details, see the Supporting Infor-
mation). The enantiomeric excess of the product was deter-
mined by HPLC: Chiralcel OD-H (25 cm �0.46 cm column),
hexane:2-propanol 98:2 as eluent and flow= 1 mL min�1,
unless otherwise indicated.
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