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ABSTRACT: We report an operationally simple protocol for 
the catalytic α-deuteration of styrenes. This process pro-
ceeds via the base-catalyzed reversible addition of methanol 
to styrenes in DMSO-d6 solvent. The concentration of meth-
anol is shown to be critical for high yields and selectivities 
over multiple competing side reactions. The synthetic utility 
of α-deuterated styrenes for accessing deuterium-labeled 
chiral benzylic stereocenters is demonstrated. 

Site-specific incorporation of deuterium into small mole-
cules is frequently practiced to access isotopically labeled 
compounds with broad utility in chemical research.1 The 
increased strength of C–D bonds often imparts significant 
changes in reactivity compared to the C–H isotopologue.2 In 
the context of medicinal chemistry, deuterium incorporation 
is a commonly used strategy to alter the absorption, distribu-
tion, metabolism and excretion (ADME) properties of drug 
candidates.1,3 Deuterium-labeled compounds also serve as 
tracers and analytical standards to help elucidate the mecha-
nism and products of drug metabolism. In synthetic chemis-
try, deuterium-labeled compounds are widely used for kinet-
ic isotope effect measurements and to track reaction path-
ways.4 Due to this widespread value, catalytic methods for 
the direct conversion of C–H bonds into C–D bonds with 
controlled regioselectivity are in high demand.5 

There have recently been significant advances made in se-
lective hydrogen isotope exchange processes, especially at 
benzylic positions, adjacent to heteroatoms and on aromatic 
rings.5,6 Meanwhile, the deuteration of alkenes has also been 
recognized to have high value due to the synthetic and 
mechanistic utility of isotopically labeled olefins. Although a 
number of impressive metal-catalyzed deuteration methods 
have been reported for unactivated alkenes, extension to 
styrene derivatives is less developed.7 In addition to compet-
ing arene C–H activation processes, vinyl positional selectivi-
ty increases the challenges associated with selective styrene 
deuteration.8 Castarlenas and Oro have reported a Rh-
catalyzed method that addresses these issues to selectively 
prepare β,β-dideuterated styrenes.9 Currently, however, an 

α-selective styrene deuteration method remains undevel-
oped. 

A large and continuously increasing number of enantiose-
lective styrene functionalization reactions provide rapid ac-
cess to benzylic stereocenters found in pharmaceuticals.10 
Given that benzylic C–H bonds are prone to metabolic oxi-
dation11, improved access to α-deuterated styrenes could 
harness the power of asymmetric functionalization method-
ologies to prepare chiral C–D isotopologues. Moreover, sty-
rene-α-d1 is amongst the most studied deuterium-labeled 
alkenes and increased access to its derivatives could facilitate 
additional mechanistic studies.12 Commonly practiced routes 
to α-deuterated styrenes involve multistep procedures and 
use expensive deuteride reagents (e.g. LiAlD4) that limit 
functional group tolerance.13 An alternative reported method 
involves the selective hydroalumination of arylalkynes fol-
lowed by addition of D2O.14 We herein report a practical 
catalytic protocol for the α-selective deuteration of readily 
available styrene derivatives (Figure 1). 
 

 

Figure 1. Catalytic α-selective deuteration of styrenes. 

We recently reported that the organic superbase P4-t-Bu is 
a highly active catalyst for the anti-Markovnikov addition of 
alcohols to styrene derivatives, a reaction controlled by 
thermodynamic equilibria.15 Our subsequent mechanistic 
studies revealed that methanol (MeOH) addition in polar 
solvents leads to an unfavorable equilibrium constant for 
formation of the ether product. Using the addition of MeOH 
to 4-(trifluoromethyl)styrene (1) as a model reaction, we 
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 2 

measured equilibrium yields of β-phenethyl ether 2 of 21% 
(Keq = 0.20) in m-xylene and 9% (Keq = 0.07) in dimethyl-
sulfoxide (DMSO) at 90 °C (Scheme 1a). This led us to hy-
pothesize that if the forward reaction was run in DMSO-d6 
solvent, deuterium scrambling of MeOH to MeOD and re-
versible addition would result in α-selective styrene deuter-
ation.16 In an initial experiment, P4-t-Bu (10 mol%) catalyzed 
the α-selective deuteration of 1 in 88% yield with >99% deu-
terium incorporation (Scheme 1b). We found that KO-t-Bu 
had similar activity and this base was selected as the pre-
ferred catalyst for further studies.17   
Scheme 1. Mechanistic experiments leading to the dis-
covery of styrene α-deuteration. 

 

We propose the α-deuteration process proceeds by the 
pathway outlined in Scheme 2. First, KO-t-Bu catalyzes 
MeO–H/D exchange with DMSO-d6 and forms KOMe. 
KOMe then undergoes nucleophilic addition to the styrene 
with concomitant deuteration of the developing benzylic 
anion by MeOD, generating partially deuterated β-phenethyl 
ether 3. Finally, KOMe-catalyzed MeOH elimination from 3 
forms the α-deuterated styrene. Mechanistic studies (vide 
infra) support this sequence of events and the critical role of 
MeOH.18 We suspect that styrene deuteration is driven to 
completion by equilibration with excess DMSO-d6.19 
Scheme 2. Possible deuteration pathway and challenges. 

 

Although conceptually straightforward, the α-deuteration 
pathway must outcompete multiple facile base-promoted 
reactions to be generally selective and useful for a broad sty-
rene scope. For example, basic DMSO-d6 solutions are 
known to readily deuterate weakly acidic arene C–H 
bonds.20 A potentially larger challenge is avoiding base-
catalyzed styrene polymerization or possible SNAr side reac-
tions.21 A final requirement for high α-deuterated styrene 
yield is that the equilibrium of the alcohol addition reaction 
must disfavor the β-phenethyl ether. 
Table 1. Styrene scope for catalytic α-selective deuteration.a 

 
a Isolated yields of alkene, % deuteration determined by 1H 

and 2H NMR; reactions run between 50-130 °C at 0.5M of al-
kene in DMSO-d6, see Supporting Information. b 1H NMR yield, 
isolated yields for product 1-α-d (52%) and 15-α-d (61%) were 
decreased due to volatility. c NaH used instead of KO-t-Bu. 

We found generally applicable reaction conditions using 1 
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 3 

optimal reaction temperature and time were adjusted empir-
ically for each substrate.22 Typically, 1H NMR monitoring of 
two initial reaction attempts using 1 and 3 equiv of MeOH 
allowed the identification of suitable conditions to obtain a 
preparative-scale isolated yield; a description of this process 
is provided in the Supporting Information.23 Table 1 shows a 
diverse scope of styrene derivatives that undergo greater than 
95% α-deuteration with less than 5% total deuteration in 
other positions. Electron-poor to -neutral styrenes are suita-
ble substrates, whereas electron-rich variants are not electro-
philic enough to establish equilibrium under these condi-
tions.15 Halogenated styrenes, including ortho-substituted 
bromide (4), chloride (5) and iodide (6) variants undergo 
selective α-deuteration while avoiding SNAr reactions and 
aromatic deuteration. Ester (7), amide (8), (trifluorome-
thyl)thio (9) and stilbene (10) functional groups in the me-
ta- and para-positions are also tolerated. Styrenes consisting 
of extended aromatic systems and heteroarenes, both of 
which contain relatively acidic arene C–H bonds, undergo 
selective α-deuteration.24 This includes naphthalene (11 and 
12), anthracene (13), pyridine (14 and 15), isoquinoline 
(16) and quinoline (17) vinyl arenes. We found that β-
methylstyrene (18) undergoes α- and γ-deuteration, likely 
through a simple deprotonation process.20 Meanwhile, a β-
methoxystyrene (19) and a stilbene derivative (20) undergo 
selective deuteration. Additional substrates that were exam-
ined are provided in the Supporting Information. 

 
Figure 2. Reaction profile for the (a) deuteration rate and (b) 
mass balance for substrate 14 from Table 1 at 70 °C; values 
determined by 1H NMR spectroscopy. 

We next performed reaction profile analysis studies to in-
vestigate the critical role of MeOH in enabling selective α-
deuteration over competing side reactions. Using styrene 14, 
we tracked α-deuterium incorporation (Figure 2a) and sty-
rene mass balance (14 + 14-α-d, Figure 2b) using varied 
quantities of MeOH (0.25, 0.5 and 1.0 equiv). The deuter-
ation rate was notably faster when 0.25 equiv of MeOH was 
used, but the mass balance rapidly approached 0%.25 In con-
trast, 1 equiv of MeOH led to complete α-deuteration while 
preserving the mass balance above 90%. The major side 
product of these reactions is the corresponding polystyrene, 
which is the only observed product when KO-t-Bu is used 
without any alcohol additive.21 These studies suggest that a 
critical concentration of alcohol is required for rapid deuter-
ation of the developing benzylic anion by MeOD to outcom-
pete anionic styrene polymerization. 

Given the crucial role of the alcohol in this process, we rea-
soned that modifying its structure could overcome additional 
competing side reactions. Although ortho-halogenated sty-
renes undergo efficient α-deuteration (Table 1), we found 
that the more activated 2-chloro-3-vinylpyridine (21) pri-
marily underwent SNAr with only 21% α-deuteration of 21 
when MeOH was used (see Supporting Information). We 
reasoned that a larger, but still nucleophilic, alcohol could 
promote α-deuteration over aromatic substitution. We dis-
covered that use of 1-cyclopropylethanol (22) and 18-
crown-6 led to 96% α-deuteration in 63% yield (equation 
1).26 We expect this strategy could be utilized if other chal-
lenging substrates are encountered. 
 

 
 
In addition to their value for mechanistic experiments, an-

other utility of α-deuterated styrenes is their elaboration to 
deuterium-labeled chiral benzylic stereocenters of pharma-
ceutical relevance, positions frequently prone to metabolic 
oxidation.11 To highlight this potential, Figure 3 shows three 
deuterium-labeled chiral compounds, including the pharma-
ceutical cinacalcet (23), that were rapidly prepared from 
substrates in Table 1.10a,27 We expect this simple catalytic 
deuteration protocol will find use in these and related appli-
cations. 
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Figure 3. Preparation of deuterium-labeled chiral compounds 
from α-deuterated styrenes in Table 1. a Isolated yield of prod-
uct starting from α-deuterated styrene substrate; see Support-
ing Information for synthetic details. 
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KO-t-Bu at 130 °C according to the general procedure, while 5 mol% KO-t-
Bu required 24 h under identical conditions. 

(23) The reaction must be conducted under inert atmosphere according 
to the general procedure in the Supporting Information. Reactions run in 
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