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A Pd-catalyzed asymmetric allylic amination using aspartic acid derived P-chirogenic diaminophosphine oxides (DIAPHOXS) is described.
Asymmetric allylic amination of both linear and cyclic substrates proceeded at room temperature to give the chiral allylic amines in 72 —99%
ee.

Considerable effort has been directed toward the catalytictigated. Among them, a transition-metal-catalyzed asym-
asymmetric synthesis ofi-chiral amines because of the metric allylic amination reaction is a powerful method for
ubiquity of the chiral amine unit in biologically active the synthesis of chiral allylic aminésSeveral reactions of
compounds. Various approaches, involving asymmetric this type using Pd,Ir,® or other transition metal catalysts
hydrogenatior}, as well as asymmetric addition of carbon have been reported.

nucleophiles and nitrogen nucleophiléshave been inves-
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Table 1. Pd-Catalyzed Asymmetric Allylic Amination

X Pd catalyst (1-5 mol%)“ NR'R2
. - o .
R/\)\R prellgand1 (22 10 mo.I %), BSA (3 equiv) R e R
2a: R = Ph, X = OAc HNR 'R~ (3 equiv), solvent, rt 3a-h
2b: R = CH,CHoPh, X = OCOOMe
entry  substrate HNR!R? Pd catalyst (mol %)  solvent  preligand  product time(h) yield® (%) ee (%)
1 2a BnNH, 2 CH,Cl, la 3a 24 91 98 (R)
2 2a furfurylamine 2 CH,Cls la 3b 24 92 96
3 2a n-BuNH, 2 CH,Cl, la 3c 60 79 99
4 2a cyclohexylamine 2 CH,Cly la 3d 24 87 98
5 2a i-PrNH, 2 CH.Cl, la 3e 12 99 94
6 2a morpholine 2 CH.Cl, la 3f 7 92 95
7 2a morpholine 1 CH.Cly la 3f 12 90 97
8 2a N-methylaniline 2 CH,Cl, la 3g 24 nr?
9 2b BnNH, 5 CH3CN la 3h 23 63 35
10 2b BnNH, 5 CH3;CN 1b 3h 23 72 52
11 2b BnNH, 5 CH3;CN 1c 3h 23 75 48
12 2b BnNH; 5 CH3;CN 1d 3h 23 76 29

a (1713-C3HsPdCly was used? Isolated yield.c Determined by HPLC analysi€.No reaction.

We recently developed aspartic acid derived air- and
moisture-stable pentavalent phosphorus preligands:
chirogenic diaminophospine oxidéa—d (Figure 1)% These

X X

HN

1a: (S,Rp)-Ph-DIAPHOX
(X=H, R="Ph)

1b: (S,Rp)-1-Np-DIAPHOX
(X =H, R = 1-naphthyl)

N, H 1c:(SRp)-2-Np-DIAPHOX
W‘[ PR (X=H, R=2-naphthy)
y> N7 "0 1d: (S,Rp)-Ph-(p-MeO)DIAPHOX
{ (X = MeO, R = Ph)
R

Figure 1. Aspartic acid derived P-chirogenic diaminophosphine
oxides: §,R,)-DIAPHOXs.

preligands were activated in situ biO-bis(trimethylsilyl)-
acetamide (BSA) induced P(V) to P(lll) transformation to
afford trivalent phosphorus ligands and were successfully
applied to stereoselective construction of tertiary and qua-
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ternary stereocenters through Pd-catalyzed asymmetric allylic

P-alkylation. These results led us to expect that the present

catalyst system could be extended to carboitrogen bond-
forming reactions. Herein, we report Pd-catalyzed asym-
metric allylic amination reactions using P-chirogenic di-
aminophosphine oxidés.

We first examined asymmetric allylic amination of 1,3-
diphenylallyl acetat®a with benzylamine usingS,R,)-Ph-
DIAPHOX 1la. The reaction was performed under conditions
similar to the case of asymmetric allylic alkylation 2&
with dimethyl malonaté® and the best reactivity and
enantioselectivity were obtained when &H, was used as
the solvent (Table 1). Various amine nucleophiles were
applied to this type of asymmetric allylic amination. Using
1—-2 mol % of Pd catalyst and-24 mol % of1a, asymmetric
allylic amination of2a with both primary and secondary
amines proceeded at room temperature to give the corre-
sponding product8a—f in good yield with high stereo-
selectivity. No reaction, however, occurred when aniline
derivatives were utilized as the nucleophité3his catalyst
system was also applied to asymmetric allylic amination of
1,3-dialkyl-substituted allyl carbonatgb. The reaction
was performed usinda in CH;CN, affording the corre-
sponding product in moderate yield with low enantiomeric

(9) For representative examples of transition metal catalysis with
pentavalent phosphorus preligands, see: (a) Li, GAigew. Chem., Int.
Ed. 2001 40, 1513-1516. (b) Jiang, X.-B.; Minnaard, A. J.; Hessen, B.;
Feringa, B. L.; Duchateau, A. L. L.; Andrien, J. G. O.; Boogers, J. A. F.;
de Vries, J. GOrg. Lett.2003 5, 1503-1506. (c) Ackermann, L.; Born,

R. Angew. Chem., Int. EQ00S5 44, 2444-2447. (d) Bigeault, J.; Giordano,
L.; Buono, G.Angew. Chem., Int. EQ005 44, 4753-4757 and references
therein.

(10) When benzylamine and morpholine were treated with 1 equiv of
BSA in CDCE, N-trimethylsilylation was observed in each caseiyNMR.

This fact indicates thal-trimethylsilylated amines would be the actual
nucleophiles in this reaction system. In contrast, no trimethylsilylation
occurred in the case df-methylaniline. These results appear to suggest
that N-trimethylsilylation might be important for the reaction.
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Table 2. Effect of Solvent in Pd-Catalyzed Asymmetric Allylic
Amination of 5a with Benzylamine

Ph [13-C4H5PdCI], (1 mol%) Ph
X 1a (4 mol%), BSA (3 equiv) NHBn
benzylamine (3 equiv)
solvent, rt
4: X = OAc 6a
5a:X = OCOOCHjg
entry substrate solvent time (h) yield® (%) eeb (%)

1 4 CH,Cls 24 nre
2 5a CH.Cl, 48 75 93
3 5a THF 48 33 92
4 5a DMF 48 71 92
5 5a toluene 48 39 90
6 5a CH3;CN 17 93 96

alsolated yield.? Determined by HPLC analysi§No reaction.

excess! There was a slight improvement in the enantio-
selectivity when §,R)-1-Np-DIAPHOX 1b was used as the
preligand.

of cyclic substrates. Asymmetric allylic amination of 2-sub-
stituted cycloalkenyl alcohol derivatives affords versatile
adducts for the synthesis of nitrogen-containing natural
products. Despite its usefulness, the success of this type of
reaction is limited? Therefore, we examined asymmetric
allylic amination of 2-phenylcyclohexenyl alcohol derivatives
with benzylamine (Table 2). Although no reaction occurred
when 2-phenylcyclohexenyl acetate was used as the
substrate, allylic amination reaction of 2-phenylcyclohexenyl
carbonatéba proceeded in the presence of 2 mol % of the
catalyst at room temperature, affording the corresponding
product6a in 75% vyield and 93% ee. Examination of the
solvent effect revealed that the reaction medium dramatically
affected reactivity rather than enantioselectivity, and the best
results were obtained when @EN was used as the solvéfit.

The scope and limitation of different substrates were
further examined under optimized conditions (Table 3).
When 2 mol % of Pd catalyst and 4 mol % Td were used,
asymmetric allylic amination of 2-phenyl cyclohexenyl
carbonates using primary and secondary amines proceeded
at room temperature to provide the corresponding products
in good vyield with high enantioselectivity (987% ee).

The satisfactory results in the conventional reaction systemOther cyclic substrates with a five-membered ring and a

led us to turn our attention to asymmetric allylic amination

seven-membered ring were also applicable to this reaction,

Table 3. Pd-Catalyzed Asymmetric Allylic Amination of 2-Substituted Cycloalkenyl Carbonates

R Pd catalyst (2 mol%)¢ R

OMe

1a (4 mol%), BSA (3 equiv)

oYY
)n O

HNR'R2 (3 equiv), CH5CN, rt

NR'R?2
)n

5a-m 6a-q
entry R n substrate HNR'R2 product time yield? ee’
1 Ph 2 5a BnNH, 6a 17 h 93% 96% ee
2 Ph 2 5a n-BuNH» 6b 50 h 85% 95% ee
O
3 Ph 2 5a )]\/NHQ 6c 48 h 88% 96% ee (S)
EtO

4 Ph 2 5a morpholine 6d 7h 90% 97% ee
Ph 1 5b BnNH, 6e 8h 99% 93% ee
6 Ph 1 5b morpholine 6f 12h 75% 99% ee
7d Ph 3 5c BnNH, 6g 3h 84% 83% ee
8 2-naphthyl 2 5d BnNH, 6h 18 h 90% 94% ee
9 4-CF3-CgHy 2 5e BnNH, 6i 5h 95% 93% ee
10 4-F-CgHy 2 5f BnNH, 6j 26 h 81% 91% ee
11 3-F-CgHa 2 59 BnNH, 6k 7h 95% 93% ee
12 2-F-CgHy 2 5h BnNH, 6l 7h 83% 98% ee
134 4-MeO-CgH, 2 5i BnNH, 6m 24 h 92% 91% ee
144 3-MeO-CgHy 2 5j BnNH, 6n 4h 93% 93% ee
154 TBSO™ ™™ 2 5k BnNH, 60 4h 95% 72% ee
16 Ph/\/ 2 51 BnNH, 6p 24 h 55% (36%)¢ 94% ee
17 Ph—— 2 5m BnNH, 6q 24 h 75% 80% ee

a (373-CaHsPdCly was used® Isolated yield . Determined by HPLC analysi45 mol % of Pd catalyst and 10 mol % @& were used® The number in

parentheses indicates recovered starting material.
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affording the chiral allylic amines with good to excellent || NN

enantioselectivity (8399% ee). Furthermore, asymmetric Scheme 1. Catalytic Asymmetric Synthesis 07
allylic amination of cyclohexenyl carbonates with various o

. .. . . Pd catalyst (5 mol%) \
substituents at the 2-position were examined using benzyl- o) 1a (10 mol%) 0
amine as the nucleophile. Aryl groups with an electron- O OEt o O
withdrawing functionality, as well as an electron-donating HaoN OEt (3 equiv) R OFt
functionality, were tolerant to this reaction, giving the OCOOMe - N\)\

. - . L BSA (3 equiv) OEt

products with high enantioselectivity (9D8% ee). Sub- CHgCN, 1t, 48 h
strates with alkyl, alkenyl, and alkynyl substituents were also
applicable to this reaction, and the corresponding products 8 TsCl, Py ( 10 (R = H): 98%, 97% ee
were obtained in moderate to good enantiomeric excess (72 M40 9% \ (5.7 (R=Ts)
94% ee)t*

Thus, the present catalytic asymmetric system had broad
generality for both electrophiles and amine nucleophiles,
affording a-chiral allylic amines in up to 99% ee for both
linear and cyclic substraté®To demonstrate the synthetic
utility, we applied this catalyst system to the catalytic
asymmetric synthesis 08)-7, which is the key intermediate
for Mori’s total synthesis of crinine-type alkaloids (Scheme
1).12¢ Using 5 mol % of Pd catalyst and 10 mol % bé,
asymmetric allylic amination o8 with amine9 proceeded
at room temperature, affording the chiral allylic amib@
in 98% vyield and 97% ee, which could be converted to the
key intermediate §)-7.16

In conclusion, we succeeded in Pd-catalyzed asymmetric
allylic amination using aspartic acid derived P-chirogenic
diaminophosphine oxides, which afforded the chiral allylic
amines in up to 99% ee. The broad substrate generality of
the developed system resulted in a highly enantioselective
synthesis of the key intermediate for crinine-type alkaloid
synthesis.
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