Orthoamide und Iminiumsalze, LXX [1]. Zur Fixierung von Kohlendioxid mit organischen Basen (Teil 1) – Reaktionen von Diaminen mit Kohlendioxid

Orthoamides and Iminium Salts, LXX [1]. Capturing of Carbon Dioxide with Organic Bases (Part 1) – Reactions of Diamines with Carbon Dioxide

Ioannis Tiritiris^{a,b} und Willi Kantlehner^{a,b}

^a Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstraße 1, 73430 Aalen, Germany

^b Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Reprint requests to Prof. Dr. Willi Kantlehner. Fax: +49(0)7361/5762250. E-mail: willi.kantlehner@htw-aalen.de

Z. Naturforsch. 2011, 66b, 164-176; received October 10, 2010

The alkylammonium alkylcarbamates 2, 4a,b, 14 were prepared from the amines 1, 3a,b, 13 and CO_2 . The crystal structures of 2 and 4b show carbamate anions, which are connected by N-H···O hydrogen bonds to form centrosymmetric dimers. The zwitterionic carbamates 7a,b, 8a,b and 11 are formed in the reactions of the diamines 6a,b and 10 with CO_2 . The crystal structures of 7a and 8b show strong intermolecular hydrogen bonds involving water molecules, the ammonium and the carbamate groups. In these compounds the molecules are interconnected in an extended two- or three-dimensional network. Due to the absence of crystal water molecules, the structure of 11 contains intermolecular hydrogen bonds involving the ammonium and the carbamate group in double-stranded chains. The diamines 17a,b react with CO_2 to give the zwitterionic carbamates 18a,b.

Key words: Carbon Dioxide, Diaminoalkanes, Zwitterionic Carbamates, Crystal Structures

Einleitung

Der Verlauf der Reaktion von CO₂ mit Ammoniak ist schon lange bekannt. In Abwesenheit von Wasser reagiert Ammoniakgas mit CO2 zu Ammoniumcarbaminat [2], das sich mit Wasser reversibel zu Ammoniumcarbonat umsetzen lässt [3]. In Analogie zur Umsetzung mit Ammoniak entstehen aus sekundären und primären Aminen und CO2 in wasserfreien organischen Lösungsmitteln Dialkylammonium-N,N-dialkylcarbaminate bzw. Alkylammonium-N-alkylcarbaminate [4]. Tertiäre Amine reagieren hingegen mit CO2 nicht. Von Aresta und Quaranta wurden in Tetrahydrofuran einige Alkylammonium-N-alkylcarbaminate hergestellt und isoliert. Für derartige Umsetzungen sollen auch andere Lösungsmittel wie Benzol, Toluol, Diethylether, Methylenchlorid und Acetonitril geeignet sein [5]. IR-spektroskopisch wurde gezeigt, dass diese Salze in Lösung mit CO₂ und dem primären Amin im Gleichgewicht existieren. Sekundäre Amine wie Dibutylamin, Diisopropylamin oder Dicyclohexylamin reagieren in Substanz mit CO₂ bei Temperaturen zwischen 10 und 25 °C zu den entsprechenden Dialkylammonium-N,N-dialkylcarbaminaten. Im Unterschied dazu setzt sich Dibenzylamin in Substanz mit CO₂ bei *ca.* 20 °C zur N,N-Dibenzylcarbaminsäure um [6]. Wird die Reaktion in Heptan bei *ca.* 9 °C durchgeführt, so erhält man die Carbaminsäure in kristalliner Form. Die Kristallstrukturanalyse bestätigte, dass so tatsächlich die erste stabile Carbaminsäure hergestellt werden konnte. Die Carbaminsäuremoleküle sind wie Carbonsäuren durch Wasserstoffbrücken zu Dimeren assoziiert, was auch mit den Resultaten theoretischer Berechnungen in Einklang ist [7].

Um herauszufinden, welche Produkte bei der Umsetzung von Diaminen mit CO₂ entstehen, wurden von uns nun sowohl unsymmetrisch substituierte Diamine (*N*-Methyl- α , ω -diaminoalkane, *N*,*N*,*N'*-Trimethylethylendiamin und *N*,*N*-Dimethylaminoalkylamine) als auch symmetrisch substituierte Diamine (α , ω -Diaminoalkane und *N*,*N'*-Dimethylethylendiamin) mit CO₂ umgesetzt, wobei darauf verzichtet wurde, Feuch-

0932–0776 / 11 / 0200–0164 \$ 06.00 © 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

	2	4b	7a	8b	11
Empirische Formel	C ₁₅ H ₁₈ N ₂ O ₂	C ₁₁ H ₂₈ N ₄ O ₂	$C_4H_{12}N_2O_3$	C ₁₀ H ₂₆ N ₄ O ₅	$C_5H_{12}N_2O_2$
Molare Masse	258.31	248.37	136.16	282.35	132.17
Temperatur [K]	293(2)	173(2)	100(2)	293(2)	293(2)
Kristallgröße [mm ³]	$0.15 \times 0.09 \times 0.07$	$0.25 \times 0.21 \times 0.18$	$0.17 \times 0.13 \times 0.10$	$0.25 \times 0.20 \times 0.20$	$0.18 \times 0.10 \times 0.08$
Kristallsystem	triklin	triklin	orthorhombisch	monoklin	monoklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	P2 ₁ 2 ₁ 2 ₁ (Nr. 19)	C2/c (Nr.15)	$P2_1/n$ (Nr. 14)
a [Å]	5.8051(3)	6.3546(2)	6.3610(3)	19.8864(9)	6.6821(3)
<i>b</i> [Å]	9.4469(5)	8.8071(4)	8.1712(5)	6.1244(2)	7.1569(4)
<i>c</i> [Å]	25.2290(10)	14.9450(8)	13.1265(8)	12.9098(5)	14.5510(8)
α [°]	79.301(7)	107.012(3)	90	90	90
β [°]	89.010(6)	93.233(2)	90	109.970(2)	92.028(3)
γ [°]	89.649(7)	96.857(2)	90	90	90
Volumen [Å ³]	1359.30(12)	790.40(6)	682.28(7)	1477.77(10)	695.44(6)
Ζ	4	2	4	4	4
$\rho_{\rm ber} [m g cm^{-3}]$	1.26	1.04	1.33	1.27	1.26
$\mu [{\rm mm}^{-1}]$	0.1	0.1	0.1	0.1	0.1
F(000) [e]	552	276	296	616	288
θ -Bereich [°]	2.19-28.28	2.43 - 27.92	2.94 - 27.98	5.06 - 28.16	1.17 - 27.81
Index-Bereich [hkl]	$\pm 7; \pm 12; \pm 33$	$\pm 8; \pm 11; \pm 19$	$\pm 8; \pm 10; \pm 17$	$\pm 26; \pm 8; \pm 16$	$\pm 8; \pm 9; \pm 19$
Gemessene Reflexe	7525	7810	11565	3177	2881
Symmetrieunabhängige Reflexe	6697	3776	1639	1776	1633
$R_{\rm int} / R_{\sigma}$	0.0723 / 0.0865	0.0745 / 0.0882	0.0821 / 0.0405	0.0159 / 0.0243	0.0890 / 0.0766
Reflexe mit $[I \ge 2\sigma(I)]$	3527	3180	1519	1480	1235
Verfeinerte Parameter	344	162	130	139	92
R_1 / wR_2 für Reflexe mit $[I \ge 2\sigma(I)]$	0.0605 / 0.0776	0.0615 / 0.0867	0.0364 / 0.0903	0.0366 / 0.0985	0.0376 / 0.0729
R_1 / wR_2 (alle Reflexe)	0.0981 / 0.1089	0.0903 / 0.1032	0.0410 / 0.0935	0.0462 / 0.1069	0.0632 / 0.0797
$\operatorname{GooF}(F^2)$	1.038	1.021	1.044	1.020	1.035
$\Delta \rho_{\text{fin}} (\text{max} / \text{min}) [e \text{\AA}^{-3}]$	0.24 / -0.24	0.50 / -0.50	0.24 / -0.18	0.20/-0.17	0.12 / -0.13

Tabelle 1. Kristallographische Daten für 2, 4b, 7a, 8b und 11.

tigkeit auszuschließen. Die hierbei erhaltenen Feststoffe wurden hauptsächlich mittels NMR-Spektroskopie in Lösung und durch Röntgenbeugung an Einkristallen charakterisiert.

Ergebnisse und Diskussion

Umsetzungen von CO₂ mit Benzylamin und symmetrisch bzw. unsymmetrisch substituierten Diaminen

Aus Benzylamin (1) wird bei der Umsetzung mit CO_2 in Diethylether das nicht hygroskopische Carbaminat 2 in Form eines farblosen Feststoffes erhalten (Schema 1), das schon seit längerer Zeit bekannt ist [5].

Beim Umkristallisieren der Substanz aus Acetonitril/Aceton (1:1), konnten von 2 wenige Einkristalle gewonnen werden, die für eine Röntgenstrukturanalyse geeignet waren.

Das Salz **2** kristallisiert triklin in der Raumgruppe $P\overline{1}$ (Tabelle 1). Abbildung 1 (oben) zeigt einen Blick auf die Kristallstruktur der Verbindung ent-

$$2 \operatorname{PhCH}_{2}-\operatorname{NH}_{2} \xrightarrow{\operatorname{CO}_{2}} \operatorname{PhCH}_{2}-\operatorname{NH}_{3} \operatorname{PhCH}_{2}-\operatorname{NHCOO}$$

$$1 \qquad 2$$
Schema 1.

Abb. 1. Blick auf die Kristallstruktur von Benzylammonium-*N*-benzyl-carbaminat (**2**) entlang der kristallographischen *a*-Achse (oben) sowie auf die zwei röntgenographisch unterschiedlichen *N*-Benzyl-carbaminat- und Benzylammonium-Ionen (unten).

Tabelle 2. Ausgewählte Bindungslängen [Å] und -winkel [°] für **2**.

N1-C1	1.475(5)	N3-C16		1.495(5)
C1-C2	1.511(7)	C16-C17		1.526(6)
C8-O1	1.261(3)	C23-O3		1.264(3)
C8–O2	1.268(3)	C23-O4		1.272(3)
N2-C8	1.356(5)	N4-C23		1.354(5)
N2-C9	1.444(5)	N4-C24		1.448(5)
C9-C10	1.509(6)	C24–C25		1.500(7)
Wasserstoffbrück	en ^a			
$D-H\cdots A$	d(D-H)	$d(\mathbf{H} \cdots \mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	$\measuredangle (D-H\cdots A)$
$N1-H1A'\cdots O2$	0.89	1.74	2.627(5)	174.6
$N1-H1B'\cdots O1$	0.89	2.04	2.925(5)	172.0
$N1-H1C'\cdots O1$	0.89	1.97	2.925(5)	160.0
$N2-H2'\cdots O2$	0.86	2.24	3.036(5)	154.9
$N3-H3B'\cdots O4$	0.89	1.74	2.625(5)	172.7
N3–H3C′ · · · O3	0.89	2.03	2.915(5)	170.8
$N3-H3D'\cdots O3$	0.89	1.97	2.915(5)	156.9
$N4-H4'\cdots O4$	0.86	2.21	3.032(5)	159.2

^a D = H-Brückendonor, A = H-Brückenakzeptor.

Abb. 2. Das Wasserstoffbrücken-System in der Kristallstruktur von Benzylammonium-*N*-benzyl-carbaminat (**2**). Alle N– H···O-Wasserstoffbrücken sind gestrichelt gezeichnet.

lang der kristallographischen *a*-Achse. In der Elementarzelle befinden sich zwei kristallographisch unterschiedliche Benzylammonium-Ionen und Benzylcarbaminat-Ionen (Abb. 1, unten). Hierbei bilden zwei Carbaminat-Ionen unter Ausbildung von N-H···O-Wasserstoffbrücken ein Dimer aus (Abb. 2). Die C-O-Bindungslängen in den Carbaminat-Einheiten betragen 1.261(3) und 1.272(3) Å, die C-N-Abstände 1.354(5) und 1.356(5) Å (Tabelle 2). Sie sind daher gut vergleichbar mit denen, die bei der Kristallstrukturanalyse von 4-Methylbenzylammonium-4-methylbenzyl-carbaminat ermittelt wurden (d(C-O) = 1.255 - 1.255)1.268 Å; d(C-N) = 1.336 Å [8]). Die Anionen-Dimere sind mit insgesamt sechs Benzylammonium-Ionen über starke N-H···O-Wasserstoffbrücken verknüpft, mit H····O-Abständen zwischen 1.74 und 2.04 Å (Abb. 2 und Tabelle 2). Die bindenden Wechselwirkungen innerhalb der Anionen-Dimere sind etwas schwächer als jene zu den Ammonium-Einheiten, die H····O-Abstände betragen dort lediglich 2.21 bzw. 2.24 Å (Tabelle 2). Jedes Benzylammonium-Ion ist von drei Carbaminat-Ionen umgeben, jedes Wasserstoffatom der H₃N⁺-Gruppe bildet eine N-H····O-Wasserstoffbrücke zu einem weiteren Anion aus (Abb. 2).

Die unsymmetrischen Diamine 2-Dimethylaminoethylamin (3a) und 3-Dimethylaminopropylamin (3b) verhalten sich bei der Reaktion mit CO₂ als primäre Amine. Es bilden sich hierbei keine zwitterionischen Verbindungen, vielmehr werden die Alkylammonium-N-alkylcarbaminate 4a,b erhalten (Schema 2). Neben 4a,b entstehen bei der Umsetzung von 3a,b mit CO₂ in Diethylether laut ¹H- und ¹³C-NMR-Spekten noch die Hydrogencarbonate 5a,b der N,N-Dimethylaminoalkylamine (ca. 5%), wenn bei der Umsetzung Wasserspuren zugegen sind. Das feste farblose, amorphe Salz 4a konnte bislang nicht kristallin erhalten werden, eine Röntgenstrukturanalyse steht deshalb noch aus. Dagegen erhält man 4b in Form stark hygroskopischer Einkristalle beim Umkristallisieren des Reaktionsprodukts aus Acetonitril/Diethylether.

4b kristallisiert triklin in der Raumgruppe $P\overline{1}$ (Tabelle 1). Abbildung 3 (oben) zeigt eine Ansicht

Schema 2.

Abb. 3. Die Kristallstruktur von (3-Dimethylaminopropyl)ammonium-*N*-(3-dimethylaminopropyl)-carbaminat (**4b**) mit Blick entlang der *a*-Achse (oben) und Ansicht auf die Struktur des (3-Dimethylaminopropyl)carbaminat- und (3-Dimethylaminopropyl)ammonium-Ions (unten).

auf die Kristallstruktur entlang der a-Achse. Aufgrund von N-H···O-Wasserstoffbrücken entstehen auch hier Carbaminat-Dimere (Abb. 4, oben). Die C-O-Bindungslängen der Anionen betragen 1.265(4) bzw. 1.269(3) Å, der C-N-Abstand 1.360(3) Å (Tabelle 3). Die Abstände sind somit sehr gut vergleichbar mit denjenigen aus der Kristallstrukturanalyse von 2. Auch wird das Anionen-Dimer in 4b von sechs (3-Dimethylaminopropyl)ammonium-Ionen umgeben (Abb. 4, oben). Die Wasserstoffatome der H₃N⁺-Gruppe bilden starke N-H···O-Wasserstoffbrücken zu den Anionen aus, mit H····O-Abständen zwischen 1.89 und 1.93 Å (Tabelle 3). Die N-H···O-Wasserstoffbrücken sind auch hier etwas stärker als die Donor-Akzeptor-Wechselwirkungen innerhalb des Anionen-Dimers, wo nur H···O-Abstände von 2.09 Å gefunden

Tabelle 3. Ausgewählte Bindungslängen [Å] und -winkel [°]

für 4b .					
C101	1.265(4)	Ν	1.457(3)		
C1-O2	1.269(3)	Ν	1.445(6)		
N1-C1	1.360(3)	(C7–C8		
N1-C2	1.452(3)	0	1.518(6)		
C2–C3	1.522(3)	Ν	1.451(3)		
C3-C4	1.536(3)	Ν	1.468(3)		
N2-C4	1.469(3)	Ν	1.447(6)		
N2-C5	1.470(3)				
Wasserstoffbrück	en ^a				
$D - H \cdots A$	d(D-H)	$d(\mathbf{H} \cdots \mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	$\measuredangle (D-H\cdots A)$	
$N1-H1A\cdots O1$	0.86	2.09	2.926(4)	163.1	
$N3-H3A'\cdots O2$	0.89	1.93	2.782(4)	160.2	
$N3-H3B' \cdots O2$	0.89	1.89	2.752(4)	162.1	
$N3-H3C'\cdots O1$	0.89	1.91	2.787(4)	169.9	

^a D = H-Brückendonor, A = H-Brückenakzeptor.

Abb. 4. Die Umgebung eines Dimers aus N-(3-Dimethylaminopropyl)carbaminat-Anionen (oben) sowie die zweier (3-Dimethylaminopropyl)ammonium-Ionen (unten) in der Kristallstruktur von **4b**. Alle N-H···O-Wasserstoffbrücken sind gestrichelt gezeichnet.

werden (Tabelle 3). Jedes Kation wird von drei Carbaminat-Ionen umgeben, welche über Wasserstoffbrücken zusätzlich mit einem nachbarständigen (3-Dimethylaminopropyl)ammonium-Ion verknüpft sind (Abb. 4, unten). Die Carbaminat-Ionen in den Salzen 2 und 4b bilden somit als gemeinsames Strukturmotiv Dimere aus, die durch $N-H\cdots O$ -Wasser-

$$\begin{array}{c} \bigoplus \\ \mathsf{MeHN}-(\mathsf{CH}_2)_n-\mathsf{NH}_2 \xrightarrow{\mathsf{CO}_2} \mathsf{MeH}_2\mathsf{N}-(\mathsf{CH}_2)_n-\mathsf{NHCOO} \\ \mathbf{6a,b} & \mathbf{7a,b} & \mathbf{8a,b} \end{array} \xrightarrow{(\mathsf{CH}_2)_n-\mathsf{NMeCOO}}$$

$$\begin{array}{c|cccc} \underline{\mathbf{6}}, \overline{\mathbf{7}}, \overline{\mathbf{8}} \, \underline{\mathbf{9}} & | & \mathbf{a} & \mathbf{b} \\ \hline n & | & 2 & 3 \end{array} \qquad \begin{array}{c} \bigoplus & \bigoplus & \bigoplus \\ \mathrm{H}_3 \mathrm{N}_{-} (\mathrm{CH}_2)_n - \mathrm{NH}_2 \mathrm{Me} & 2 \ \mathrm{HCO}_3 \\ \mathbf{9a}, \mathbf{b} \end{array}$$

stoffbrücken zusammengehalten werden. Ferner liegen starke Wasserstoffbrücken zwischen den Ammonium-Wasserstoffatomen und den Sauerstoffatomen der dimeren Anionen vor, so dass insgesamt ein zweidimensionales Netzwerk entsteht.

Falls die Umsetzung von 2-Methylaminoethylamin (6a) und 3-Methylaminopropylamin (6b) mit CO₂ zu zwitterionischen Addukten führt, so ist mit dem Auftreten von jeweils zwei Produkten zu rechnen, da die Diamine sowohl eine primäre als auch eine sekundäre Aminogruppe enthalten, die beide zur Adduktbildung mit CO₂ befähigt sind (Schema 3). In der Tat entstehen bei der Einwirkung von CO₂ auf die Amine 6a,b Gemische der zwitterionischen Verbindungen 7a,b und 8a,b. Anders als bei der Umsetzung der Diamine 3a,b, erfolgt mit den Diaminen 6a,b die Bildung der Carbaminat- und Ammoniumfunktion intramolekular. Aus den ¹H- und ¹³C-NMR-Spektren ergibt sich, dass in den Produktgemischen aus 7a,b und 8a,b jeweils stark überwiegend die Verbindungen **7a**,**b** vorhanden sind (*ca*. 70–80%), und 8a,b als Nebenprodukte (Gehalte ca. 18-25%) anzusehen sind. Offenbar findet der Angriff des CO₂ bevorzugt an der primären Aminogruppe der Diamine 6a,b statt. Wie die NMR-Spektren des Reaktionsgemischs zeigen, sind noch weitere Produkte vorhanden, bei denen es sich um die Dihydrogencarbonate der N-Methylaminoalkylamine 9a,b (ca. 2-5%) handeln dürfte, die wohl entstanden sind, weil bei der Reaktionsdurchführung Wasser nicht vollständig ausgeschlossen wurde. Die Zuordnung der NMR-Signale zur jeweiligen Spezies erfolgte hier mittels der ¹H/¹³C-HMBC- bzw. -HSQC-NMR-Spektren.

Die festen, amorphen Produktgemische wurden aus nicht getrocknetem Acetonitril kristallin erhalten. Aus den Kristallgemischen **7a**, **8a** und **7b**, **8b** konnten einige farblose Einkristalle der Verbindungen **7a** und **8b** ausgelesen werden, die für Röntgenstrukturanalysen tauglich waren.

Die zwitterionische Verbindung **7a** kristallisiert als Monohydrat orthorhombisch in der Raumgruppe $P2_12_12_1$ (Tabelle 1). Abbildung 5 (oben) zeigt einen Blick auf die Kristallstruktur entlang

Tabelle 4. Ausgewählte Bindungslängen [Å] und -winkel [°] für **7a**.

C101	1.267(2)		C2-C3	1.514(2)
C1-O2	1.266(2)		N1-C3	1.492(2)
N2C1	1.359(2)		N1-C4	1.481(2)
N2-C2	1.448(2)			
Wasserstoffbrücke	en ^a			
$D-H\cdots A$	d(D-H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	$\measuredangle (D – H \cdots A)$
$N1-H1'\cdots O1$	0.87	1.88	2.714(2)	161.1
$N1-H1'' \cdots O2$	0.91	1.77	2.677(2)	170.7
$N2-H2'\cdots O3w$	0.83	2.23	2.991(2)	151.7
O3w−H3wA···O2	2 0.83	1.92	2.766(2)	165.0
O3w−H3wB····O1	0.87	1.98	2.807(2)	174.4

^a D = H-Brückendonor, A = H-Brückenakzeptor.

Abb. 5. Die Kristallstruktur von N-(2-Methylammonioethyl)carbaminat (**7a**) mit Blick entlang der *a*-Achse (oben) sowie die Struktur des zwitterionischen Carbaminat-Moleküls (unten).

der *a*-Achse. Die C–O-Bindungslängen betragen 1.266(2) und 1.267(2) Å, der C–N-Abstand beträgt 1.359(2) Å (Tabelle 4). Eine Stabilisierung der Kristallstruktur findet hier hauptsächlich über N–H···O- und O–H···O-Wasserstoffbrücken statt. Die Sauerstoffatome der COO[–]-Gruppe bilden starke Brückenbindungen zu Wasserstoffatomen der

168

Schema 3.

Abb. 7. Die Kristallstruktur von N-(3-Ammoniopropyl)-N-methyl-carbaminat (**8b**) mit Blick entlang der *b*-Achse (oben) und die Struktur des zwitterionischen Carbaminat-Moleküls (unten).

terminalen (CH₃)H₂N⁺-Gruppen zweier weiterer Zwitterionen sowie zu den Wasserstoffatomen zweier Wassermoleküle (d(N–H···O) = 1.77–1.88 Å und d(O–H···O) = 1.92–1.98 Å; Tabelle 4). Umgekehrt bilden beide Wasserstoffatome der (CH₃)H₂N⁺-Gruppe Wasserstoffbrücken zu Sauerstoffatomen von COO⁻-Gruppen zweier weiterer Carbaminat-Moleküle (Abb. 6). Etwas schwächere N–H···O-Wasserstoffbrücken zu dem Kristallwassermolekül werden ebenfalls beobachtet, die H···O-Abstände betragen hierbei 2.23 Å. Es bildet sich somit ein dreidimensionales Wasserstoffbrücken-Netzwerk aus. Abb. 6. Ein Auschnitt aus dem dreidimensionalen Wasserstoffbrücken-Netzwerk in der Kristallstruktur von N-(2-Methylammonioethyl)carbaminat (**7a**). Alle N–H···O- und O–H···O-Wasserstoffbrücken sind gestrichelt gezeichnet.

Tabelle 5. Ausgewählte Bindungslängen [Å] und -winkel [°] für **8b**

141 00.					
C1-01	1.266(1)		N1-C3	1.453(1)	
C1-O2	1.265(1)		C3–C4	1.524(2)	
N1-C1	1.369(1)		C4–C5	1.508(2)	
N1-C2	1.442(2)		N2-C5	1.482(2)	
Wasserstoffbrücken ^a					
D−H···A	d(D-H)	$d(\mathbf{H} \cdots \mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	$\measuredangle (D-H\cdots A)$	
$N2-H2A'\cdots O1$	0.94	1.85	2.775(2)	167.5	
$N2-H2B'\cdots O1$	0.92	1.89	2.810(2)	175.7	
$N2-H2C'\cdots O2$	0.97	1.74	2.705(2)	170.5	
O3w−H3w···O2	0.98	1.96	2.922(2)	166.9	

^a D = H-Brückendonor, A = H-Brückenakzeptor.

Verbindung 8b kristallisiert als Semihydrat monoklin in der Raumgruppe C2/c (Tabelle 1). Abbildung 7 (oben) zeigt einen Blick auf die Kristallstruktur entlang der kristallographischen b-Achse. Die C-O-Bindungslängen betragen hier 1.265(1) und 1.266(1) Å, der C-N-Abstand 1.369(1) Å (Tabelle 5). Auch diese Abstände sind gut vergleichbar mit denjenigen, die bei der Kristallstrukturanalyse von 7a gefunden wurden. Eine Stabilisierung der Kristallstruktur findet hier ebenfalls über starke N-H···O- und O-H···O-Wasserstoffbrücken statt. Die Sauerstoffatome der COO--Gruppe bilden starke Brückenbindungen zu Wasserstoffatomen von terminalen H₃N⁺-Gruppen zweier weiterer Zwitterionen ($d(N-H\cdots O) =$ 1.85-1.89 Å) sowie zu einem Wassermolekül (d(O- $H \cdots O$ = 1.96 Å; Tabelle 5). Weiterhin bildet jedes Wasserstoffatom einer H3N+-Gruppe Wasserstoffbrücken zu Sauerstoffatomen von COO--Gruppen dreier weiterer Carbaminat-Moleküle (Abb. 8). Die H····O-Abstände befinden sich dabei im Bereich zwischen 1.74 und 1.89 Å (Tabelle 5). Anders als bei der Verbindung 7a bildet sich jedoch ein zweidimensionales Wasserstoffbrücken-Netzwerk aus. Die Strukturbestimmungen der Produkte, die bei der Umsetzungen der Diamine 6a,b mit CO₂ entstehen, weisen nach, dass - neben der bevorzugten Adduktbildung an der primären Aminogruppe - konkurrierend auch eine Adduktbildung an der sekundären Aminogruppe erfolgen kann.

 $\begin{array}{c} \text{MeHN-(CH_2)}_n - \text{NHMe} \xrightarrow{\text{CO}_2} \\ 10 \\ & \bigoplus \\ \text{MeH}_2\text{N-(CH}_2)_n - \text{NMeCOO} \\ 11 \\ n = 2 \\ \text{MeH}_2\text{N-(CH}_2)_n - \text{NH}_2\text{Me } 2 \text{ HCO}_3 \\ 12 \\ \end{array}$

Schema 4.

Abb. 9. Die Kristallstruktur von *N*-Methyl-*N*-(2-methylammonioethyl)carbaminat (11) mit Blick entlang der *a*-Achse (oben) und die Struktur des zwitterionischen Carbaminat-Moleküls (unten).

Bei der Umsetzung des symmetrischen N, N'-Dimethylethylendiamins (10) mit CO₂ entsteht als

Abb. 8. Die Umgebung eines zwitterionischen Carbaminat-Moleküls in der Kristallstruktur von N-(3-Ammoniopropyl)-N-methyl-carbaminat (**8b**). Alle N-H···O- und O-H···O-Wasserstoffbrücken sind gestrichelt gezeichnet.

Tabelle 6. Ausgewählte Bindungslängen [Å] und -winkel [°] für 11.

IGI II.					
C101	1.273(5)		1.455(5)		
C1-O2	1.267(5)	C3C4		1.512(6)	
N1-C1	1.365(5)	N2-C4		1.488(5)	
N1-C2	1.446(6)	N2-C5		1.488(6)	
Wasserstoffbrücken ^a					
$D - H \cdots A$	d(D-H)	$d(\mathbf{H} \cdots \mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	$\measuredangle (D-H\cdots A)$	
$N2-H2A'\cdots O1$	0.87	1.81	2.664(5)	168.4	
$N2-H2B'\cdots O2$	0.88	1.86	2.722(5)	165.7	
$N2-H2A'\cdots O2$	0.87	2.52	3.078(5)	122.3	

^a D = H-Brückendonor, A = H-Brückenakzeptor.

Hauptprodukt ebenfalls das zwitterionische Carbaminat **11** (Schema 4). Das NMR-Spektrum des Reaktionsgemischs zeigt, dass neben **11** noch eine weitere Verbindung vorhanden ist (*ca.* 10%), bei der es sich um das Dihydrogencarbonat **12** handeln dürfte. Das amorphe Reaktionsgemisch kann aus nicht getrocknetem Acetonitril umkristallisiert werden. Aus dem Kristallgemisch ließen sich farblose, lattenförmige Einkristalle von **11** auswählen, die für eine Röntgenstrukturanalyse geeignet waren.

Das Carbaminat 11 kristallisiert solvatfrei in der monoklinen Raumgruppe $P2_1/n$ (Tabelle 1). Abbildung 9 (oben) zeigt die Kristallstruktur entlang der a-Achse. Die C-O-Bindungslängen betragen 1.267(5) und 1.273(5) Å, der C-N-Abstand beträgt 1.365(5) Å (Tabelle 6). Eine Stabilisierung der Kristallstruktur findet hauptsächlich über N-H···O-Wasserstoffbrücken statt. Die Sauerstoffatome der COO--Gruppe bilden starke Brückenbindungen zu Wasserstoffatomen der terminalen (CH3)H2N+-Gruppen zweier weiterer Carbaminat-Moleküle ($d(N-H\cdots O) = 1.81$, 1.86 und 2.52 Å; Tabelle 6). Weiterhin bildet jedes Ammonium-Wasserstoffatom der (CH₃)H₂N⁺-Gruppe Wasserstoffbrücken zu COO⁻-Gruppen zweier nachbarständiger Carbaminat-Moleküle (Abb. 10). Im Unterschied zu 7a und 8b bildet sich in diesem Fall nur ein eindimensionaler Doppelstrang aus.

Abb. 10. Ein Auschnitt aus dem Wasserstoffbrücken-Netzwerk in der Kristallstruktur von *N*-Methyl-*N*-(2-methylammonioethyl)-carbaminat (11). Alle N-H···O-Wasserstoffbrücken sind gestrichelt gezeichnet.

 $\begin{array}{c} \bigoplus \\ 2 \text{ Me}_2 \text{N}_{-}(\text{CH}_2)_2 - \text{NHMe} \xrightarrow{\text{CO}_2/\text{Et}_2\text{O}} \text{Me}_2 \text{N}_{-}(\text{CH}_2)_2 - \text{NH}_2 \text{Me} \\ 13 & 14 \end{array} \xrightarrow{} \begin{array}{c} \bigoplus \\ \text{Me}_2 \text{N}_{-}(\text{CH}_2)_2 - \text{NMeCOO} \\ 14 & \text{Me}_2 \text{N}_{-}(\text{CH}_2)_2 - \text{NMeCOO} \\ \end{array}$

Auch die bereits beschriebene Umsetzung von N,N'-Dimethyl-propylendiamin mit CO₂ führt zu einem zu **11** analogen zwitterionischen Carbaminat. Die dabei erhaltene Verbindung kristallisiert als Monohydrat und wurde mittels Röntgenbeugung charakterisiert [9]. Es ist somit eindeutig bewiesen, dass nicht nur primäre, sondern auch sekundäre Aminogruppen von α, ω -Diaminen von CO₂ unter Carbaminatbildung angegriffen werden können, wobei zwitterionische Addukte resultieren.

Bei der Umsetzung von N, N, N'-Trimethylethylendiamin (13) mit CO₂ in Diethylether entsteht als Hauptprodukt (2-Dimethylaminoethyl)ammonium-N-(2-dimethylaminoethyl)-N-methyl-carbaminat (14) (Schema 5). Das Rohprodukt enthält zusätzlich geringe Mengen einer anderen Verbindung, bei der es sich um N, N, N'-Trimethylethylendiamin-hydrogencarbonat (15) (*ca.* 8 %) handeln dürfte, was auf die Gegenwart von Wasser im Reaktionsgemisch hinweist.

Kürzlich wurde die Umsetzung von N, N, N'-Trimethylpropylendiamin mit CO₂ ohne Lösungsmittel beschrieben [9] (Schema 6). Die Autoren ordneten dem flüssigen Reaktionsprodukt die zwitterionische Struktur **16** zu.

Es ist bislang nicht gelungen, mit Hilfe eines geeigneten Lösungsmittel das feste, farblose, stark hygroskopische, amorphe Reaktionsgemisch aus 14 und 15 in eine kristalline Form zu überführen, die eine Kristallstrukturanalyse ermöglicht hätte. Die Konstitutionszuordnung des Ammonium-carbaminats 14 und

$$\begin{array}{c} \bigoplus \\ \text{Me}_2\text{N}-(\text{CH}_2)_3-\text{NHMe} \xrightarrow{\text{CO}_2} \text{Me}_2\text{HN}-(\text{CH}_2)_3-\text{NMeCOO} \\ \textbf{16} \\ \text{Schema 6.} \end{array}$$

des Hydrogencarbonats **15** basiert ausschließlich auf den ¹H- und ¹³C-NMR-Spektren. Die Bildung einer zwitterionischen Verbindung analog **16** schließen wir jedoch aus, zumal die Umsetzung der zu **13** analogen Diamine **3a,b** mit CO₂ eindeutig nicht zu zwitterionischen Verbindungen, sondern zu Ammonium-carbaminaten führt. Offenbar wird der Reaktionsverlauf von der Basizität der im Diamin vorhandenen Aminogruppen gesteuert.

Bei der Einwirkung von CO₂ auf 1,2-Diaminoethan (**17a**) und 1,3-Diaminopropan (**17b**) erhält man als Hauptprodukte die zwitterionischen Carbaminate **18a,b**. Die Addukte entstehen als farblose, nicht kristalline Feststoffe, die in siedendem Acetonitril unlöslich sind, sich aber sehr gut in Wasser und mäßig in Methanol bzw. Ethanol lösen. Als Nebenprodukte entstehen die Salze **19a,b**, deren Konstitution sich aus den ¹H- und ¹³C-NMR-Spektren ergibt. Da bei der Versuchsdurchführung Wasserspuren zugegen waren, bildeten sich außerdem die Hydrogencarbonate **20a,b** (*ca.* 10%) (Schema 7).

Bereits im Jahr 1900 wurde in einem Patent die Umsetzung von **17a** mit CO₂ beschrieben [10]. Dem Reaktionsprodukt wurde schließlich 1948 die zwitterionische Struktur **18a** zugeschrieben [11]. Es wurde auch in Betracht gezogen, dass bei der Reaktion ein Gemisch aus dem zwitterionischen Produkt und einem Ethylendiammonium-ethylendicarbaminat **19a** entstehen könnte [12]. Bei der Einwirkung von Diazomethan auf das Umsetzungsprodukt, das sich aus CO₂ und Ethylendiamin in Methanol bildet, wurden N-(2-aminoethyl)carbaminsäuremethylester und N-[(2-Methoxycarbonylamino)ethyl]carbaminsäuremethylester im Verhältnis 1 : 1 erhalten. Dar-

aus wurde der Schluss gezogen, dass in Lösung Diamine wie z. B. **17a** mit CO_2 zu 1:1 Gemischen aus den zwitterionischen Salzen wie **18a** und Dicarbaminaten wie **19a** reagieren [13]. Aufgrund von Neutralisationsexperimenten mit dem Reaktionsgemisch kamen andere Autoren zu dem Schluss, dass das Produktverhältnis nicht 1:1 ist, vielmehr sollen in dem Reaktionsgemisch *ca.* 80 % der zwitterionischen Spezies **18a** und 20 % des Dicarbaminats **19a** vorliegen [14].

Bei der Umsetzung von CO₂ mit **17a** in Methanol kristallisiert 18a in Form von Nadeln aus, wogegen das Produkt aus 95 %-igem Ethanol sowohl in Form von Platten, als auch in Form von Nadeln kristallisiert. Um zu klären, ob der unterschiedliche Habitus der Kristalle darauf zurückgeht, dass das zwitterionische Salz 18a anders kristallisiert als das Dicarbaminat 19a, wurden Kristallstrukturanalysen durchgeführt. Die haben gezeigt, dass beide Kristallarten ausschließlich aus dem zwitterionischen Salz 18a bestehen, das in Folge unterschiedlicher Konformationen (Verdrillung der Kette) in Form polymorpher Kristalle auftreten kann [15]. ¹H-NMR-spektroskopische Untersuchungen haben gezeigt, dass wässrige Lösungen der Produkte, die sich bei der Umsetzung von CO₂ mit 17a in Ethanol bilden, Gemische aus 18a bzw. 19a darstellen, wobei das Mengenverhältnis der beiden Verbindungen vom Herstellungsverfahren abhängt und zwischen 85:15 und 42:58 schwankt. Prinzipiell ähnliche Resultate wurden bei der Umsetzung von CS2 mit 17a erhalten. Interessanterweise liegt auch die Kristallstrukturanalyse eines Umsetzungsprodukts von CS₂ mit 17a vor, die belegt, dass es sich hierbei um das zwitterionische Addukt N-(2-Ammonioethyl)-dithiocarbaminat handelt [16].

Aus **17b** und CO_2 bildet sich das zwitterionische Salz **18b** als Hauptprodukt. Ähnlich wie bei der Umsetzung von CO_2 mit **17a** entsteht hierbei ein farbloser, amorpher Feststoff. Aus den ¹H- und ¹³C-NMR-Spektren des Rohprodukts ergibt sich, dass noch zwei weitere Salze in stark unterschiedlichen Mengen vorhanden sind. Bei dem in größerer Menge vorhanden Salz dürfte es sich um das Hydrogencarbonat-Salz 20b handeln, bei dem in nur sehr geringen Mengen gebildeten Salz um das Dicarbaminat-Salz 19b. Das Reaktionsgemisch ist unlöslich in siedendem Acetonitril, jedoch sehr gut löslich in Wasser und nur mäßig löslich in Methanol. Versuche, eine der Komponenten in Form von Einkristallen zu erhalten, verliefen bislang erfolglos. Kristallisationsversuche in Methanol, Ethanol oder Wasser/Methanol und Wasser/Ethanol führten stets zu hellgelben, zähflüssigen Massen, die auch nach längerer Zeit nicht auskristallisierten. Wie von anderen Autoren gezeigt wurde, reagiert 2-Hydroxy-1,3-propandiamin mit CO₂ ebenfalls zu einem zwitterionischen Addukt, das mit 1 mol Wasser kristallisiert. Die Röntgenstrukturanalyse zeigt, dass die Zwitterionen im Festzustand ein komplexes Netzwerk bilden, das durch Wasserstoffbrücken zusammengehalten wird [17].

In einer neueren Arbeit [18] wurden die Basizitäten von Diaminen in der Gasphase, in Acetonitril und in Tetrahydrofuran bestimmt und mit pk_a -Werten in Wasser verglichen. Im Vergleich zu den Gasphasenbasizitäten sind die pka-Differenzen der Diamine in THF geschrumpft (Δ_{max} pk_a ~ 2.2). In Acetonitril unterscheiden sich die Basizitäten der Amine noch weniger voneinander ($\Delta_{\rm max}$ p $k_{\rm a} \sim 1.2$). Protonierte α, ω -Diamine liegen in der Gasphase wegen der intramolekularen Wasserstoffbrücken zwischen der Aminound der Ammoniumgruppe cyclisch vor [19, 20]. Aus dem Vergleich der pka-Werte der 1,3-Propandiamine mit den pk_a -Werten von entsprechenden Monoaminen (z. B. N, N-Dimethylpropylamin: pka (MeCN): 18.3) folgt, dass in Acetonitril in allen protonierten 1,3-Diaminopropanen intramolekulare Wasserstoffbrücken vorliegen, die als Ursache der Basizitätssteigerung angesehen werden. In Ammoniumsalzen ist die positive Ladung weitgehend lokalisiert. Infolgedessen hängt die Stabilität der Kationen stark davon ab, wie gut sie solvatisiert sind. Die Solvationsmöglichkeit wird aber maßgeblich vom Alkylierungsgrad am Stickstoff geprägt. Infolgedessen beobachtet man innerhalb der Reihe der 1,3-Diaminopropane keinen monotonen Anstieg der Basizität mit wachsendem Alkylierungsgrad an den Stickstoffatomen, obwohl die Methylgruppen durch ihren induktiven Effekt zu einer Erhöhung der Elektronendichte an diesen Atomen führen. Dieser Effekt wird durch die aus sterischen Gründen verringerte Solvationsmöglichkeit der Kationen kompensiert oder gar überkompensiert, die durch Protonierung der Amine entstehen. So ist 1,3-Diaminopropan eine schwächere Base als 3-Methylaminopropylamin, und N,N'-Dimethyl-1,3-diaminopropan ist noch stärker basisch als 3-Methylaminopropylamin. Dagegen ist 1,3-Diaminopropan eine stärkere Base als N, N, N', N'-Tetramethyl-1,3-diaminopropan. Offenbar wird der basizitätssteigernde Effekt der vier Methylgruppen durch den Effekt der nun eingeschränkten Solvatation des N, N-Dimethyl-N'-(3-dimethylaminopropyl)ammonium-Ions überspielt. Wahrscheinlich verdanken die zwitterionischen Addukte, die aus 1,2-Diaminoethan, N-Methyl-ethylendiamin, N, N'-Dimethyl-ethylendiamin, 1,3-Diaminopropan und N-Methyl-1,3-diaminopropan und CO2 entstehen, ihre Stabilität diesem Solvatationseffekt. Infolge des "hohen" Methylierungsgrads dürften zwitterionische Addukte aus N, N-Dimethyl-1,3-propandiamin bzw. N, N, N'-Trimethyl-1,3-propandiamin und CO₂ nur schwach solvatisierbar sein, wogegen bei den entsprechenden N,N-Dimethylaminoalkylammonium-N-dimethylaminoalkylcarbaminaten sowohl die Anionen als auch die Ammonium-Ionen gut solvatisierbar sind, weswegen die Bildung der zwitterionischen Addukte unterbleibt.

Experimenteller Teil

Synthesen und Charakterisierung

Alle hier verwendeten Amine wurden von der Fa. Acros Organics erworben und ohne weitere Reinigung umgesetzt.

Allgemeine Vorschrift zur Darstellung der Carbaminate

Das betreffende Amin bzw. Diamin (0.2 mol) wird in 50 mL Diethylether gelöst. Unter Rühren wird bei Raumtemperatur überschüssiges CO₂-Gas bis zur Sättigung der Lösung eingeleitet. Die ausgefallenen amorphen, farblosen Feststoffe werden abfiltriert, mit Diethylether nachgewaschen und im Stickstoffstrom getrocknet.

Benzylammonium-N-benzyl-carbaminat (2)

Der farblose Feststoff wird in wenig Acetonitril gelöst. Nach der Zugabe von Aceton wird auf *ca*. 0 °C abgekühlt. Die gebildeten farblosen Kristalle werden abgetrennt. Ausbeute: 23.5 g (91%); farbloser Feststoff; Schmp. 110– 112 °C. – ¹H NMR (500 MHz, D₂O): δ = 4.09 (s, 2 H, CH₂), 4.23 (s, 2 H, CH₂), 7.23 – 7.50 (m, 10 H, C₆H₅). – ¹³C NMR (125 MHz, D₂O): δ = 43.3 (CH₂), 44.7 (CH₂), 126.6–126.8 (C₆H₅), 128.6–128.8 (C₆H₅), 129.1 (C₆H₅), 134.1 (C₆H₅), 140.7 (C₆H₅), 164.6 (COO⁻). – C₁₅H₁₈N₂O₂ (258.32): ber. C 69.74, H 7.02, N 10.84; gef. C 69.59, H 7.03, N 10.85.

Gemisch aus (2-Dimethylaminoethyl)ammonium-N-(2-dimethylaminoethyl)-carbaminat (**4a**) und (2-Dimethylaminoethyl)ammonium-hydrogencarbonat (**5a**)

Der entstehende amorphe farblose Feststoff wird abgetrennt, mit Ether gewaschen und mehrere Stunden im Stickstoffstrom getrocknet. Ausbeute: 20.0 g (91%); farbloser Feststoff; Schmp. 68 – 72 °C. 4a: ¹H NMR (500 MHz, D₂O): δ = 2.49 (s, 6 H, NCH₃), 2.84–2.87 (m, 2 H, CH₂), 2.90 (s, 6 H, NCH₃), 3.08–3.11 (m, 2 H, CH₂), 3.21–3.23 (m, 2 H, CH₂), 3.39–3.41 (m, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 36.1 (CH₂), 36.4 (CH₂), 42.9 (NCH₃), 43.5 (NCH₃), 56.2 (CH₂), 58.3 (CH₂), 164.4 (COO⁻). 5a: ¹H NMR (500 MHz, D₂O): δ = 2.49 (s, 6 H, NCH₃), 2.84–2.87 (m, 2 H, CH₂), 3.08–3.11 (m, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 36.1 (CH₂), 43.5 (NCH₃), 56.2 (CH₂), 58.3 (CH₂), 164.4 (COO⁻). 5a: ¹H NMR (500 MHz, D₂O): δ = 3.61 (CH₂), 43.5 (NCH₃), 56.2 (CH₂), 3.08–3.11 (m, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 36.1 (CH₂), 43.5 (NCH₃), 56.2 (CH₂), 160.3 (HCO₃⁻). – C₉H₂₄N₄O₂ (220.31): ber. C 49.06, H 10.98, N 25.43; gef. C 48.35, H 10.84, N 25.02.

Gemisch aus (3-Dimethylaminopropyl)ammonium-N-(3dimethylaminopropyl)-carbaminat (**4b**) und (3-Dimethylaminopropyl)ammonium-hydrogencarbonat (**5b**)

Der farblose Feststoff wird in der minimalen Menge Acetonitril gelöst, mit Diethylether versetzt und bei ca. 0 °C zur Kristallisation gebracht. Ausbeute: 23.6 g (95 %); farbloser Feststoff; Schmp. 84 - 86 °C. **4b**: ¹H NMR (500 MHz, D₂O): $\delta = 1.70 - 1.79$ (m, 4 H, CH₂), 2.31 (s, 6 H, NCH₃), 2.47 (s, 6 H, NCH₃), 2.50-2.53 (m, 2 H, CH₂), 2.67-2.70 (m, 2 H, CH₂), 2.80-2.83 (m, 2 H, CH₂), 3.05-3.08 (m, 2 H, CH₂). -¹³C NMR (125 MHz, D_2O): $\delta = 26.4$ (CH₂), 26.5 (CH₂), 38.2 (CH₂), 38.5 (CH₂), 43.2 (NCH₃), 43.5 (NCH₃), 55.6 (CH₂), 55.7 (CH₂), 164.7 (COO⁻). **5b**: ¹H NMR (500 MHz, D₂O): $\delta = 1.70 - 1.79$ (m, 4 H, CH₂), 2.47 (s, 6 H, NCH₃), 2.50-2.53 (m, 2 H, CH₂), 2.67-2.70 (m, 2 H, CH₂). -¹³C NMR (125 MHz, D_2O): $\delta = 26.5$ (CH₂), 38.5 (CH₂), 43.2 (NCH₃), 55.7 (CH₂), 160.4 (HCO₃⁻). - C₁₁H₂₈N₄O₂ (248.37): ber. C 53.19, H 11.36, N 22.56; gef. C 52.10, H 11.35, N 22.34.

Gemisch aus N-(2-Methylammonioethyl)-carbaminat (7a), N-(2-Ammonioethyl)-N-methyl-carbaminat (8a) und 2-Ammonioethyl-ammonium-dihydrogencarbonat (9a) aus 2-Methylaminoethylamin (6a) und CO₂

Ausbeute: 21.7 g (92%); farbloser Feststoff; Schmp. 112–115 °C. **7a**: ¹H NMR (500 MHz, D₂O): δ = 2.73 (s, 3 H, NCH₃), 3.12–3.14 (t, *J* = 5.8 Hz, 2 H, CH₂), 3.34– 3.36 (t, *J* = 5.4 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 32.8 (NCH₃), 37.5 (CH₂), 49.8 (CH₂), 164.5 (COO⁻). **8a**: ¹H NMR (500 MHz, D₂O): δ = 2.86 (s, 3 H, NCH₃), 3.15–3.17 (t, *J* = 5.9 Hz, 2 H, CH₂), 3.51–3.53 (t, *J* = 5.8 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 34.6 (NCH₃), 38.4 (CH₂), 46.4 (CH₂), 164.4 (COO⁻). **9a**: ¹H NMR (500 MHz, D₂O): δ = 2.64 (s, 3 H, NCH₃), 3.01–3.05 (m, 4 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 33.2 (NCH₃), 37.1 (CH₂), 49.5 (CH₂), 160.5 (HCO₃⁻). – C₄H₁₀N₂O₂ (118.13): ber. C 40.67, H 8.53, N 23.71; gef. C 40.08, H 8.17, N 23.05.

Gemisch aus N-(3-Methylammoniopropyl)-carbaminat (7b), N-(3-Ammoniopropyl)-N-methyl-carbaminat (8b) und 3-Methylammoniopropyl-ammonium-dihydrogencarbonat (9b) aus 3-Methylaminopropylamin (6b) und CO₂

Der gebildete Feststoff wird in Acetonitril und wenig Wasser gelöst, mit Diethylether versetzt und bei ca. 0 °C zur Kristallisation gebracht. Ausbeute: 24.8 g (94 %); farbloser Feststoff; Schmp. 125-130 °C. 7b: ¹H NMR (500 MHz, D₂O): $\delta = 1.80 - 1.86$ (m, 2 H, CH₂), 2.70 (s, 3 H, NCH₃), 3.03 - 3.06 (t, J = 7.3 Hz, 2 H, CH₂), 3.12 - 3.15 (t, J =7.4 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 26.7 (CH₂), 32.6 (NCH₃), 37.5 (-CH₂), 46.5 (-CH₂), 164.8 (COO^{-}) . **8b**: ¹H NMR (500 MHz, D₂O): $\delta = 1.86 - 1.89$ (m, 2 H, CH₂), 2.82 (s, 3 H, NCH₃), 3.00-3.03 (t, J = 7.6 Hz, 2 H, CH₂), 3.35 - 3.37 (t, J = 7.4 Hz, 2 H, CH₂). $- {}^{13}$ C NMR $(125 \text{ MHz}, D_2 \text{O}): \delta = 24.8 (\text{CH}_2), 33.8 (\text{NCH}_3), 36.5 (\text{CH}_2),$ 44.7 (CH₂), 164.4 (COO⁻). **9b**: ¹H NMR (500 MHz, D₂O): $\delta = 1.89 - 1.92$ (m, 2 H, CH₂), 2.62 (s, 3 H, NCH₃), 2.89 -2.92 (t, J = 7.3 Hz, 2 H, CH₂), 2.96 – 2.98 (t, J = 7.7 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 26.4 (CH₂), 33.1 (NCH₃), 37.4 (CH₂), 46.8 (CH₂), 160.8 (HCO₃⁻). -C₅H₁₂N₂O₂ (132.16): ber. C 45.44, H 9.15, N 21.20; gef. C 45.65, H 9.23, N 21.33.

Gemisch aus N-Methyl-N-(2-methylammonioethyl)carbaminat (11) und N, N'-Dimethyl-ethylendiammoniumhydrogencarbonat (12) aus N,N'-Dimethylethylendiamin (10) und CO_2

Ausbeute: 23.7 g (90%); farbloser Feststoff; Schmp. 150–155 °C. **11**: ¹H NMR (500 MHz, D₂O): δ = 2.73 (s, 3 H, NCH₃), 2.85 (s, 3 H, NCH₃), 3.18–3.21 (t, *J* = 5.6 Hz, 2 H, CH₂), 3.53–3.56 (t, *J* = 5.6 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 32.9 (NCH₃), 34.6 (NCH₃), 45.4 (CH₂), 48.1 (CH₂), 164.3 (COO⁻). **12**: ¹H NMR (500 MHz, D₂O): δ = 2.56 (s, 6 H, NCH₃), 3.04 (s, 4 H, CH₂). $-{}^{13}$ C NMR (125 MHz, D₂O): $\delta = 33.5$ (NCH₃), 46.6 (CH₂), 160.6 (HCO₃⁻). $-C_5$ H₁₂N₂O₂ (132.16): ber. C 45.44, H 9.15, N 21.20; gef. C 45.10, H 8.94, N 21.08.

Gemisch aus Methyl-(2-dimethylaminoethyl)ammonium-N-methyl-N-(2-dimethylamino-ethyl)-carbaminat (14) und Methyl-(2-dimethylaminoethyl)ammonium-hydrogencarbonat (15) aus N,N,N'-Trimethylethylendiamin (13) und CO_2

Ausbeute: 22.1 g (89 %); farbloser Feststoff; Schmp. 60– 70 °C (Zers.). **14**: ¹H NMR (500 MHz, D₂O): δ = 2.37 (s, 6 H, NCH₃), 2.67 (s, 3 H, NCH₃), 2.77–2.79 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.85 (s, 3 H, NCH₃), 2.88 (s, 6 H, NCH₃), 3.11– 3.13 (t, *J* = 7.3 Hz, 2 H, CH₂), 3.24–3.27 (t, *J* = 5.9 Hz, 2 H, CH₂), 3.57–3.60 (t, *J* = 5.9 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 33.1 (NCH₃), 34.5 (NCH₃), 43.1 (NCH₃), 43.8 (NCH₃), 44.3 (CH₂), 45.7 (CH₂), 54.0 (CH₂), 56.6 (CH₂), 164.2 (COO⁻). **15**: ¹H NMR (500 MHz, D₂O): δ = 2.37 (s, 6 H, NCH₃), 2.67 (s, 3 H, NCH₃), 2.77–2.79 (t, *J* = 7.2 Hz, 2 H, CH₂), 3.11–3.13 (t, *J* = 7.3 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 33.1 (NCH₃), 43.8 (NCH₃), 45.7 (CH₂), 54.0 (CH₂), 160.5 (HCO₃⁻). – C₁₁H₂₈N₄O₂ (248.37): ber. C 53.19, H 11.36, N 22.56; gef. C 53.29, H 11.56, N 22.77.

Gemisch aus N-(2-Ammonioethyl)carbaminat (**18a**), Ethylendiammonium-N-(2-carboxylatoaminoethyl)carbaminat (**19a**) und Ethylendiammonium-dihydrogencarbonat (**20a**) aus 1,2-Diaminoethan (**17a**) und CO₂

Ausbeute: 18.4 g (88%); farbloser Feststoff; Schmp. 167–170 °C. **18a**: ¹H NMR (500 MHz, D₂O): δ = 3.03– 3.05 (t, *J* = 5.9 Hz, 2 H, CH₂), 3.29–3.31 (t, *J* = 5.6 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 40.7 (CH₂), 39.5 (CH₂), 163.7 (COO⁻). **19a**: ¹H NMR (500 MHz, D₂O): δ = 2.97 (s, 4 H, CH₂), 3.08 (s, 4 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 38.3 (CH₂), 38.4 (CH₂), 163.9 (COO⁻). **20a**: ¹H NMR (500 MHz, D₂O): δ = 2.97 (s, 4 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 38.3 (CH₂), 160.7 (HCO₃⁻). – C₃H₈N₂O₂ (104.06): ber. C 34.61, H 7.75, N 26.91; gef. C 33.88, H 7.75, N 26.63.

Gemisch aus N-(3-Ammoniopropyl)carbaminat (18b) Propylendiammonium-N-(3-carboxy-latoaminopropyl)carbaminat (19b) und Propylendiammonium-dihydrogencarbonat (20b) aus 1,3-Diaminopropan (17b) und CO₂

Ausbeute: 24.4 g (91%); farbloser Feststoff; Schmp. 182–186 °C. **18b**: ¹H NMR (500 MHz, D₂O): δ = 1.79– 1.87 (m, 2 H, CH₂), 3.00–3.03 (t, *J* = 7.2 Hz, 2 H, CH₂), 3.13–3.15 (t, *J* = 6.5 Hz, 2 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 27.9 (CH₂), 36.9 (CH₂), 37.5 (CH₂), 164.7 (COO⁻). **19b**: ¹H NMR (500 MHz, D₂O): δ = 1.55–1.62 (m, 2 H, CH₂), 1.89–1.90 (m, 2 H, CH₂), 2.93–2.96 (m, 4 H, CH₂), 3.03–3.08 (m, 4 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 28.1 (CH₂), 30.3 (CH₂), 37.2 (CH₂), 38.6 (CH₂), 164.8 (COO⁻). **20b**: ¹H NMR (500 MHz, D₂O): δ = 1.89– 1.90 (m, 2 H, CH₂), 2.93–2.96 (m, 4 H, CH₂). – ¹³C NMR (125 MHz, D₂O): δ = 28.1 (CH₂), 37.2 (CH₂), 160.8 (HCO₃⁻). – C₄H₁₀N₂O₂ (118.14): ber. C 40.67, H 8.53, N 23.71; gef. C 40.97, H 8.91, N 23.93.

Röntgenographische Untersuchungen

Von den erhaltenen farblosen Einkristallen wurden für die Röntgen-Strukturuntersuchungen unter dem Mikroskop geeignete Exemplare ausgesucht und auf Glasfäden montiert. Die Intensitätsdaten wurden mit einem Kappa-CCD-Diffraktometer (Bruker-Nonius) bei Raumtemperatur, bei 173 oder bei 100 K im Stickstoffstrom vermessen (Mo K_{α} -Strahlung, $\lambda = 0.71073$ Å). Die Intensitäten wurden für Lorentz- und Polarisationseffekte korrigiert. Die Strukturlösung erfolgte mit Hilfe von Direkten Methoden (SHELXS-97 [21]). Die Verfeinerung der Daten wurden ohne Einschränkungen nach der Methode der kleinsten Fehlerquadrate mit der vollen Matrix durchgeführt (SHELXL-97 [21]). Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert. Die Atomlagen der an Stickstoffatomen gebundenen Wasserstoffatome wurden mit Ausnahme von **2** und **4b** aus

- Die Publikationsserie "Orthoamide" wird mit der vorliegenden Publikation und künftig weitergeführt unter der Bezeichnung "Orthoamide und Iminiumsalze". Orthoamide LXIX: W. Kantlehner, J. Mezger, R. Kreß, H. Hartmann, T. Moschny, I. Tiritiris, B. Iliev, O. Scherr, G. Ziegler, B. Souley, W. Frey, J. C. Ivanov, M. G. Bogdanov, U. Jäger, G. Dospil, T. Viefhaus, Z. Naturforsch. 2010, 65b, 873–906.
- [2] A. Gieren, W. Hoppe, K. Fleischmann, Angew. Chem. 1973, 85, 308-309; Angew. Chem., Int. Ed. Engl. 1973, 12, 322-323.
- [3] H. Remy, Lehrbuch der Anorganischen Chemie, 12. Auflage, Akademische Verlagsgesellschaft, Leipzig, 1965, S. 745.
- [4] D. Knausz, A. Meszticzky, L. Szakäs, B. Csákvári, K. Ujszászy, J. Organomet. Chem. 1983, 256, 11–21.
- [5] M. Aresta, E. Quaranta, *Tetrahedron* **1992**, 48, 1515– 1530.
- [6] M. Aresta, D. Ballivet-Tkatchenko, D. Belli Dell'Amico, M. C. Bonnet, D. Boschi, F. Calderazzo, R. Fauré, L. Labella, F. Marchetti, *Chem. Commun.* 2000, 1099–1100.
- [7] M. Aresta, D. Ballivet-Tkatchenko, M.C. Bonnet, R. Fauré, H. Loiseleur, *J. Am. Chem. Soc.* **1985**, *107*, 2994–2995.
- [8] C. B. Aakeröy, M. Nieuwenhuyzen, Acta Crystallogr. 1996, C52, 957–960.
- [9] D. J. Heldebrant, P. K. Koech, M. Trisha, C. Ang, C. Li-

Differenz-Fourier-Synthesen entnommen und frei verfeinert. Die Lagen der an Kohlenstoffatomen gebundenen Wasserstoffatome wurden im Falle von 2, 4b und 11 für idealisierte Positionen berechnet. Für 7a und 8b wurden die Wasserstoff-Atomlagen aus Differenz-Fourier-Synthesen entnommen und frei verfeinert. Die Resultate der Kristallstrukturanalysen befinden sich in der Tabelle 1. Zur Anfertigung der Strukturbilder diente das Programm DIAMOND [22].

CCDC 795557 (2), 795558 (4b), 795559 (7a), 795560 (8b) und 795561 (11) enthalten die beim Cambridge Crystallographic Data Centre hinterlegten Kristallstrukturdaten. Anforderung: www.ccdc.cam.ac.uk/data_request/cif.

Dank

Wir danken Herrn Dr. F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) für die röntgenographischen Einkristallmessungen. Der Landesstiftung Baden-Württemberg (Projekt: Kohlendioxid als Baustein für Energieträger; AZ 42-315,6(04)17) und dem Bundesministerium für Bildung und Forschung der Bundesrepublik Deutschland (BMBF-Projekt: Neuartige ionische Flüssigkeiten als innovative Reaktionsmedien für die Technische Organische Chemie; FKZ 01 RI 05175) danken wir für die finanzielle Unterstützung.

ang, J.E. Rainbolt, C.R. Yonker, P.G. Jessop, *Green Chem.* 2010, *12*, 713–721.

- [10] E. Schering, Deutsches Patent 123,138 (1900); *Chem. Zentralblatt* 1901, 72/II, 519.
- [11] J. F. Mulvaney, R. L. Evans, *Ind. Eng. Chem.* **1948**, 40, 393–397.
- [12] E. Katchalski, C. Berliner-Klibanski, A. Berger, J. Am. Chem. Soc. 1951, 73, 1829–1831.
- [13] A. Jensen, R. Christensen, Acta Chem. Scand. 1955, 9, 486–492.
- [14] M. H. Jamróz, J. Cz. Dobrowsolski, Vibrational Spectroscopy 2002, 29, 217–221.
- [15] M. F. Garbauskas, R. P. Goehner, A. M. Davis, *Acta Crystallogr.* 1983, C39, 1684–1686.
- [16] B. M. Yamin, M. A. Kadir, M. Z. M. Zin, A. Usman, I. A. Razak, H.-K. Fun, *Acta Crystallogr.* 2002, *C58*, 293–295.
- [17] P.-F. Shi, T.-T. Xu, X.-Y. Xu, S.-R. Niu, Acta Crystallogr. 2006, E62, 5191 – 5193.
- [18] E.-J. Room, A. Kütt, J. Kalurand, J. Koppel, J. Leito, J. A. Koppel, M. Mishina, K. Goto, Y. Miyahara, *Chem. Eur. J.* **2007**, *13*, 7631–7643.
- [19] D. H. Aue, H. M. Webb, M. T. Bowers, J. Am Chem. Soc. 1973, 95, 2699–2701.
- [20] D. H. Aue, H. M. Webb, M. T. Bowers, J. Am. Chem. Soc. 1972, 94, 4726–4728.
- [21] G. M. Sheldrick, SHELXS/L-97, Programs for Crystal Structure Determination, University of Göttingen,

Göttingen **1997**. Siehe auch: G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467–473; *ibid.* **2008**, *A64*, 112–122.

[22] K. Brandenburg, DIAMOND (version 2.1d), Crystal and Molecular Structure Visualization, Crystal Impact – K. Brandenburg & H. Putz GbR, Bonn 2000.