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Abstract
The 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral

complex [(Sa)-Binap·AuTFA]2. The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochem-

istry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The

origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/

Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level. Several applications of these cycloadducts in the synthesis of new proline derivatives

with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.
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Introduction
The synthesis of α-amino acids employing an α-amino carbon-

yl template constitutes the most straightforward route to intro-

duce the α-side chain [1]. As a valid example, oxazol-5-(4H)-

ones (azlactones) are suitable heterocycles to perform this C–C

bond generation based strategy affording both quaternized and

non quaternized α-amino acid derivatives [2-5]. The prepar-

ation of azlactones is very simple and their reactivity is very

diverse due to their functional groups [2-5]. Many enantiose-
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lective and/or diastereoselective processes have been focussed

on the elaboration of enantiomerically enriched new non-

proteinogenic α-amino acids, such as Michael-type additions

[6,7], transition metal-catalyzed allylations [8], Mannich-type

additions [9], aldol-type reactions [10], and for other different

purposes [11-17]. These substrates can be easily transformed in

münchnones, which are potential 1,3-dipoles, after deprotona-

tion and imine-activation with a chiral Lewis acid. Despite of

the easy access to this mesoionic heterocycles their enantiose-

lective cycloadditions with electrophilic alkenes have not been

exploited. Toste´s group published an efficient 1,3-dipolar

cycloaddition (1,3-DC) between alanine, phenylalanine and

allylglycine derived azlactones with maleimides and acrylates

employing dimetallic (S)-Cy-Segphos(AuOBz)2 complex 1 as a

catalyst (2 mol %) in the absence of base (Figure 1) [18,19].

This catalytic system was very effective but the reactions

performed with (R)-Binap(AuOBz)2 (Figure 1) as catalyst

offered a very low enantioselection, for example, a 8% ee was

achieved in the 1,3-DC of alanine derived azlactone and

N-phenylmaleimide (NPM).

Figure 1: Chiral gold(I) complexes employed in 1,3-DC involving
azomethine ylides.

Numerous gold-catalyzed transformations employing mild reac-

tion conditions appeared during the last twelve years [20-22].

Initially, coordination arrangements of chiral gold complexes

avoided high enantiodiscriminations but, recently, it has been

demonstrated that chiral bis-gold complexes type 2 (Figure 1)

are very efficient in asymmetric catalysis [23,24]. The high

amount of gold per mole of catalyst and the chiral ligand itself

make these processes somehow expensive.

The relative lower cost of chiral privileged ligand Binap (versus

Cy-Segphos) and the good results obtained in the 1,3-DC of

α-imino esters and electrophilic alkenes using the bis-gold(I)

complex 3 (where the gold atom:ligand ratio is 1:1, Figure 1)

[25-27] inspired us to test it in this azlactone involved cycloadd-

ition. Previous experience in the 1,3-DC between imino esters

and electrophilic alkenes revealed that the dimeric chiral gold

complex 3 resulted to be unique efficient catalyst in terms of

enantioselection rather than the bis-gold complex 4 [25-27].

This data is in a clear contrast to the previously mentioned

result for the reactivity of azlactones [18,19]. In this work we

describe a more extended study than the analogous one

described in a preliminary communication [28] concerning the

catalytic activity of complexes 3 and 4 in the 1,3-DC of

oxazolones with electrophilic alkenes. Here, a deep DFT

analysis and the application of other computational experi-

ments (NRT, NICS) were compared to the experimentally

observed results in order to clarify the enantio- and anomalous

regioselectivity.

Results and Discussion
Initially, the synthesis of oxazolones 5 was accomplished under

mild reaction conditions by mixing N-acyl-α-amino acid deriva-

tives in the presence of dehydrating agents such as carbodi-

imides [2-5]. Gold(I) complexes 3 and 4, identified and charac-

terized by Puddephatt’s group [X = trifluoroacetate (TFA)] [29-

31], were obtained from NaAuCl4 and dimethyl sulfide and the

corresponding amount of the chiral Binap ligand. Finally, the

anion interchange was promoted by the addition of an equiva-

lent amount of silver(I) salt. These complexes were used imme-

diately after filtration through a celite path. Particularly,

complexes 3 and 4 (X = TFA) could be isolated in 96 and 89%

yield, respectively, but other gold(I) complexes (see Table 1)

with different anions were generated in situ and used as cata-

lysts in the same solution.

Oxazolone derived from glycine 5a was allowed to react with

N-phenylmaleimide (NPM) at room temperature (25 °C

approx.) using 5 mol % of the chiral catalytic complex and

5 mol % of base (Scheme 1). After completion, a large excess

of trimethylsilyldiazomethane was added to obtain the methyl

ester of intermediate carboxylic acid 6a (30 min). Compound

7aa was obtained diastereoselectively (>98:2, by 1H NMR

spectroscopy) after purification and its absolute configuration

was established according to the retention times of signals

observed after HPLC analysis employing chiral columns and by

comparison with the previously reported data [18,19].
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Scheme 1: 1,3-DC of azlactone 5a and NPM.

Table 1: Optimization of the 1,3-dipolar cycloaddition of 5a and NPM using chiral complexes.

Entry Catalyst/Xa Solvent Base Yieldb (%) eec (%)

1 (Sa)-3/TFA PhF Et3N <50 7
2 (Sa)-4/TFA PhF Et3N ___d <5
3 (Sa)-3/TFA PhF-THF Et3N ___d ___d

4 (Sa)-4/TFA PhF-THF Et3N ___d <5
5 (Sa)-3/TFA THF Et3N 76 49
6 (Sa)-4/TFA THF Et3N ___d nd
7 (Sa)-3/TFA DCM Et3N 88 80
8 (Sa)-3/TFA Et2O Et3N 85 76
9 (Sa)-3/TFA PhMe Et3N 90 99

10 (Sa)-4/TFA PhMe Et3N ___d ___d

11 (Ra)-3/TFA PhMe Et3N 90 –99
12 (Sa)-3/TFA PhMe DBU 70e 80
13 (Sa)-3/TFA PhMe DIPEA 90 98
14 (Sa)-3/TFA PhMe none ___d ___d

15 (Sa)-Binap·AgTFA PhMe Et3N ___d ___d

16 (Sa)-3/ClO4 PhMe Et3N ___d ___d

17 (Sa)-3/OAc PhMe Et3N 90 64
18 (Sa)-3/OBz PhMe Et3N 91 74

aThe gold catalysts were freshly generated in situ. bAfter flash chromatography (silica gel). The observed exo:endo ratio was always >98:2 (1H NMR).
cDetermined by using analytical chiral HPLC columns (Daicel, Chiralpak AS). dNot determined.

Using this model reaction (Scheme 1), we tested the dimeric

gold complex [(Sa)-Binap·AuTFA]2 according to the previous

experience obtained in the 1,3-DC involving imino esters and

electrophilic alkenes and the reaction conditions employed by

Toste’s group [18,19]. The use of fluorobenzene as solvent or

co-solvent did not afford neither good conversions nor enantio-

selectivities, even working with the dimetallic complex 4 (X =

TFA) (Table 1, entries 1–4). After the evaluation of the influ-

ence of the solvent, we concluded that toluene was the most

appropriate solvent for these reactions (Table 1, entries 5–9),

being the chemical yield high (90%) and the enantiodiscrimin-

ation excellent (99% ee). The presence of triethylamine as base

is crucial for this transformation, it ensures both of the high

conversions and enantioselections (Table 1, entries 11–14).

Other different bases such as DBU, and DIPEA did not improve

the result achieved by the analogous reaction carried out with

triethylamine (Table 1, entries 12 and 13). Again, the presence

of the chiral catalytic complex 4 (X = TFA) did not give the

expected results (Table 1, entries 6 and 10). The enantiomeri-

cally pure form of 7aa with opposite absolute configuration was

isolated by working in the presence of [(Ra)-Binap·AuTFA]2

complex (Table 1, entry 11). Surprisingly, no reaction was

observed in the presence of silver(I) complex (Sa)-

Binap·AgTFA (Table 1, entry 15). In this section the effect of
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Scheme 2: General 1,3-DC between azlactones 5 with maleimides.

Table 2: 1,3-Dipolar cycloaddition of azlactones 5a with maleimides.

Entry Ar, 5a R Product 7 Yieldb (%) eec (%)

1 Ph, 5a Ph 7aa 90 99
2 Ph, 5a Me 7ab 90 54
3 Ph, 5a Med 7ab 79 60
4 Ph, 5a Et 7ac 87 62
5 Ph, 5a Etd 7ac 70 70
6 Ph, 5a Bn 7ad 90 50
7 Ph, 5a Bnd 7ad 83 71
8 Ph, 5a 4-(AcO)C6H4 7ae 90 99
9 Ph, 5a 4-BrC6H4 7af 82 91

10 Ph, 5a 4-BrC6H4
d 7af 84 99

11 4-MeC6H4, 5b Ph 7ba 78 99
12 4-ClC6H4, 5c Ph 7ca 83 98
13 2-Thienyl, 5d Ph 7da 80 95

aThe gold catalyst was freshly generated in situ. bAfter flash chromatography (silica gel). The observed exo:endo ratio was always >98:2 (1H NMR).
cDetermined by using analytical chiral HPLC columns (Daicel, Chiralpak AS). dReaction run at −20 °C.

different anions of the metal complex was studied as well. In

contrast with the negligible reaction observed when poor basic

anion, such as perchlorate, was essayed (Table 1, entry 16),

anions with basic character such as acetate or benzoate, incor-

porated to the chemical structure of the gold(I) catalyst,

promoted the enantioselective reaction although with lower effi-

ciency (Table 1, entries 17 and 18) [32].

The scope of the reaction was next surveyed. Firstly, azlactone

5a was allowed to react with several maleimides (Scheme 2,

and Table 2, entries 1–10). NPM and 4-acetoxyphenyl-

maleimide were the best entries of this series affording almost

enantiomerically pure bicyclic products 7aa and 7ae, respect-

ively (Table 2, entries 1 and 8). N-Substituted methyl, ethyl and

benzylmaleimides did not afford compounds 7 with so high

enantioselections. Then, a lower temperature (−20 °C) was

attempted but the increment of ee for N-methyl- and N-ethyl-

maleimides was not very noticeable (Table 2, entries 2, 3 and 4,

5, respectively). Nevertheless, a gap of 21 units of ee was

achieved in the case of the reaction involving N-benzyl-

maleimide (Table 2, compare entries 6 and 7). In the case of

N-(4-bromophenyl)maleimide a good enantioselection was

observed when the reaction was run at −20 °C furnishing enan-

tiomerically pure 7af in good chemical yields (Table 2, entries 9

and 10). The variation of the arene substituent of the azlactones

promoted also excellent to good enantioselections in com-

pounds 7ba and 7ca (Table 2, entries 11 and 12). Even working

with an heteroaromatic substituent, such as 2-thienyl, com-

pound 7da was isolated in 95% ee (Table 2, entry 13).

When benzylamine was employed as alternative quenching

reagent to trimethylsilyldiazomethane, the generation of the

corresponding N-benzylamide in 76% yield and 96% ee was

achieved after 17 h at 25 °C (Scheme 3) [18,19].

The study of the key points of the enantiodiscrimination step

and mechanism for the 1,3-DC of azlactone 7aa and NPM can

be originated by the presence of a more active homochiral

dimer catalyst (Sa,Sa)-3 (X = TFA) with a lower TS energy with

all the reaction components, rather than the corresponding

heterochiral ones and even lower than homochiral dimer

catalyst (Ra,Ra)-3 (X = TFA). The clear positive non-linear

effects (NLE) described in Figure 2 supported this hypothesis

[33].
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Scheme 3: Formation of the amide 8aa.

Figure 3: Main geometrical features and relative Gibbs free energies (in kcal mol−1 at 298 K) of complexes [(Sa)-Binap-Au]2-5aa and [(Sa)-Binap-
Au]2-5aa-b computed at M06/Lanl2dz//ONIOM (b3lyp/Lanl2dz:UFF). High-level and low-level layers are represented as ball and stick and wireframe
models, respectively. Blue surface represents the solvent-accessible surface with a probe radius of 1.9 Å.

Figure 2: Positive non-linear effects (NLE) observed in 1,3-DC of
azlactone 7aa and NPM.

Next, we studied the reaction between the oxazolone 5aa and

NPM catalyzed by [(Sa)-Binap-AuTFA]2. In previous works,

we have demonstrated that the stereoselectivity of the 1,3-DC

employing chiral metallic Lewis acids arises from the blockage

of one of the prochiral faces [34]. Starting from this selected

conformation of the catalyst, our results show that the

(2Re,5Re) prochiral face is less hindered than the other

prochiral face in the most stable conformation of [{(Sa)-Binap-

Au}2]-5aa complex (Figure 3). As expected, the existence of

dimeric gold units is crucial in the blockage of one of the

prochiral faces, and therefore, in the stereochemical outcome of

the final cycloadducts [26,27].

Refined computational results showed the exo-approach [35] is

the preferred one. In this analysis, only that approach was

considered. The less energetic computed TS are depicted on
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Figure 4: Main geometrical features and relative Gibbs free energies (in kcal mol−1) of the less energetic transition states associated with the 1,3-DC
of 5aa and NPM catalyzed by (Sa)-Binap gold dimers computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level of theory. High-level and low level
layers are represented as ball and stick and wireframe models, respectively. Distances are in Å. Blue and purple surfaces represent the solvent-
accessible surface of the catalyst and NPM with a probe radius of 1.9 Å.

Scheme 4: Reaction Gibbs free energy associated with the 1,3-DC of 5aa and NPM catalyzed by (Sa)-Binap gold dimers computed at M06/Lanl2dz//
ONIOM (b3lyp/Lanl2dz:UFF) level of theory.

Figure 4 (see Supporting Information File 1 for further informa-

tion of additional TS’s).

The computed transition structures correspond to concerted but

highly asynchronous cycloadditions (Figure 4). Our calcula-

tions show that there is a different overlap between the acces-

sible-solvent surface of the catalyst and the one of the incoming

dipolarophile. That implies an increase of the 4e− Pauli repul-

sion between the reactives in TSNPMdown compared to

TSNPMup, and thus an increase of the activation barrier. More-

over, lower energy to deform the initial ylide (strain energy) is

required in the latter TS. With that energetic diference, the

computed ee is about 99%, in good agreement with the experi-

mental results (Table 2, entry 1).

The complete reaction path of the cycloaddition process is

shown in Scheme 4. We do not study computationaly the

second synthetic step, namely the ring-opening of the tricyclic-

cycloadduct, because that step has no relevance in the stereo-

chemical outcome of the reaction.
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Scheme 5: ΔG calculation for the recovery of the catalytic active species.

Scheme 6: 1,3-DC of azlactone 10 and tert-butyl acrylate.

We also studied the last step of the catalytic cycle that ensures

the recovery of the catalyst obtaining a favourable Gibbs energy

of −55.3 kcal mol−1 (Scheme 5).

No chemical reaction occurred when 5a was combined with

other dipolarophiles such as fumarates, maleates, vinyl phenyl

sulfone, trans-1,2-bis(phenylsulfonyl)ethylene, chalcone,

crotonaldehyde and cinnamaldehyde at the same reaction condi-

tions [36]. Another drawback was the poor reactivity observed

when α-substituted azlactones were used as starting material in

the named reaction with NPM. However, the alanine-derived

4-methyloxazole-5-one 10, surprisingly, reacted at 25 and at

0 °C with tert-butyl acrylate yielding cycloadduct 11 in good

yields and moderate to good enantioselections (Scheme 6).

If we compare this result with previous ones obtained using

α-imino esters, this last diastereoselective cycloaddition exhib-

ited an opposite regioselection. Besides, the resulting relative

configuration of Δ1-pyrroline 11 is equivalent to the exo-ap-

proach of the dipolarophile when an endo-transition state was

the most favourable in the gold(I)-catalyzed 1,3-DC with

α-imino esters and alkenes [37].

To gain more insight into the unexpected regioselectivity of the

1,3-DC depicted in Scheme 6, calculations within the DFT

framework were performed. In the accepted mechanism of the

metal catalyzed 1,3-DC of azomethine ylides and acrylates, the

α-carbon atom of the azomethine ylide (C2 in Figure 5) reacts

with the β-carbon of the acrylate moiety, independently of the

mechanism (concerted fashion or via Michael-like transition

state followed by a Mannich-like ring closure in a stepwise

mechanism yields the same cycloadduct) [38]. This fact is

assumed to be a consequence of the unsymmetrical electron

density in the 1,3-dipole moiety, being higher in the carbon in

α-position to the carboxy group (C2).

Figure 5: (A) Schematic representation of the model gold(I) ylides. (B)
HOMO of the ylides and expansion orbital coefficient values of carbon
atoms 2 and 5 computed at HF/Lanl2dz level of theory. Hydrogen
atoms are omitted for clarity. (C) Most stable Lewis structures of the
ylides obtained with the Natural Resonance Theory (NRT) analysis.
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Figure 6: Main geometrical features and relative Gibbs free energies (in kcal mol−1 at 298 K) of complexes [{(Sa)-Binap-Au}2]-I computed at M06/
Lanl2dz//ONIOM (b3lyp/Lanl2dz:UFF). High-level and low-level layers are represented as ball and stick and wireframe models, respectively. Blue
surface represents the solvent-accessible surface with a probe radius of 1.9 Å.

Initially, a model azomethine ylide derived from oxazolone 10

was considered (Figure 5). Moreover, an acyclic w-shaped ylide

analogue (Ylide-II) was also studied as a reference. We chose

this latter 1,3-dipole because it is known that with this kind of

reactive species, the reaction yields cycloadducts possessing a

standard regioselectivity in 1,3-DC with acrylates [38]. Since

our goal was to understand the origins of the unusual regiose-

lectivity observed in the reaction between dipoles of type Ylide-

I with acrylates, trimethylphosphine was coordinated directly to

the gold(I) atom in our model (Figure 5).

Analysis of atomic expansion coefficients of the HOMO of

Ylide I reveal no significant difference between the azome-

thine ylides reported in Figure 5. However, Natural Resonance

Theory Analysis (NRT) [39-41] shows that the negative charge

in the Lewis structure of Ylide I is mainly placed on C5. In the

case of Ylide II, this negative charge is placed on the oxygen of

the carboxy group instead. The importance of these electronic

distributions was verified by Nucleus Independent Chemical

Shifts (NICS) calculations in the ring point of the oxazoline

[42]. The NICS value of −7.3 ppm pointed to the aromaticity of

that ring in Ylide I. These results explain the existence of

different regioselectivities for both ylides.

Following the same calculation patterns previously shown for

the reaction with NPM, the results of the main geometrical

features an relative Gibbs free energies were determined for the

approach of the gold(I) complex·azlactone 10 to tert-butyl acry-

late (Figure 6).

In order to have a complete view of the reaction mechanism, all

transition structures corresponding to the endo- or exo-

approaches of the acrylate moiety as well as possible regio-

chemistry of the selected 1,3-DC, were considered. The main

geometrical features of the less energetic transition structures

are depicted in Figure 7.

Our calculations show that the less energetic transition struc-

ture associated with the 1,3-DC of 10 and tert-butyl acrylate is

TS11exo (Figure 7), is in good agreement with the experimental

results in which a high ee of the corresponding stereoisomer

was observed. The formation of the enantiomer (TS11ent) was

found to have an activation barrier of 4.5 kcal mol−1 higher in

energy. That difference can be a consequence of the higher

strain energy necessary to deform the initial ylide. Our calcula-

tions also pointed out the stabilizing interaction of the carboxy

group of the incoming acrylate and the gold atom closest to the

ylide moiety, despite the long distance (dAu-C=O = 2.8 Å). In

fact, the exo-approach is ca. 11 kcal mol−1 lower in energy than

the endo analogue (TS11exo vs TS11endo in Figure 7). Moreover,

the a priori expected regiochemistry of the cycloaduct, in which

C2–Cβ and C5–Cα are new bonds (12), was considered. In this

case, TS12 is 12.1 kcal mol−1 higher in energy than TS11exo. It

is noticeable that transition structures associated with the forma-
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Figure 7: Main geometrical features and relative Gibbs free energies (in kcal mol−1) of the less energetic transition states associated with the 1,3-DC
of 10 and tert-butyl acrylate catalyzed by (Sa)-Binap gold dimers computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF). High-level and low level
layers are represented as ball and stick and wireframe models, respectively. Distances are in Å. Hydrogen atoms are omitted for clarity.

tion of C2–Cα and C5–Cβ bonds (TS11exo, TS11ent and

TS11endo) correspond to concerted but highly asynchronous

cycloadditions. On the other hand, TS12 is associated with a

stepwise mechanism.

As possible applications of the resulting pyrrolines 7aa, it was

submitted to different transformations. For example, it could be

reduced to the corresponding pyrrolidines employing sodium

cyanoborohydride in acidic media. In this reaction, a 1:1 mix-

ture of 2,5-cis-pyrrolidine 13 and its 5-epimer 14 (2,5-trans)

was isolated in good chemical yield (71%) (Scheme 7, reaction

a). Fortunately, 5-epimer 14 (2,5-trans) was diastereoselec-

tively generated through a 10% Pd/C-catalyzed hydrogenation

using 4 atmospheres of hydrogen during three days at 25 °C
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Scheme 7: Reduction of heterocycle 7aa under different conditions.

Scheme 8: Double 1,3-DC to give polycycle 15.

(Scheme 7, reaction b). This trans- arrangement in molecule 14

is not very easy to built because several steps were needed

using other synthetic strategies [43].

Pyrrolines also possess a typical 1,3-dipole precursor structure

(azomethine ylide), so a second cycloaddition was attempted

with a new equivalent of N-methylmaleimide. The reaction took

place under microwave assisted heating (1 h, 75 W) using

triethylamine as base and toluene as solvent at 120 °C. Poly-

cyclic compound 15 was finally obtained in 50% yield as single

diastereoisomer (Scheme 8). Despite being a solid product it

was not possible to perform an X-ray diffraction analysis. Posi-

tive (CH derived from NPM with the CH derived from NMM)

nOe experiments supported the drawn absolute configuration of

15.

Other different dipolarophiles were attempted to react with

starting 7aa obtaining very complex mixtures including decom-

posed materials. In the most cases, reactions had to be refluxed

for 24 h (110 °C, toluene) because microwave assisted irradi-

ation was not as effective as occurred in the reaction with

NMM. For example, the purification of the crude reaction mix-

ture of the cycloaddition of 7aa with β-nitrostyrene afforded an

overall poor yield (~28%) of a complex 4:15:10 mixture of

three compounds (16, 17, and 18) (Scheme 9) [44]. The desired

compound 16 was identified (almost as unique diastereoisomer)

in low chemical yield (<5%) together with two pyrrole deriva-

tives 17 (only one stereoisomer), and 18. The last compound

was formed by a retro-cycloaddition of the pyrroline 7aa with

elimination of NMM, which was favoured by a prolonged

heating [45].

Conclusion
In this work it has been demonstrated the efficiency of the

chiral [BinapAuTFA]2 complexes in the enantioselective 1,3-

DC between azlactone derived from glycine and maleimides,

especially those containing a N-aromatic substituent, and

between alanine derived oxazolone with tert-butyl acrylate. In

the last example the regiochemistry was totally opposite to the

common trend of these cycloadditions. This behaviour has been

explained for the first time using NRT, NICS, whilst DFT

calculations served to justify the elevated enantioselection

observed in the 1,3-DC between azlactones and maleimides.

The general scope is not very wide but enantioselections
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Scheme 9: Reaction between 7aa and nitrostyrene.

obtained are quite good. Very interesting pyrrolidines with a

trans-arrangement were obtained after hydrogenation of the

pyrroline precursor.

Supporting Information
Description of all procedures and characterization of all

new compounds, as well as computational details and

coordinate tables are reported in the Supporting

Information.

Supporting Information File 1
Experimental and analytical data.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-9-280-S1.pdf]
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