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Phthalazinones. Part 1: The design and synthesis of a novel
series of potent inhibitors of poly(ADP-ribose)polymerase
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Abstract—Screening of the Maybridge compound collection identified 4-arylphthalazinones as micromolar inhibitors of PARP-1
catalytic activity. Subsequent optimisation of both inhibitory activity and metabolic stability led to a novel series of meta-substituted
4-benzyl-2H-phthalazin-1-ones with low nanomolar, cellular activity as PARP-1 inhibitors and promising metabolic stability in
vitro.
� 2005 Elsevier Ltd. All rights reserved.
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The mammalian enzyme poly(ADP-ribose) polymerase-
1 (PARP-1) has been implicated in the repair and signal-
ling of DNA damage through its ability to recognise and
rapidly bind to DNA single or double strand breaks.1

Once associated with DNA, activated PARP-1 utilises
nicotinamide adenine dinucleotide (NAD+) to synthesise
poly(ADP-ribose) homopolymers onto a variety of
nuclear target proteins, most notably itself.2 It has been
postulated that the formation of these negatively
charged polymers causes electrostatic repulsion of modi-
fied PARP-1, preventing DNA recombination. It is fur-
ther hypothesised that modified PARP-1 facilitates
recruitment of the base excision repair complex to the
site of the DNA damage.3

PARP-1 activation and subsequent poly(ADP ribosyl)-
ation are immediate cellular responses to chemical or
radiation-induced DNA damage.4 Studies have shown
that inhibition of PARP-1 activity enhances the effects
of radiation by suppressing the repair of potentially
lethal damage in cancerous cells.5 Inhibition of PARP-
1 in cells treated with alkylating agents similarly causes
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enhanced DNA damage and cell killing.6 PARP-1 activa-
tion has also been shown to play a pivotal role in the
development of septic shock, ischaemic injury and in
neurotoxicity.7,8 Inhibitors of PARP-1 catalytic activity
may therefore have wide-ranging therapeutic potential.

Previous investigators have designed inhibitors of
PARP-1 to mimic the substrate–protein interactions of
NAD+ with the enzyme. Mechanistically, these com-
pounds inhibit PARP-1 by blocking the binding of the
substrate, particularly the nicotinamide moiety, to the
active site of the enzyme. Early weak inhibitors such as
3-aminobenzamide 19 have been developed into more
potent PARP-1 inhibitors derived from a range of related
pharmacophoric templates, for example the 5-substi-
tuted dihydroisoquinolin-1-ones 2,10 2,8-disubstituted
quinazolin-4-ones 311 and benzoxazole-4-carboxamides
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Figure 1. Previously reported PARP-1 Inhibitors.
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Table 1. Initial structure–activity relationships of the meta-substituted

4-benzyl-2H-phthalazin-1-ones
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4.11 In this paper, we describe the synthesis and prelimin-
ary biological evaluation of novel 4-benzylphthalazi-
nones as potent inhibitors of PARP-1 (Fig. 1).

High throughput screening of the Maybridge Screening
Collection in a FlashPlate scintillation proximity assay12

identified several 4-aryl-2H-phthalazinones as low
micromolar PARP-1 inhibitors. These appeared a promi-
sing start point, since phthalazinone itself is a known
PARP-1 inhibitor.13 Initial hit exploratory chemistry14

led to 4-benzyl-2H-phthalazin-1-one 5 with a potency
against human PARP-1 of IC50 0.77 lM (Table 1).
Early SAR studies, backed by structure-based design
utilising a homology model derived from the known
crystal structure of chicken PARP-1,15 suggested that
further structural elaboration around the meta position
of the benzyl moiety in 5 could be potency enhancing.
In particular, carbonyl-containing substituents at the
3-position led to potent PARP-1 inhibitors exemplified
by 6 and 7. These observations encouraged the synthesis
of focused analogue libraries using parallel synthesis
methodologies. Preliminary SAR development showed
that chain extension to the propionanilide 8 significantly
increased PARP-1 inhibitory potency (IC50 20 nM).
While further chain extension (9) or branching (10)
tended to reduce potency, constraining the branch into
a cyclopropane ring (11) reversed this trend. A number
of phthalazinones bearing different biaryl substituents
at the meta benzylic position (12–15) were also shown
to be potent PARP-1 inhibitors. Propionanilide 8 exhibi-
ted good PARP-1 inhibitory activity at 1 lM in a cell-
based assay (data not shown) making it a suitable candi-
date for continued optimisation chemistry. However,
preliminary pharmacokinetic studies raised concerns
that 8 would be rapidly cleared since in vitro it exhibited
poor metabolic stability (mouse hepatic microsomes: Cli
12 mL min�1 g�1 liver). It was postulated that the pen-
dant anilide was the most likely point of metabolic insta-
bility. Therefore, several structural modifications were
undertaken in an attempt to stabilise this group. Triflu-
oro-substitution a to the carbonyl to give 16 retained
potency against isolated PARP-1 enzyme (IC50

13 nM), but reduced in vitro metabolic stability (mouse
hepatic microsomes: Cli > 50 mL min�1 g�1 liver). Sev-
eral bioisosteric amide replacements, such as carbamate
17, urea 18, sulfonamide 19 and 1,2,4-oxadiazole 20,
were detrimental to PARP-1 inhibitory potency. How-
ever, reversal of the anilide topology in 8 to give amide
21 retained PARP-1 inhibitory potency and consider-
ably enhanced metabolic stability in vitro (mouse hepa-
tic microsomes: Cli < 1 mL min�1 g�1 liver). This
compound was selected as a primary candidate for the
development of a further novel series of potent PARP-
1 inhibitors, which will be reported in detail in due
course.

An alternative approach to stabilising the anilide moiety
in 8 was to constrain the amide into a ring, as in lactam
22. This resulted in a moderate increase in metabolic sta-
bility (mouse hepatic microsomes: Cli 4.9 mL min�1 g�1

liver), but a reduction in potency. The introduction of a
second carbonyl group into the lactam ring resulted in
imide 23 (Table 2), which exhibited a 10-fold increase



Table 1 (continued)
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Table 2. Structure–activity relationships of the imide series

N
NH

O

X

R

R X IC50 (nM) PF50

23
N

*

O

O

H 12 1.74

24 N

*

O

O
H 13 0.94

25
N

*

O

O

H 180 —

26 N

*

O

O
Cl 19 1.5

27 N

*

O

O
OMe 33 1.5

28 N

*

O

O
F 5.0 5.62

29 N

*

O

O
F 3.8 18.2

30 N

*

O

O
F 9.8 2.9

31 N

*

O

O

F 6.8 5.4

32 N

*

O

O
F 5.0 14.4

33 N

*

O O F 4.1 3.6

34 N

*

N

O O F 9.5 3.1

V. M. Loh et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2235–2238 2237
in PARP-1 inhibitory potency. In addition, in vitro
stability studies showed that 23 (human hepatic micro-
somes: Cli < 0.05 mL min�1 g�1 liver) has significantly
increased metabolic stability over 8. However, the initial
imide lead 23 exhibited only moderate activity in a
cell-based assay (PF50 1.74, Table 2).16 Therefore,
further optimisation of 23 was required to improve
cellular efficacy whilst maintaining in vitro potency
and stability.

Introduction of a double bond into the imide ring re-
sulted in compound 24, which retained potency against
the isolated enzyme but abolished activity in the cell-
based assay, as indicated by the low PF50 value. Fusion
of 23 with a benzene ring (25) reduced PARP-1 inhibi-
tory activity overall. Substitution ortho to the imide
moiety with either a chloro or a methoxy group (26
and 27, respectively), did not increase PARP-1 inhibi-
tory potency. However, a significant enhancement of
potency in both enzyme and cell-based assays was ob-
served when a fluoro-substituent was introduced ortho
to the imide ring to give 28. Indeed, compound 28 re-
tains activity in the cellular assay at concentrations be-
low 10 nM (data not shown). This compound also
retained good metabolic stability in vitro (mouse hepatic
microsomes: Cli < 1 mL min�1 g�1 liver). Testing of
compound 28 against other PARP family members indi-
cated a similar level of potency for PARP-2, while for
Tankyrase and VaultPARP potency was >100-fold less.
Solubility for this compound was limited (0.25
mg mL�1) but in a mouse pharmacokinetic study good
bioavailability (50%) was obtained (data not shown).
The enhancement of potency via the fluoro substituent
appeared quite general for this series as exemplified by
compounds 29–34. Furthermore, addition of a methyl
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Scheme 1. Synthesis route for phthalazinone imides. Reagents: (i) NaOMe, MeOH, reflux; (ii) NEt3, THF; (iii) NH2NH2ÆH2O, reflux; (iv) Fe powder,

NH4Cl; (v) Cyclic anhydride, MeCN, reflux; (vi) HBTU, DMF.
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group a to the carbonyl of the imide 28 to give 29 led to
a further increase in cellular activity (PF50 18.2). This
could be due to enhanced cell penetration as a result
of increased lipophilicity. However, geminal-dialkyla-
tion a to the carbonyl to give 30 resulted in a slight de-
crease in potency in both isolated enzyme and cell-based
assays. Larger aromatic substituents a to the carbonyl of
imide 28 were tolerated, as exemplified by 31, which re-
tained good PARP-1 inhibitory potency. A high potency
PARP-1 inhibitor, 32, was also obtained by fusion of a
cyclopropane ring. Ring expansion of the imide 28 to a
piperidinedione such as 33, or inclusion of a further het-
eroatom to give a piperazinedione 34 also retained good
activity on the free enzyme and in cells.

The synthetic route for the phthalazinone imide ana-
logues is outlined in Scheme 1. For the non-haloge-
nated analogues (X = H and OMe) simple
nucleophilic addition of phthalide 1 to the aldehydes
2a,b in the presence of sodium methoxide, followed
by simultaneous cyclisation/nitro reduction of the
indanediones 3a,b with hydrazine hydrate gave the
key amine intermediates 4a,b. For the halogenated ana-
logues (X = Cl and F), in which the halogen ortho to
the nitro group is labile to nucleophilic displacement,
the alternative, milder methodology starting from the
phthalide phosphonate 5 was required. Formation of
the cyclic imides (23–34) was problematic under stan-
dard conditions. However, a two-step process involving
reaction with a cyclic anhydride to give 8 and subse-
quent cyclisation with a peptide-coupling reagent
proved generally applicable.

In conclusion, the synthesis and preliminary biological
evaluation of a novel class of phthalazinones as potent
PARP-1 inhibitors have been described. Further evalua-
tion of these compounds is ongoing and results will be
reported in due course.
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