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N-alkyl substituted amides directly from aliphatic carboxylic acids
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Abstract An efficient and inexpensive procedure for

direct conversion of aliphatic carboxylic acids into amides

has been developed using anilines or aliphatic amines and

Mg(0) as catalyst in toluene. The amides were obtained by

single crystallization in moderate to excellent yields with

high purity.
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Introduction

Proteins are essential biomolecules that exist in living

systems which have amide functional groups in their

structures. Because of their biological and chemical sig-

nificance, amides are important as biologically active

compounds [1–6], industrial products [7–9], and precursors

for a variety of organic compounds [10–14]. The prepara-

tion of amides directly from carboxylic acids is a fairly

difficult task. Carboxylic acids and amines can give reac-

tion to form highly stable and unreactive carboxylate salts.

Strong heating conditions and long reaction time are nec-

essary to convert these salts directly to the corresponding

amides, which leads to oxidative degradation of aromatic

amines and long-chained aliphatic carboxylic acids and

consequently the amounts of by-products increase. The

most commonly used process for synthesizing amides in a

laboratory scale is converting the carboxylic acids with

special reagents into their more reactive acyl halide or

anhydride derivatives and then to make these derivatives

interact with amines. However, some reagents such as

thionyl chloride (SOCl2) and dicyclohexyl carbodiimide

(DCC) are moisture sensitive, toxic, and require special

reaction conditions [15–21]. Therefore, alternative methods

for the direct synthesis of amides have attracted consider-

able interest. The solid-supported catalysis was used

successively for direct preparation of amides [22–26].

Borate esters are also widely used in the synthesis of

amides directly from acids [27, 28]. In the presence of

phosphine-based reagents, several amides can be prepared

with high yields [29–31]. Georg [32] and Kangani [33]

reported that amides can be synthesized from carboxylic

acids using the Deoxo-Fluor reagent. On the other hand,

many studies have reported catalytic direct conversion

routes [34–49]. Each method has its own advantages and a

number of major disadvantages. In some of these methods,

conversion of carboxylic acids to amides necessitates long

reaction times (up to 6–24 h) [37, 39]. Other methods

require microwave irradiation or special reagents such as

diethyl chlorophosphate [39], ionic liquids such as

[BMIM]BF4 [42], 1,3,5-triazo-2,4,6-triphosphorine-2,2,

4,4,6,6-hexachloride (TAPC) [45], prop-2-ene-1-sulfinyl

chloride [48], and nano sulfated titania [49]. As stated

previously, by conventional amide preparation methods,

the carboxylic acid is allowed to react with the amine at

elevated temperatures. Especially for the preparation of

anilides prolonged heating at 180–200 �C is required and

due to these excessive reaction conditions the final product

is contaminated with dark colored decomposition products

[50]. Also, the by-products complicate isolation of the

desired amide from the obtained complex mixture and in

most cases considerably reduces its yield. Jursic et al. [51]
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reported a conversion which proceeds at 160–180 �C for

30 min, but the method has some limitations. The method

seems to be generally suitable for the aliphatic amines,

experimental procedure contains an additional isolation

step and most importantly, it requires the thermal stability

of the reagents.

Because of all these disadvantages, an alternative effi-

cient and cheap method for the direct conversion of

aliphatic carboxylic acids into N-aryl and N-alkyl amides

was developed. This robust and practically simple method

does not require any special coupling reagents.

Results and discussion

Table 1 summarizes the experimental conditions having

made to optimize the reaction. Dodecanoic acid was

reacted with aniline in the absence of solvent and catalyst.

After refluxing for 2 h, traces of the product were obtained

(entry 1). When the reaction is carried out by dissolving the

starting materials in toluene, trace amounts of the amide

were obtained again (entry 2). The reaction was performed

by adding Mg powder (30 mmol %) and molecular sieve

(MS-4 Å
´

) but still extremely low yield of the amide was

obtained (entry 3).

In analogy to the Grignard reaction, molecular iodine is

used to activate the Mg surface but only a 36 % yield of the

desired amide was isolated (entry 4). At temperatures

above 150 �C, aniline is subjected to iodination and oxi-

dative degradation occurs by iodine [52]. Thus, the product

yield was quite low. On the other hand, when the reaction

was performed in the absence of iodine catalyst, moderate

yield was obtained (79 %, entry 6). Furthermore, the

reaction strongly depends on the use of toluene as solvent,

due to the increase in product yield which is observed in its

presence (entries 5 and 6). Thus, the optimal reaction

conditions were determined for the direct conversion of

aliphatic carboxylic acids into amides. Accordingly to

achieve maximum conversion both magnesium (as a Lewis

acid catalyst) and toluene are needed (Scheme 1).

Furthermore in exploring the reaction, benzoic acid did

not react both with aniline or aliphatic amines under the

similar reaction conditions (entries 7–9). Specifically with

the procedure developed in this study, only the aliphatic

carboxylic acids can be converted directly into the amides.

The observed results are given in Table 2. As shown in the

table, excellent yields were obtained even after crystalli-

zation step (entries 6–10). The structures of synthesized

amides are given in Table 2.

It can be considered that amidation in the present study

occurs by the catalysis of MgO formed in the reaction

medium. However, Tamaddonet al. [41] pointed out that in

the presence of basic MgO, a carboxylate ion was formed

before the attack of the amine and hence the electrophi-

licity of the carbonyl group was reduced. On account of

this, formation of MgO and its catalytic effect is not a

reliable mechanism for the amidation performed in this

study. Magnesium and acetic acid react rapidly under the

reaction conditions (entry 10) with complete consumption

of the metal (30 mmol % or in stoichiometric amounts)

probably to give magnesium acetate and hydrogen gas.

Thus, the other postulate may be that the conversion

Table 1 Optimization of reaction conditions

Entry Acid Amine Reaction conditionsac Yield/%b

1 CH3(CH2)10COOH PhNH2 No solvent/no catalyst/2 h/160 �C Trace

2 CH3(CH2)10COOH PhNH2 Toluene/no catalyst/2 h/160 �C Trace

3 CH3(CH2)10COOH PhNH2 Toluene/MS-4 Å
´

/Mg/2 h/160 �C Trace

4 CH3(CH2)10COOH PhNH2 Toluene/Mg-I2/2 h/160 �C 36

5 CH3(CH2)10COOH PhNH2 No solvent/Mg/2 h/160 �C 25

6 CH3(CH2)10COOH PhNH2 Toluene/Mg/2 h/160 �C 79

7 PhCOOH PhNH2 Toluene/Mg/2 h/160 �C Trace

8 PhCOOH p-CH3PhNH2 Toluene/Mg/2 h/160 �C Trace

9 PhCOOH CH3(CH2)11NH2 Toluene/Mg/2 h/160 �C Trace

10 CH3COOH CH3(CH2)11NH2 Toluene/Mg (stoichiometric amounts)/2 h/160 �C –

a In all cases: 30 mmol % Mg, 3 cm3 toluene
b Yield after crystallization (MeOH/acetone/H2O)
c Stoichiometric amount of Mg was used (entry 10)

Scheme 1
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proceeds via the magnesium carboxylate salt. However, not

the product was detected even in trace amounts after the

specified time (entry 10).

A most reliable mechanism for the amidation reaction is

shown in Fig. 1. According to the proposed mechanism,

initially part of Mg atoms forms Mg2? ions by very slow

reaction with higher aliphatic carboxylic acids. In this case,

the resulted Mg2? ions display electrophilic assistance to

nucleophilic attack of amine on the carbonyl group of the

carboxylic acid by acting as a Lewis acid to give tetrahe-

dral intermediate. This tetrahedral intermediate then

undergoes water elimination and lose proton to yield the

desired amide at the specified time (2 h).

In summary, a practical method for direct conversion of

aliphatic carboxylic acids into N-aryl or N-alkyl amides has

been developed. The method is fast and requires no special

coupling reagents. In addition, the amides were obtained in

moderate to excellent yields by simple crystallization

(67–99 %).

Experimental

All commercial reagents and solvents were purchased from

either Merck or Sigma-Aldrich and used without further

purification. Before use, magnesium powder was activated

by heating in an oven at 150 �C for 2 h. Thin-layer chro-

matography was performed using silica gel (60 F254,

Merck, Darmstadt, Germany) plates. Melting points were

recorded by BÜCHI melting point B-540 apparatus (BU-

CHI Labortechnik AG in Flawil, Switzerland). The NMR

spectra were measured using a Varian mercury plus spec-

trometer (400 MHz; Varian Inc., California, USA) in

CDCl3 using tetramethylsilane (TMS) as an internal stan-

dard. Chemical shifts (d) are reported in ppm and J values

in Hertz.

Typical amidation procedure

In a 50 cm3 flat-bottomed one-necked flask, 0.91 g do-

decanoic acid (4.54 mmol) was dissolved in 3 cm3 of

toluene. Then, 0.42 g aniline (4.54 mmol) and Mg powder

(30 mmol %) was added. The flask was attached to a reflux

condenser and heated under atmospheric conditions in an

oil bath at 160 �C for 2 h. After the reflux period, the

reaction mixture was cooled slightly, 10 cm3 of acetone

was added and the magnesium powder filtered off under

vacuum. The clear filtrate was concentrated in vacuo and

the residue crystallized from MeOH/acetone/H2O to give

white bright needles (0.98 g).

Table 2 Direct conversion of

aliphatic acids into amides
Entry Acid Amine Amide Yield /%b

1 CH3(CH2)10COOH Ph-NH2 1a 79

2 CH3(CH2)10COOH p-CH3-Ph-NH2 1b 83

3 CH3(CH2)10COOH p-CH3O-Ph-NH2 1c 72

4 CH3(CH2)10COOH Ph-CH2-NH2 1d 79

5 CH3(CH2)10COOH 1-Naphtyl-NH2 1e 67

6 CH2=CH(CH)8COOH Ph-NH2 1f 94

7 CH2=CH(CH)8COOH Ph-CH2-NH2 1g 96

8 CH3CH2COOH CH3(CH2)15NH2 1h 98

9 CH3(CH2)14COOH CH3(CH2)7NH2 1i 99

10 CH3(CH2)14COOH CH3(CH2)11NH2 1j 99

aReaction conditions: Toluene / Mg / 2 h / 160 °C
bYield after crystallization (MeOH / acetone / H2O)
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N-Phenyldodecanamide (1a)

White bright needles; yield 79 %; m.p.: 79–80 �C (Ref.

[53, 54] 77–78, 79–80 �C).

N-(p-Tolyl)dodecanamide (1b)

White bright needles; yield 83 %; m.p.: 83–84 �C (Ref.

[37, 54] 83–84, 85–86 �C).

N-(p-Methoxyphenyl)dodecanamide (1c)

Gray bright crystals; yield 72 %; m.p.: 105–106 �C (Ref.

[54, 55] 104–105, 90–92 �C).

N-Benzyldodecanamide (1d)

White bright crystals; yield 79 %; m.p.: 83.5–84.5 �C (Ref.

[56] 82 �C).

N-(Naphthalen-1-yl)dodecanamide (1e, C22H31NO)

Gray solid; yield 67 %; m.p.: 106–107 �C; FT-IR (ATR):

v = 3,310, 3,028, 2,917, 2,850, 1,659, 1,595, 1,525, 1,464,

1,405, 1,373, 1,351, 1,329, 1,310, 1,295, 1,270, 1,250,

1,208, 1,181, 1,113, 1,082, 961, 814, 771, 719 cm-1; 1H

NMR (400 MHz, CHCl3): d = 7.97 (s, 1H), 7.86–7.85 (m,

2H), 7.67 (d, 2H, J = 8.0 Hz), 7.49–7.41 (m, 3H), 2.46 (t,

2H, J = 7.2 Hz), 1.77 (quin, 2H, J = 6.8 Hz), 1.40–1.27

(m, 16H), 0.88 (t, 3H, J = 6.8 Hz) ppm; 13C NMR

(100 MHz, CDCl3): d = 172.15, 134.08, 132.30, 128.72,

127.30, 126.20, 125.93, 125.78, 125.71, 121.22, 120.73,

37.65, 31.93, 29.64, 29.55, 29.42, 29.37, 25.91, 22.72,

14.16 ppm.

N-Phenylundec-10-enamide (1f)

Slightly brown solid; yield 94 %; m.p.: 65–66 �C (Ref.

[57] 67–68 �C).

N-Benzylundec-10-enamide (1 g)

White crystals; yield 96 %; m.p.: 62–63 �C; the 1H NMR

spectrum agrees with the one given in [58].

N-Hexadecylpropanamide (1 h, C19H39NO)

White solid; yield 98 %; m.p.: 68–69 �C; FT-IR (ATR):

v = 3,309, 2,917, 2,849, 1,638, 1,548, 1,472, 1,375, 1,283,

1,268, 1,248, 1,231, 1,209, 1,188, 1,158, 1,119, 1,081,

1,057, 1,016, 992, 955, 921, 892, 719, 698 cm-1; 1H NMR

(400 MHz, CHCl3): d = 5.55 (br s, 1H), 3.24 (q, 2H,

J = 7.2 Hz), 2.20 (q, 2H, J = 7.6 Hz), 1.49 (quin, 2H,

J = 6.8 Hz), 1.28–1.25 (m, 26H), 1.16 (t, 3H, J = 7.6 Hz),

0.88 (t, 3H, J = 7.2 Hz) ppm; 13C NMR (100 MHz,

CDCl3): d = 173.70, 39.52, 31.92, 29.78, 29.69, 29.65,

29.58, 29.55, 29.36, 29.31, 26.92, 22.70, 14.13, 9.96 ppm.

N-Octylhexadecanamide (1i)

White solid; yield 99 %; m.p.: 77–78 �C (Ref. [59]

78–79 �C).

N-Dodecylhexadecanamide (1j)

White solid; yield 99 %; m.p.: 85–86 �C (Ref. [59]

86–87 �C).
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