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ABSTRACT: Allosteric kinase inhibitors represent a promising new therapeutic strategy for targeting kinases harboring oncogenic 
driver mutations in cancers.  Here, we report the discovery, optimization, and structural characterization of allosteric mutant-
selective EGFR inhibitors comprising a 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one scaffold. Our structure-based 
medicinal chemistry effort yielded an inhibitor (3) of the EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) mutants with 
an IC50 of ~10 nM and high selectivity, as assessed by kinome profiling. Further efforts to develop allosteric dibenzodiazepinone 
inhibitors may serve as the basis for new therapeutic options for targeting drug-resistant EGFR mutations.  
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Fig. 1. Chemical structures of EAI001, EAI045, JBJ-04-125-
02 and 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one 
allosteric EGFR inhibitors described in this work. 

Activating mutations of the epidermal growth 
factor receptor (EGFR), e.g. L858R and in-frame exon 19 
deletions, give rise to non-small cell lung cancer and confer 
sensitivity to EGFR-targeted tyrosine kinase inhibitors 
(TKIs) such as gefitinib and erlotinib.1-2 Acquired resistance 
to these TKIs occurs predominantly by the acquisition of a 
T790M ‘gatekeeper’ mutation, which enhances ATP binding 
to the EGFR kinase.3-4 Selective inhibition of T790M-
positive tumors is accomplished with third-generation TKIs 

(e.g. WZ4002, osimertinib) that irreversibly form a covalent 
bond with C797 at the edge of the ATP binding site.5-6 
Tumors acquire resistance to these inhibitors, in ~20-25% of 
cases, by the further acquisition of a C797S mutation 
rendering these inhibitors ineffective by preventing the 
formation of the potency-conferring covalent bond.7-8 
Therefore, continued development of inhibitors is required to 
address mutations that confer resistance to first- and third-
generation EGFR targeting TKIs.

Accordingly, we sought to discover small-molecule 
inhibitors of activating EGFR mutations that act through an 
alternative, allosteric binding mode.9 To that end, we 
recently reported a mutant-selective EGFR allosteric 
inhibitor (EAI001 Fig. 1) which binds a pocket adjacent to 
the ATP-binding site, affording exquisite selectivity for the 
mutant kinase compared to WT EGFR.10 Initial optimization 
of this hit produced EAI045 (Fig. 1), which exhibited 1000-
fold selectivity for L858R/T790M EGFR compared to WT. 
However, EAI045 showed minimal cellular activity owing 
to this compounds inability to bind the allosteric pocket of 
the active state, where the αC-helix is positioned inward, on 
the receiver subunit of the active EGFR asymmetric kinase 
dimer.11 EAI045 was rendered effective at regressing 
L858R/T790M/C797S tumors in vivo upon co-treatment 
with the EGFR monoclonal antibody cetuximab, which 
disrupts the formation of active EGFR dimers.10 Further 
efforts produced a more potent analog (JBJ-04-125-02, Fig. 
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1), which incorporates a phenylpiperazine on the C6 position 
of the EAI045 isoindolinone moiety and is capable of acting 
as a single-agent inhibitor in EGFR L858R/T790M/C797S 
cells and genetically engineered mouse models.12 
Furthermore, dual targeting of EGFR with JBJ-04-125-02 
and osimertinib was found to be more effective in vitro and 
in vivo than either single agent alone.12

In this study, we sought to evaluate a second series 
of allosteric mutant-selective EGFR inhibitors. As 
previously described, EAI001 was discovered in a screen for 
mutant-selective inhibitors of EGFR(L858R/T790M).10, 13 
The same screen also yielded EAI002 comprising of a 5,10-
dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one scaffold 
(Fig. 1), which selectively inhibited L858R/T790M with a 
biochemical IC50 of 52 nM compared to >1000 nM for WT. 
Subtle optimization of this hit compound via a fluorine shift 
afforded DDC4002 (Fig. 1), which exhibited mutant-
selective nanomolar biochemical IC50 values against 
L858R/T790M and L858R/T790M/C797S compared to WT 
(Table 1). Intriguingly, DDC4002 resembles previously 
reported ATP-competitive, selective checkpoint kinase 1 
(Chk1) inhibitors,14 however, selective benzylation of the 
core amide precludes active site binding by abrogating 
critical hydrogen bonding contacts to the hinge likely 
favoring redirection to the allosteric site.

To define the inhibitor binding mode, we 
determined crystal structures of EGFR(T790M/V948R) in 
complex with EAI002 and DDC4002 (Fig. 2 & S1-4). 
Expectedly, both inhibitors are bound to the kinase domain 
in an allosteric pocket adjacent to the ATP-binding site (Fig. 
2A), as observed previously for EAI00110 and JBJ-04-125-
0212. The 7-membered diazepinone ring of DDC4002 is 
puckered inward toward the αC-helix (Fig. 2B) with the 8-
fluorobenzene ring bound within the hydrophobic back 
pocket and the unsubstituted benzene ring along the αC-helix 
positioned out toward solvent. The benzyl substituent 
extends toward the kinase N-lobe, bound in between AMP-
PNP and side chains of K745, L788, and the T790M 
gatekeeper mutation. While the inhibitor mostly forms 
hydrophobic interactions, the diazepinone N-H forms a H-
bond with the backbone carbonyl of F856 in the DFG motif 
(red dotted line Fig. 2B). Additionally, the crystal structure 
of EAI002 contains four EGFR chains in the asymmetric 
unit all with EAI002 bound in the allosteric site, but with 
only one AMP-PNP and three AMP bound in the ATP site, 
presumably from AMP-PNP hydrolysis. The binding of 
either AMP-PNP or AMP does not impact the EAI002 
binding mode.

Additionally, we determined a crystal structure of 
EGFR(T790M/V948R) in complex with the phenylglycine 
EAI045 (Fig. S1B and S4). Similar to EAI00110 and JBJ-
04-125-02,12 EAI045 binds exclusively in the R 
configuration. Structural alignment of the kinase domains 
reveals that, despite distinct chemical structures, the binding 
mode of the dibenzodiazepinone inhibitors has significant 
overlap with that of the phenylglycines (Fig. 2C and S3). 
Specifically, both scaffolds exhibit H-bonding to the 
backbone carbonyl of F856 as well as fluorobenzene 
moieties positioned toward the hydrophobic cleft at the back 
of the pocket. These conserved interactions confirm that 
these apparently unrelated scaffolds are anchored to the 
allosteric site through conserved interactions. Additionally, a 

recent EAI045 crystal structure bound to 
T790M/C797S/V948R in the absence of AMP-PNP shows 
limited variance in EAI045 binding mode indicating that 
allosteric inhibitor binding to EGFR is structurally agnostic 
to the presence of ATP binding.15 

To swiftly access the selectively substituted fused 
[6-7-6] tricyclic core, we streamlined our original route 
(Route A, Scheme 1) to a versatile, concise 2-step synthesis 
involving a tandem copper(I)-catalyzed intramolecular 
Ullmann condensation (Route B, Scheme 1).16 Based on the 
binding mode of DDC4002 (Fig. 2B), we hypothesized that 
functionalization at the C2 position would be capable of 
enhancing biochemical potency of these inhibitors, in a 
similar manner to that observed for EAI045 and JBJ-04-
125-02.12 Following the latter example, coupling of a 4-
(piperazinyl)phenyl substituent to C2 (1, Scheme 1) 
productively enhanced the potency of this scaffold. 
Structure-activity relationships revealed that engineering 
flexibility at this position via an Ullmann biaryl ether linkage 
(2 and 3, Scheme 1) modestly improved the effectiveness of 
these inhibitors, with 3 exhibiting biochemical potencies 
similar to EAI045 against L858R/T790M and 
L858R/T790M/C797S.

To establish that these compounds inhibit EGFR 
through an allosteric mechanism, biochemical IC50 values 
were measured at varying ATP concentrations spanning 1 to 
1000 µM (Table S1). Indeed, compounds 2 and 3 showed no 
significant variance with [ATP] consistent with allosteric 
inhibition. This further supports that the 
dibenzodiazepinones are effective inhibitors of mutant 
EGFR, operating in an allosteric mechanism as characterized 
crystallographically (Fig. 2). 

We additionally determined the impact of EGFR 
inhibition on cellular proliferation in transformed murine 
Ba/F3 cells. All compounds were found to be ineffective at 
limiting Ba/F3 proliferation due to EGFR dimer-induced 
resistance as we have observed previously (Table S2).10 Co-
treatment with cetuximab (1 μg/mL) establishes this to be 
the case and leads to productive inhibition of L858R/T790M. 
Consistent with their biochemical potencies, 
dibenzodiazepinones with biaryl ether moieties (2 and 3) 
exhibit the best effect in combination with cetuximab with 
IC50 of ~ 0.2-0.4 µM against L858R/T790M and 
L858R/T790M/C797S cells. Compounds 1-3 were not 
amenable to crystallographic characterization, but we expect 
that the phenylpiperazine group extends along the αC-helix 
to enhance the potency of 1-3 relative to DDC4002 in a 
manner analogous to that observed for JBJ-04-125-02.12 
While these dibenzodiazepinone-based inhibitors are 
effective mutant-selective inhibitors of EGFR in a cellular 
context, they are still critically reliant on co-treatment with 
cetuximab.

We next sought to assess the selectivity of the best 
performing inhibitor (3) against a panel of 468 kinases via 
KINOMEscan profiling (DiscoverX). At a concentration of 
10 μM, 3 displayed excellent selectivity across the human 
kinome with S-Score(35) = 0.01 (Fig. S5, Table S4). While 
the KINOMEscan shows binding of 3 to EGFR WT and 
mutants, the results from activity and cellular assays indicate 
more reliable and robust selectivity for the oncogenic mutant 
targets (Table 1). Except for the expected WT EGFR and 
EGFR mutants, only two additional targets, SLK and 
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KIT(V559D/V654A), were identified. We confirmed these 
hits to be false positives of 3 with SLK and 
KIT(V559D/V654A) (Kd > 10 μM; KINOMEscan 
KdELECT, DiscoverX) and confirmed no impact on SLK 
enzymatic activity (IC50 > 10 µM; Invitrogen, 
LanthaScreen). Although it is a valuable survey tool for 
assessing kinase selectivity, in our experience, 
KINOMEScan profiling does not correlate with enzymatic 
and cellular potencies as we have recently shown in the case 
of JBJ-04-125-02.12 

In conclusion, we have discovered and optimized 
an allosteric mutant-selective EGFR inhibitor based on the 
dibenzodiazepinone scaffold. As the presently established 
mutant-selective allosteric EGFR inhibitors consist of a 
phenylglycine scaffold,10, 12 the compounds described here 
demonstrate that diverse chemical scaffolds are capable of 
acting as mutant-selective EGFR inhibitors while preserving 
essential structural elements that anchor the inhibitors to the 
allosteric pocket. Therefore, this discovery expands the 

opportunity to discover additional chemical series as 
allosteric EGFR inhibitors. Our structure-based medicinal 
chemistry effort yielded an inhibitor (3) of the 
EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) 
mutants with an IC50 of ~10 nM and high selectivity, as 
assessed by kinome profiling. Co-treatment with cetuximab 
resulted in antiproliferative activity in EGFR-mutant Ba/F3 
cells. Together with the previously reported 
dibenzodiazepine-based inhibitors of PAK1, which bind a 
closely related but distinct allosteric pocket, these 
compounds potentially indicate a broader application of 
benzodiazepine compounds as allosteric kinase inhibitors.17 
Additionally, dibenzodiazepinone compounds represent new 
additions to the growing list of allosteric inhibitors for kinase 
targets, as previously explored for MEK,18-19 BCR-ABL1,20 
and others.21-22 We plan to further optimize physicochemical 
and pharmacokinetic properties to produce more effective 
mutant-selective allosteric EGFR inhibitors, which is the 
subject of on-going efforts.  

Fig. 2. Structure and binding mode of a dibenzodiazepinone EGFR allosteric inhibitor. A) Overall view of the structure of 
EGFR(T790M/V948R) bound to DDC4002 and AMP-PNP (PDB 6P1D). The V948R mutation enables the kinase domain to 
crystallize in the inactive state. DDC4002 is shown in CPK spheres with green carbon atoms. B) Detailed view of DDC4002 bound 
to the allosteric pocket with AMP-PNP. P-loop and A-loop segments are hidden for clarity. C) View of DDC4002 (green) and 
EAI045 (PDB 6P1L, white) from the overlay of crystal structures. 

Scheme 1. Synthetic routes (A,B) for synthesis of 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-ones DDC4002 and 
compounds 1-3a
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aReagents and conditions: [i] SOCl2, DMF, Δ; [ii] 5-fluoro-2-iodoaniline, Et3N, CH2Cl2, 0 °C to RT, 81 %, two steps; [iii] 
BnBr, NaH, THF, 0 °C to 40 °C; [iv] Fe, NH4Cl, THF/MeOH/H2O, 50 °C, 72 %, two steps; [v] CuI, K2CO3, DMSO, 135 °C, 
64 %; [vi] benzylamine, EDC.HCl, HOBt, DIEA, DMF, 87 %; [vii] 4-fluoro-2-iodoaniline, CuI, K2CO3, DMSO, 80 °C to 
135 °C, 44 %; [viii] BBr3, CH2Cl2, -20 °C to RT, 85 %; [ix] tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)piperazine-1-carboxylate, PdCl2(dppf), XPhos, 2 N Na2CO3, 1,4-dioxane, 100 °C; [x] TFA, CH2Cl2, 45 %, two 
steps; [xi] 1-(4-iodophenyl)-4-methylpiperazine (3) or tert-butyl 4-(4-iodophenyl)piperazine-1-carboxylate (13), CuI, L-
Proline, K2CO3, DMSO, 80 °C, (3 36 %); [xii] TFA, CH2Cl2, 30 %, two steps.

Table 1. Biochemical activities and antiproliferative activities of a panel of EGFR allosteric inhibitors. aIC50 values 
were measured from a single experiment in triplicate. ATP concentration was 100 µM. Errors are reported as ± standard 
error. bIC50 values were measured from a single experiment with 3 replicates. Errors are reported as ± standard deviations.

EGFR Biochemical Activity
 IC50 (nM)a

 Antiproliferative Activity
Ba/F3 + Cetuximab 

IC50 (µM)bCompound 
ID

WT L858R L858R/
T790M

L858R/
T790M/
C797S

WT L858R L858R/
T790M

L858R/
T790M/
C797S

EAI045 > 1000 8.8±0.9 2.0±0.5 4.7±0.3 >10 0.84±0.7 0.47±0.2 0.25±0.2

DDC4002 > 1000 690±120 39±4 59±8 9.7±0.5 >10 1.5±0.4 1.2 ± 0.3

1 > 1000 150±23 31±2 19±3 4.1±1 3.7±0.1 0.77 ± 0.1 0.93 ± 0.2

2 > 1000 130±12 12±0.9 23±4 4.0±1 3.8±0.5 0.35 ± 0.07 0.35 ± 0.2

3 > 1000 154±15 11±2 13±0.8 3.2±0.8 2.7±1 0.36 ± 0.2 0.20 ± 0.08
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