Downloaded by: University of Pittsburgh. Copyrighted material.

Synthesis of 1,4-Diaminoazaanthraquinone Derivatives

Kevin T. POTTS*, Debkumar BHATTACHARJEE

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181, U.S.A.

Recent reports¹ show that *trans,trans*-1,4-bis[ethoxycarbonylamino]-1,3-butadiene (1) behaves as an electron-rich diene in cycloadditions with maleic anhydride, tetracyanoethylene, 1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone, dimethyl acetylenedicarboxylate and other dienophiles providing a variety of substituted benzenoid systems. We have also utilized this diene in cycloadditions leading to several 1,4-diaminoazaanthraquinone derivatives related to the 1,4-bis[(aminoalkyl)amino]-9,10-anthracenediones, of current interest in cancer chemotherapy²⁻⁶.

Reaction of 5,8-quinolinedione (2a; $Y^1 = Y^2 = CH$, $Y^3 = N$) with the diene 1 in dimethylformamide solution at 80 °C gave the deep-red 1,4-diamino product 4a ($Y^1 = Y^2 = CH$; $Y^3 = N$).

0039-7881/83/0132-0031-01 \$ 03.00

© 1983 Georg Thieme Verlag · Stuttgart · New York

Table. 1,4-Diaminoazaanthraquinone Derivatives

Product No. Y ¹		\mathbf{Y}^2	Y^3	Yield [%]	m.p. ^a [°C]	Molecular formula ^b	1.R. (KBr) $v_{C=0}$ [cm ⁻¹]	1 H-N.M.R. (CDCl ₃ , 200 MHz) δ [ppm]	M.S. <i>m/e</i> (M ⁺ , 100%)
4a	СН	СН	N	62	256-257°	C ₁₉ H ₁₇ N ₃ O ₆ ·0.5 H ₂ O (392.4)	H ₂ O 1725; 1.39 (2t, 6H, J=7.8 Hz); 4.3 1605 (2q, 4H, J=7.8 Hz); 7.79 (t 1H); 8.66 (m, 1H); 9.02 (t 1H); 9.04 (s, 1H); 9.16 (t	1.39 (2t, 6H, J=7.8 Hz); 4.32 (2q, 4H, J=7.8 Hz); 7.79 (m, 1H); 8.66 (m, 1H); 9.02 (s, 1H); 9.04 (s, 1H); 9.16 (m, 1H)	,
4b	СН	N	СН	56	269-271°	$C_{19}H_{17}N_3O_6$ (383.4)	1725; 1625	1.24 (t, 6 H, J = 7.8 Hz); 4.17 (q, 4 H, J = 7.8 Hz); 7.96 (d, 1 H, J = 5.2 Hz); 8.87 (s, 1 H); 8.88 (s, 1 H); 9.00 (d, 1 H, J = 5.2 Hz); 9.44 (s, 1 H)	383
4c	N	N	СН	52	240-245° (dec.)	C ₁₈ H ₁₆ N ₄ O ₆ (384.3)	1730; 1635	1.38 (t, 3 H, J =7.8 Hz); 1.39 (t, 3 H, J =7.8 Hz); 4.32 (q, 2 H, J =7.8 Hz); 4.33 (q, 2 H, J =7.8 Hz); 4.33 (q, 2 H, J =7.8 Hz); 9.11 (s, 2 H); 9.77 (s, 1 H); 9.79 (s, 1 H)	384
6			_	58	282-284°	$C_{20}H_{20}N_4O_6$ (412.4)	1735; 1635	1.34 (t, 6 H, J=7.8 Hz); 2.86 (s, 6 H); 4.30 (q, 4 H, J=7.8 Hz); 9.04 (s, 2 H)	412

All products are crystallized from ethanol/dichloromethane as deep-red, irregular prisms.

The initial 1:1 cycloadduct 3 was not isolated, apparently undergoing oxidation by atmospheric oxygen to 4 under reaction work-up conditions. Use of 5,8-isoquinolinedione (2b; $Y^1 = Y^3 = CH$; $Y^2 = N$) and 2,3-dimethylquinoxalinedione (5) in the cycloaddition with 1 gave the corresponding azaanthraquinones 4b ($Y^1 = Y^3 = CH$; $Y^2 = N$) and 6, respectively. The physical characteristics of these products are shown in the Table.

5,8-Bis[ethoxycarbonylamino]-1-aza-9,10-anthraquinone (4a;

 $Y^1 = Y^2 = CH$, $Y^3 = N$); Typical Procedure:

A solution of 5,8-quinolinedione (2a; $Y^1 = Y^2 = CH$, $Y^3 = N$; 0.5 g, 0.003 mol), trans.trans-1,4-bis[ethoxycarbonylamino]-1,3-butadiene (1;

0.6 g, 0.003 mol), and hydroquinone (5 mg) in anhydrous dimethylformamide (7 ml) is kept overnight at $80\,^{\circ}$ C, stirring being maintained throughout. A deep-red precipitate forms and, after thorough cooling of the reaction mixture ($-10\,^{\circ}$ C), the red product is collected, washed with dry ether, and dried: yield: 0.63 g (62%); m.p. 249-252 °C. It is crystallized from 95% ethanol/dichloromethane as deep-red, irregular prisms; m.p. 256-257 °C.

 $C_{19}H_{17}N_3O_6 \cdot 0.5 H_2O$ calc. C 58.16 H 4.62 N 10.71 (392.4) found 58.11 4.65 10.68

Support of this work by U.S. Public Health Service Research Grant CA 24969, National Cancer Institute, is gratefully acknowledged.

Received: July 6, 1982

-COOC₂H₅

ŃΗ

6

^b Satisfactory microanalyses obtained: C ± 0.35 , H ± 0.05 , N ± 0.36 .

R. R. Schmidt, A. Wagner, Synthesis 1981, 273.

K. C. Murdock, R. G. Child, P. F. Fabio, R. B. Angier, J. Med. Chem. 22, 1024 (1979).

³ R. K. Johnson, R. K.-Y. Zee-Cheng, W. W. Lee, E. M. Acton, D. W. Henry, C. C. Cheng, *Cancer Treat. Reports* 63, 425 (1979).

⁴ R. K.-Y. Zee-Cheng, E. G. Podrebarac, C. S. Menon, C. C. Cheng J. Med. Chem. 22, 501 (1979).

R. K.-Y. Zee-Cheng, C. C. Cheng, J. Med. Chem. 21, 291 (1978).

⁶ C. C. Cheng, G. Zbinden, R. K.-Y. Zee-Cheng, J. Pharm. Sci. 68 393 (1979).