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Catalytic dehydrogenative Si–N coupling of pyrroles,
indoles, carbazoles as well as anilines with hydrosilanes
without added base†

C. David F. Königs, Maria F. Müller, Nuria Aiguabella, Hendrik F. T. Klare and
Martin Oestreich*

A base-free, catalytic protocol for the dehydrogenative Si–N

coupling of weakly nucleophilic N–H groups of heteroarenes or

aryl-substituted amines with equimolar amounts of hydrosilanes

is reported. Cooperative Si–H bond activation at a Ru–S bond

generates a silicon electrophile that forms a Si–N bond prior to

the N–H deprotonation by an intermediate Ru–H complex, only

releasing H2.

The formation of Si–N bonds is relevant to various areas of
synthetic chemistry.1 N–H bond silylation is one way to tem-
porarily protect amino groups,2 in particular the N–H group in
indoles and pyrroles.3 Their silylated derivatives are prevalent
building blocks for the construction of heteroarene-based
complex molecules. The Si–N bond is relatively labile though,
and N-silylated anilines have been employed as silylating
agents themselves.4 The transition metal-catalysed synthesis
of oligo-5 or polysilazanes6 is another significant application of
Si–N coupling.

A silicon group is usually introduced at the nitrogen atom by
a deprotonation/silylation sequence using a strong base and a
halosilane.2,7 The formation of stoichiometric amounts of salt
is an issue in this approach. The direct coupling of N–H and
Si–H bonds is an attractive alternative that, ideally, generates
dihydrogen as the sole by-product. Several dehydrogenative
Si–N couplings are known today8 but generality and control
of the chemoselectivity remain challenging. The latter was
recently accomplished by Sadow et al.9a and Cui et al.9b in the
direct catalytic mono-coupling of RnSiH4�n (with n = 1 and 2).
Parallel to these current developments, progress has also been
made toward the elusive dehydrogenative Si–N coupling of
heteroarenes.10 The methods reported by Tsuchimoto et al.10b

and Mizuno et al.10c are broadly applicable and robust but
require the addition of an external base (stoichiometric and

catalytic, respectively) and a nitrile solvent as a H2 acceptor. We
disclose herein a base- and H2 acceptor-free protocol for the
catalytic dehydrogenative Si–N coupling of both N–H group-
containing heteroarenes and aryl-substituted amines that
follows an unusual silylation/deprotonation sequence.

Our laboratory, in collaboration with Ohki and Tatsumi,
introduced the cooperative activation of Si–H bonds at the
polar Ru–S bond11 of the coordinatively unsaturated, tethered
ruthenium complex 112 (left, Fig. 1). The heterolytic splitting of
the Si–H bond (in analogy to H2 activation13) results in the
formation of a Ru–H complex and a silicon electrophile, a
sulfur-stabilized silicon cation (right, Fig. 1). This catalytic
entry into the chemistry of silicon cations has already allowed
for the development of a regioselective Friedel–Crafts-type
indole silylation11 and a chemoselective, dehydrogenative sily-
lation of enolizable carbonyl compounds.14 The same reaction
setup applied to weakly nucleophilic N–H groups now results in
Si–N bond formation together with liberation of H2.

Our investigation began with the N-silylation of indole
(2) using Me2PhSiH (3a) that we had used in our earlier
C-3-silylation of N-protected indoles11 (Scheme 1). For an
equimolar mixture of indole and silane, full conversion was
reached after 1 h at 60 1C using 1 mol% of 1. The expected
N-silylated indole 4a was, however, contaminated with sub-
stantial amounts of the cognate indoline 5a in a ratio of 76 : 24.
This ratio improved with prolonged reaction times in favour of
the protected indole, e.g., 92 : 8 after 12 h. We have shown
before that 1 is capable of (reversible) indoline-to-indole
dehydrogenation.11

Fig. 1 Tethered complex 1 with a polar Ru–S bond in Si–H bond activation
[ArF = 3,5-bis(trifluoromethyl)phenyl and Si = triorganosilyl].
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We then turned our attention to the screening of different
triorganosilanes 3 in the dehydrogenative Si–N coupling of
3-methylindole15 as well as pyrrole (6 - 8 and 7 - 9,
Table 1). For the indole, sterically less demanding silanes
3a–3c afforded excellent isolated yields whereas 3d and 3e did
not react even at higher temperature (columns 3–5). For pyr-
role, similar observations were made, yet requiring higher
temperature and excess pyrrole (columns 6–8). It is somewhat
unfortunate that iPr3SiH (3e) is not activated by catalyst 1 for
steric reasons because the iPr3Si group is a commonly used
protective group for these heteroarenes. By using an excess of
3a (10 equiv.), we examined the possibility of double silylation,
that is N-silylation and subsequent Friedel–Crafts C-3-silylation
of indole and pyrrole (2 - 10a and 7 - 11a, Scheme 2).
Upon prolonging the reaction time (18 h instead of 1 h), doubly
silylated 10a (along with 5a) and 11a were formed in high yields.

These findings are in accordance with previous results for
N-protected indoles.11

We next examined the scope of the indole motif, substituted
and unsubstituted at the C-3 atom (12–16, Table 2, entries 1–5).
All of them underwent clean Si–N coupling in good to excellent
yields. Aside from pyrrole and indole, carbazole also partici-
pated in this dehydrogenative N-silylation (17, Table 2, entry 6).
These results compare well with the reports by Tsuchimoto
et al.10b and Mizuno et al.10c (vide supra). The fact that these
heteroarenes are sufficiently nucleophilic encouraged us to also
test aryl-substituted amines with enhanced nucleophilicity
(24–30, Table 3, entries 1–7). Indoline, essentially an aniline
derivative, was dramatically more reactive than indole, yielding
complete conversion in n-hexane after 5 min at ambient
temperature (entry 1); indoline-to-indole oxidation only occurs
at elevated temperatures (cf. Scheme 1).11 Various substituted
anilines displayed the same reactivity (Table 3, entries 2–7). It is
worthy of note that the CF3 group in 29 remains intact under
these conditions.16

The chemoselectivity of our catalytic Si–N coupling was
probed in the selective monoamination of dihydrosilane

Scheme 1 Dehydrogenative Si–N coupling of indole: reversible indoline-to-
indole dehydrogenation catalysed by 1.

Table 1 Screening of different triorganosilanes

Entry Si–H

3-Methylindole (6) Pyrrole (7)

Temp.
(1C) Product

Yieldb

(%)
Temp.
(1C) Product

Yieldb

(%)

1 Me2PhSiH (3a) 60 8a 97 90 9a 91
2 MePh2SiH (3b) 60 8b 90 90 9b 88
3c EtMe2SiH (3c) 60 8c 94 90 9c —d

4 Et3SiH (3d) 90 8d —d 90 9d 90
5 iPr3SiH (3e) 90 8e —d 90 9e —d

a Conversion was monitored by GLC analysis and is based on the
consumption of 3. b Isolated yield after catalyst removal by filtration
through a short plug of deactivated silica gel. c Volatile at elevated
temperatures, used in toluene (0.5 M). d No reaction.

Scheme 2 Probing double silylation of indole and pyrrole.

Table 2 Dehydrogenative Si–N coupling of indoles and carbazole

Entry Substrate Silylated product Yieldb (%)

1 89c

2 91

3 96d

4 89

5 92

6 76

a See Table 1. b See Table 1. c Contaminated with trace amounts of
(Me2PhSi)2O. d Approximately 10% of the cognate indoline detected.
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Ph2SiH2 (3f) and aniline (26 - 32f, Scheme 3). With 1 equiv. of
26 at room temperature, only one Si–H bond of 3f was cross-
coupled. With subsequent addition of another equivalent of 26
at elevated temperature, the remaining Si–H bonds also under-
went the cross-coupling (26 - 37f, Scheme 3).

To summarize, we accomplished an efficient protocol for the
base-free dehydrogenative Si–N coupling of monohydrosilanes
and weakly to moderately nucleophilic N–H groups. Pyrroles,
indoles and carbazoles fall into the former and anilines into the
latter category. Alkyl-substituted amines are not compatible
with coordinatively unsaturated complex 1, thwarting Si–H

bond activation due to amine coordination (for a tentative
mechanism, see the ESI†). Moreover, selective mono-coupling
of a dihydrosilane and exactly 1.0 equiv. of aniline is feasible.
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Table 3 Dehydrogenative Si–N coupling of indoline and anilines

Entry Substrate Silylated product Yieldb (%)

1 95

2 92

3 87

4 85

5 96

6 85

7 94

a See Table 1. b See Table 1.

Scheme 3 Probing chemoselective formation of silylamines with aniline (26)
and Ph2SiH2 (3f).
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