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A base-free, catalytic protocol for the dehydrogenative Si-N
coupling of weakly nucleophilic N-H groups of heteroarenes or
aryl-substituted amines with equimolar amounts of hydrosilanes
is reported. Cooperative Si-H bond activation at a Ru-S bond
generates a silicon electrophile that forms a Si-N bond prior to
the N-H deprotonation by an intermediate Ru-H complex, only
releasing H,.

The formation of Si-N bonds is relevant to various areas of
synthetic chemistry." N-H bond silylation is one way to tem-
porarily protect amino groups,” in particular the N-H group in
indoles and pyrroles.® Their silylated derivatives are prevalent
building blocks for the construction of heteroarene-based
complex molecules. The Si-N bond is relatively labile though,
and N-silylated anilines have been employed as silylating
agents themselves.” The transition metal-catalysed synthesis
of oligo-® or polysilazanes® is another significant application of
Si-N coupling.

A silicon group is usually introduced at the nitrogen atom by
a deprotonation/silylation sequence using a strong base and a
halosilane.>” The formation of stoichiometric amounts of salt
is an issue in this approach. The direct coupling of N-H and
Si-H bonds is an attractive alternative that, ideally, generates
dihydrogen as the sole by-product. Several dehydrogenative
Si-N couplings are known today® but generality and control
of the chemoselectivity remain challenging. The latter was
recently accomplished by Sadow et al.* and Cui et al.°” in the
direct catalytic mono-coupling of R,SiH,_, (with n = 1 and 2).
Parallel to these current developments, progress has also been
made toward the elusive dehydrogenative Si-N coupling of
heteroarenes.'® The methods reported by Tsuchimoto et al.**”
and Mizuno et al.'® are broadly applicable and robust but
require the addition of an external base (stoichiometric and
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indoles, carbazoles as well as anilines with hydrosilanes
without added baset
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Fig. 1 Tethered complex 1 with a polar Ru-S bond in Si-H bond activation
[Arf = 3,5-bis(trifluoromethyl)phenyl and Si = triorganosilyl].

catalytic, respectively) and a nitrile solvent as a H, acceptor. We
disclose herein a base- and H, acceptor-free protocol for the
catalytic dehydrogenative Si-N coupling of both N-H group-
containing heteroarenes and aryl-substituted amines that
follows an unusual silylation/deprotonation sequence.

Our laboratory, in collaboration with Ohki and Tatsumi,
introduced the cooperative activation of Si-H bonds at the
polar Ru-S bond"" of the coordinatively unsaturated, tethered
ruthenium complex 1'? (left, Fig. 1). The heterolytic splitting of
the Si-H bond (in analogy to H, activation'®) results in the
formation of a Ru-H complex and a silicon electrophile, a
sulfur-stabilized silicon cation (right, Fig. 1). This catalytic
entry into the chemistry of silicon cations has already allowed
for the development of a regioselective Friedel-Crafts-type
indole silylation™* and a chemoselective, dehydrogenative sily-
lation of enolizable carbonyl compounds.** The same reaction
setup applied to weakly nucleophilic N-H groups now results in
Si-N bond formation together with liberation of H,.

Our investigation began with the N-silylation of indole
(2) using Me,PhSiH (3a) that we had used in our earlier
C-3-silylation of N-protected indoles'' (Scheme 1). For an
equimolar mixture of indole and silane, full conversion was
reached after 1 h at 60 °C using 1 mol% of 1. The expected
N-silylated indole 4a was, however, contaminated with sub-
stantial amounts of the cognate indoline 5a in a ratio of 76 : 24.
This ratio improved with prolonged reaction times in favour of
the protected indole, e.g., 92 : 8 after 12 h. We have shown
before that 1 is capable of (reversible) indoline-to-indole
dehydrogenation."*
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1 (1 mol%)
Me,PhSiH (3a)
H neat 'T‘ * TTI
1h @60 °C SiMe,Ph SiMe,Ph
2 (1 equiv.) > 99% conv. 4a 5a
4a:5a = 76:24 12h @60 °C
4a:5a =92:8 ] 91%

Scheme 1 Dehydrogenative Si-N coupling of indole: reversible indoline-to-
indole dehydrogenation catalysed by 1.

Table 1 Screening of different triorganosilanes

1 (1.0 mol%)

Si-H (3a—3e)
I\ (0equiv) AR
\ or _ or N
N H neat N |
H 1h é‘i Si
6 (1.0 equiv.) 7 (10 equiv.) >99% conv.? 8a—8e 9a-9e
3-Methylindole (6) Pyrrole (7)
Temp. Yield’ Temp. Yield”
Entry Si-H (°C)  Product (%) (°C)  Product (%)
1 Me,PhSiH (3a) 60 8a 97 90 9%a 91
2 MePh,SiH (3b) 60 8b 90 90 9b 88
3°  EtMe,SiH (3¢) 60 8c 94 90 9c —
4 Et;SiH (3d) 90 8d —4 90 od 90
5 iPr;SiH (3¢) 90 8e —4 90 9%e —4

“ Conversion was monitored by GLC analysis and is based on the
consumption of 3. ? Isolated yield after catalyst removal by filtration
through a short plug of deactivated silica gel. © Volatile at elevated
temperatures, used in toluene (0.5 M). ¢ No reaction.

We then turned our attention to the screening of different
triorganosilanes 3 in the dehydrogenative Si-N coupling of
3-methylindole'® as well as pyrrole (6 — 8 and 7 — 9,
Table 1). For the indole, sterically less demanding silanes
3a-3c afforded excellent isolated yields whereas 3d and 3e did
not react even at higher temperature (columns 3-5). For pyr-
role, similar observations were made, yet requiring higher
temperature and excess pyrrole (columns 6-8). It is somewhat
unfortunate that iPr;SiH (3e) is not activated by catalyst 1 for
steric reasons because the iPr;Si group is a commonly used
protective group for these heteroarenes. By using an excess of
3a (10 equiv.), we examined the possibility of double silylation,
that is N-silylation and subsequent Friedel-Crafts C-3-silylation
of indole and pyrrole (2 — 10a and 7 — 11a, Scheme 2).
Upon prolonging the reaction time (18 h instead of 1 h), doubly
silylated 10a (along with 5a) and 11a were formed in high yields.

1 (1.0 mol%)

oI Me,PhSiH (3a) - SiMe,Ph
& ﬂ (10 equiv.) & T/ \
N neat TN
H 18h @ 90 °C éiMeZPh
(1.0 equiv.) > 99% conv.
2 with indole 10a:5a (91:9): 90%
7 with pyrrole 11a: 90%

Scheme 2 Probing double silylation of indole and pyrrole.
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These findings are in accordance with previous results for
N-protected indoles."

We next examined the scope of the indole motif, substituted
and unsubstituted at the C-3 atom (12-16, Table 2, entries 1-5).
All of them underwent clean Si-N coupling in good to excellent
yields. Aside from pyrrole and indole, carbazole also partici-
pated in this dehydrogenative N-silylation (17, Table 2, entry 6).
These results compare well with the reports by Tsuchimoto
et al.'® and Mizuno et al.'® (vide supra). The fact that these
heteroarenes are sufficiently nucleophilic encouraged us to also
test aryl-substituted amines with enhanced nucleophilicity
(24-30, Table 3, entries 1-7). Indoline, essentially an aniline
derivative, was dramatically more reactive than indole, yielding
complete conversion in n-hexane after 5 min at ambient
temperature (entry 1); indoline-to-indole oxidation only occurs
at elevated temperatures (¢f Scheme 1)."* Various substituted
anilines displayed the same reactivity (Table 3, entries 2-7). It is
worthy of note that the CF; group in 29 remains intact under
these conditions."®

The chemoselectivity of our catalytic Si-N coupling was
probed in the selective monoamination of dihydrosilane

Table 2 Dehydrogenative Si-N coupling of indoles and carbazole

1 (1 mol%)
— /7 MePhSiH (3a) = S
¢ / \ \5/;) (1 equiv.) % / \ \5//,)
R N neat R N
1h@60°C SiMe,Ph
12-17 (1 equiv.) >99% conv.? 18a-23a

Entry Substrate Silylated product Yield” (%)
%\ N\
1 N 89°
B $
18a
Qi Qs
2 N N 91
H Si
13 19a
oy 3 :
3 N N 96
H Si
14 20a
Br Br.
Oy oy
N ITI 89
15 o
cl Cl
5 N\ N 92
H |

23a

@ See Table 1. % See Table 1. ¢ Contaminated with trace amounts of
(Me,PhsSi),0. ¢ Approximately 10% of the cognate indoline detected.

Chem. Commun., 2013, 49, 1506-1508 | 1507


http://dx.doi.org/10.1039/c3cc38900f

Published on 17 January 2013. Downloaded by University of Illinois at Chicago on 22/10/2014 05:41:01.

Table 3 Dehydrogenative Si-N coupling of indoline and anilines

1 (1 mol%)
= Me,PhSiH (3a) —
K / ".‘\) (1 equiv.) X / "1\)
R ”/ n-hexane (0.5m) R 'T‘/
5 min @ RT SiMe,Ph
24-30 (1 equiv.) > 99% conv.? 5a, 31a-36a

Entry Substrate Silylated product Yield® (%)

b
e

95
24 5a
L A,
2 N~ by 92
25 31a o
3 ©\NH2 ©\N,S/ 87

H
32a

N 85

N
o

5] =
N

>: N :
z @ z
5 &

z o}

2 @

@

96
28 34a
FiC F3C\©\
6 : “NH, H’S/ 85
29 35a
7 \q‘""? \Q\/{j’& 94
30 36a
“ See Table 1. ? See Table 1.
1 (1 mol%)
Ph,SiH, (3f
(12 i 2() ) I?h Fljh
Ph equiv. .
SNH, ———————= Ph__Si—pp + [PP~y1Si~ph
toluene (0.5m) H H H
2
26 32f 37f
[ 1equiv.  5min@RT >99 1, 74%
2equiv. 2h@80°C <1 99, 93%

Scheme 3 Probing chemoselective formation of silylamines with aniline (26)
and Ph,SiH, (3f).

Ph,SiH, (3f) and aniline (26 — 32f, Scheme 3). With 1 equiv. of
26 at room temperature, only one Si-H bond of 3f was cross-
coupled. With subsequent addition of another equivalent of 26
at elevated temperature, the remaining Si-H bonds also under-
went the cross-coupling (26 — 37f, Scheme 3).

To summarize, we accomplished an efficient protocol for the
base-free dehydrogenative Si-N coupling of monohydrosilanes
and weakly to moderately nucleophilic N-H groups. Pyrroles,
indoles and carbazoles fall into the former and anilines into the
latter category. Alkyl-substituted amines are not compatible
with coordinatively unsaturated complex 1, thwarting Si-H
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bond activation due to amine coordination (for a tentative
mechanism, see the ESIT). Moreover, selective mono-coupling
of a dihydrosilane and exactly 1.0 equiv. of aniline is feasible.
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