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ABSTRACT: A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic O‘f\g/‘fM AGF (10:20 mol%) 0
amount of silver fluoride is presented. a@,a-Difluoro-$-ketosulfones were successfully A"&\bﬁp — Arwﬁsw#

prepared in excellent yields. This method features high chemoselectivity, good functional
group tolerance, high atom economy, and mild, environmentally benign reaction
conditions. Furthermore, mechanistic experiments indicate that this migration proceeds
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in an intermolecular pathway and the corresponding sulfinates are possible intermediates.

O rganic sulfones have been widely used as protecting
groups or activating groups in organic synthesis, offering
substantial synthetic versatility,' and thus play an important
role in synthetic chemistry. In particular, B-ketosulfone
derivatives have drawn considerable interest owing to the
presence of this moiety in broad biologically active compounds
or functional materials.” Substantial efforts have been made on
the development for the synthesis of f-ketosulfone com-
pounds, such as acylation of alkyl sulfones,” oxidation of f-
ketosulfides/ B-hydroxysulfones,” and alkylation of metallic aryl
sulfinates.” However, these approaches require strong bases or
harsh reaction conditions along with poor functional group
tolerance. In recent years, radical sulfonylation has also been
developed as a useful approach to fB-ketosulfone derivatives,
involving the addition of sulfonyl radicals to alkenes/alkynes,’
while external oxidants and a large excess amount of
sulfonylation reagents are generally required in these reports.

Recently, sulfonyl migrations have garnered significant
attention due to their potential applications in highly
functionalized heterocycles.” Compared with the representa-
tive protocols described above, the synthesis of B-ketosulfone
derivatives via sulfonyl migrations is extremely rare: (1) In
2017, Li’s group reported a photoinduced rearrangement of
vinyl sulfonates to S-ketosulfones;® (2) Feng et al. reported an
iridium-catalyzed visible-light-promoted sulfonyl migrations for
the construction of a-sulfonylated amides’ (Figure la).

On the other hand, the difluoromethyl moiety acting as an
exceptional structure in pharmaceuticals'® has received
increasing attention due to its unique physicochemical
properties.'' a-Functionalized fluorinated sulfones proved to
be of important value in organic synthesis'> and could be the
subject of a series of transformations.'” Therefore, developing
an efficient and practical protocol for the synthesis of
ketosulfone derivatives containing a difluoromethyl moiety is
of great significance. However, so far, there are few reports for
the preparation of these derivatives. The substitution of f-
ketosulfones with electrophilic fluorination reagents under
basic conditions provides a direct pathway to synthesize a,a-
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Figure 1. Oxygen to carbon 1,3-sulfonyl migration and synthesis of a,
a-difluoro-f-ketosulfones.
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difluoro-f-ketosulfones, but this method generally suffers from
the monofluorinated products along with low yields of
difluorinated products and limited substrate scope.'” In
2009, Hu et al. reported nucleophilic fluoroalkylation of esters
to synthesize fluorinated f-ketosulfones.'> In 2020, Wu et al.
reported a photocatalyzed three-component sulfonylation of
aryldiazonium tetrafluoroborates with sodium metabisulfite
and 2,2-difluoro enol silyl ethers."® Owing to the harsh
conditions and the poor accessibility of starting materials, these
approaches are confronted with limited functional group
tolerance (Figure 1b).

Based on a serendipitous discovery, we found a 1,3-sulfonyl
migration (from oxygen to carbon) of difluorovinyl sulfonates
to a,a-difluoro-fB-ketosulfones initiated by a catalytic amount
of AgF (Figure lc). Advantages of this method include high
atom-economy, broad substrate scope, excellent yields, and
mild reaction conditions. Notably, this method can be applied
to the facile preparation of derivatives of natural products and
bioactive compounds, which are challenging for the reported
methods.' "¢

Our study began by evaluating the intramolecular migration
of 1a. As for the synthesis of the starting material 1a, there are
two reported methods to achieve it. One way is initiated from
commercially available benzaldehyde, treated with the
trifluoromethylation of aldehyde, sulfonylation of benzyl
alcohol and HF elimination under basic conditions to generate
1a."” The alternative pathway to form 1a is the palladium-
catalyzed cross-coupling reaction between iodobenzene and
2,2-difluoro-1-(tributylstannyl)vinyl 4-methylbenzenesulfo-
nate.'® After screening with different fluoride sources, we
found that the corresponding product a,a-difluoro-f-ketosul-
fone (2a) could be isolated in an excellent yield (93% yield)
under the condition using AgF (10 mol %) as a reaction
promotor, MeCN as solvent at 60 °C (Table 1, entry 1). The

Table 1. Optimization of the Reaction Conditions”

F._F
[ oL AgF(10 mol%)
Wl
MeCN (05mL) F F %

Me
1a (0.2 mmol) 60°C,20h

deviation from the standard yield of 2a" recovery for 1a”
entry conditions (%) (%)
1 none 96 (93)° nd
2 CsF instead of AgF 42 46
3 KF instead of AgF 65 29
4 LiF instead of AgF 0 94
S CuF, instead of AgF 0 95
6 NMP instead of MeCN 93 nd
7 acetone instead of MeCN 94 nd
8 DMF instead of MeCN 89 nd
9 DMA instead of MeCN 90 nd
10 DMSO instead of MeCN 73 11
11 DCE instead of MeCN 0 99
12 H,O instead of MeCN 0 97
13 40 °C instead of 60 °C 43 S0
14 80 °C instead of 60 °C 91 nd
15 no AgF 0 98

“Reaction conditions: 1a (62.0 mg, 0.2 mmol), AgF (2.5 mg, 10 mol
%), MeCN (0.5 mL), 60 °C, 20 h. Yields were determined by F
NMR analysis using benzotrifluoride as the internal standard.
“Isolated yield in the parentheses.

structure of 2a was confirmed by X-ray crystallography. Using
other fluoride sources such as CsF and KF resulted in lower
yields, and after 20 h part of the starting material (1a) was
recovered (entries 2 and 3). In addition, the use of LiF and
CuF, afforded none of the desired product (entries 4 and $).
Different solvents were tested, and we found that acetone,
DMEF, and DMA led to slightly decreased yields (entries 7—9).
Replacing MeCN with DMSO led to a significantly decreased
yield of 2a (entry 10). The reaction carried out in DCE or
H,0 did not work, and the starting material (la) was
recovered (entries 11 and 12). Further investigation of the
reaction temperature indicated that half of la remained
unreacted after 20 h when decreasing the temperature to 40
°C (entry 13), while increasing the temperature to 80 °C
caused a slight decrease in the yield (entry 14). Control
experiments indicated AgF is essential for this transformation
(entry 15).

After establishing the optimized reaction conditions, we
turned to evaluate the substrate scope of this transformation.
Various substituted sulfonyl (Ar' group) difluorostyrenes were
transformed smoothly. As shown in Scheme 1, the
difluorovinyl sulfones bearing a phenyl or an alkylbenzene
group afforded the sulfonyl migration products in excellent
yields (2b—2e). However, a lower yield was obtained for 2f
with a methyl group at the ortho position, which might be
caused by the hindrance effect. Naphthalene and biphenyl
derivatives delivered the desired products (2g—2i) in 80—96%
yields. Notably, the halide (fluoride, chloride, bromide, and
iodide) substituted substrates all led to clean formation of the
corresponding products in high yields (2j—2n, 73—98%).
Examination of electron-deficient substrates revealed that
ketone and ester moieties could be tolerated (20—2p). In
addition, MeO- and Me,N-substituted difluorovinyl sulfones
(2q—2s) were obtained in 52—91% yields under the standard
conditions, and the substrate utilizing dihydrobenzofuran as a
substituent produced 2t in 90% yield.

Next, we studied the influence of the substitution of Ar?
group. Excellent yields were obtained when substrates
contained alkyl groups (2u—2w) as well as naphthalene and
biphenyl derivatives (2x—2y). Electron-rich substrates such as
difluorovinyl sulfones bearing a MeO, EtO, PhO, or morpho-
line group were found to be highly effective in this protocol
(2z—2ac). In addition, substrates (1ad—1ae) with an OTs or
OCF; group were also well-tolerated. We then tested the
compatibility with unprotected phenol groups and obtained
2af in 77% yield. Interestingly, the ability to tolerate a diverse
set of aryl halides (2ag—2aj) left enough room for subsequent
manipulation. The presence of electron-poor groups also
appeared to be suitable substrate in this reaction (2ak—2a0),
although the CN group seemed less effective (2am).
Furthermore, we turned our attention to investigate the
scope of substrates with a range of heterocycles, and high
yields were obtained for the derivatives containing indole,
quinoline, and thiophene moieties (2ap—2at).

Encouraged by these results, we intended to extend this
approach to small complex molecules containing natural
products or druglike scaffolds. 1-(—)-Menthol derivative
worked efficiently, giving 2au in 80% yield. Substrates derived
from amino acids such as L-phenylalanine and p-proline could
be transformed with high efficiency in this protocol (2av—
2ax). The utility of the method was also demonstrated by a
late-stage functionalization of tocopherol, fructose, and
pregnenolone derivatives (2ay—2aaa) in good yields. These
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Scheme 1. Substrate Scope of a,a-Difluoro-f-ketosulfones™
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results highlight that this protocol is potential for the late-stage
modification of complex molecules and provide an approach to
access valuable molecules in pharmaceutical chemistry.
Furthermore, the practicability of this method has also been
demonstrated in a gram-scale reaction, and a,a-difluoro-f-
ketosulfone (2a) could be obtained in 90% yield (Scheme 2-

).

Scheme 2. Gram-Scale Reaction and Preliminary
Mechanistic Studies
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To gain more insight about this transformation, we carried
out several control experiments. First, adding a stoichiometric
amount of AgF led to the yield of 2a being reduced to 50%,
and the side product trifluoro-1-phenylethanone (3) was
isolated in 39% yield (Scheme 2-2). Second, the stoichiometric
reactions with p-toluenesulfonyl fluoride or naphthalene-2-
sulfonyl fluoride under the standard conditions only afforded
trace amounts of 3 and 2b in similar yields, while the crossover
products (2a and 2h) were not observed (Scheme 2-3). These
results firmly rule out the transformation proceedin% via the
difluoroalkyl anion attacking sulfonyl group pathway."” Next, a
crossover experiment was performed in order to confirm
whether this reaction proceeded in an intermolecular or
intramolecular fashion (Scheme 2-4). The experiment was
conducted by applying an equivalent amount of 1r and 1ad to
the standard conditions. It was found that four crossover

products (2a, 2r, 2ad, and 2aab) were formed in similar yields
(52%, 38%, 43%, and 47%). This result provided the evidence
for the migration of sulfonyl group via an intermolecular
process.

Accordingly, aryl sulfinate may be produced during the
reaction. Controlled experiments of 1b with a catalytic amount
of sodium p-toluenesulfinate under the standard conditions
yielded the crossover products 2a and 2b in 8% and 87% yield,
respectively, which strongly indicated aryl sulfinate was
involved in this transformation (Scheme 2-Sa). This
assumption was further enhanced by the fact that 1b could
react with 1.0 equiv of sodium p-toluenesulfinate to produce 2a
and 2b in 46% and 42% yields, respectively (Scheme 2-5b).
Furthermore, we found that a similar result could be achieved
when using a catalytic amount of sodium p-toluenesulfinate in
the absence of AgF, indicating AgF only played a role in
producing the corresponding p-toluenesulfinate (Scheme 2-
5c). Finally, we found that the side product 3 did not react
with sodium p-toluenesulfinate to afford the desired compound
2a (Scheme 2-6).

On the basis of the controlled experiments above, a plausible
mechanism is presented for this 1,3-sulfonyl migration. First,
silver fluoride reacts with difluorovinyl sulfonates (A) to
produce the side product (trifluoromethyl)acetophenone (B)
and the corresponding aryl sulfinate (C).”° Subsequently,
nucleophilic attack of the formed intermediate C occurs on the
highly electron-deficient carbon of gem-difluorostyrenes to
form the desired product a,a-difluoro-f-ketosulfones (D).
Meanwhile, the formed aryl sulfinate takes part in the next
cycle (Figure 2).

\\//
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‘ ° 5*‘

(e}
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Figure 2. Proposed mechanism of the transformation.
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In summary, we have discovered a 1,3-sulfonyl migration of
difluorovinyl sulfonates to a,a-difluoro-f-ketosulfones initiated
by catalytic amount of silver fluoride. This method features
very broad functional group tolerance, high atom economy,
and mild, environmentally benign reaction conditions. A series
of a,a-difluoro-f-ketosulfones could be produced in excellent
yields. Finally, mechanistic investigations indicated that this
intramolecular migration proceeded in an intermolecular
manner and the corresponding sulfinates are possible

intermediates.
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