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Abstract A one-pot protocol is described which allows direct access to
azaindoles from amino-halopyridines and ketones.
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The azaindole core has generated growing interest
within the medicinal chemistry community1 and thus there
have been significant efforts to improve access to these
compounds in recent years.2 However, there are still limited
methods available to prepare azaindoles.3 Many of the es-
tablished methods used to prepare indoles work poorly
when applied to azaindoles.

We were interested in an efficient method to access the
compound described in Scheme 1 (eq. 1), which is a poten-
tial precursor to a development candidate in the Novartis
pipeline. It was supposed that such a 7-azaindole derivative
could be prepared by a reaction cascade involving enamine
formation followed by intramolecular Heck reaction using a
2-amino-3-halopyridine and a substituted ketone as sub-
strates (Scheme 1).3a,b,g With the goal of effecting the reac-
tion type described in Scheme 1 (eq. 1), a screen of palladi-
um-based catalyst systems and reaction conditions was
carried out.4 In general, reactivity was very low and only
the starting 2-amino-3-halopyridine or the des-halo deriv-
ative were observed by LC–MS. The only experiments to
provide modest conversion into 7-azaindoles were those in
which the substituted ketone, in this case methyl levulinate,
was used as the reaction solvent.4 Using a catalyst described
in the literature3a to effect such azaindole syntheses, namely
bis(tri-tert-butylphosphine)palladium(0), mixtures of the
two products described in Scheme 1 (eq. 1 and 2) were ob-
served, with the product of eq. 2 (Scheme 1) being formed

preferentially. Interestingly the use of the XPhos first-gen-
eration catalyst yielded this product as a single regioisomer,
likely via the alternate order of chemical reactions – that is,
ketone arylation followed by enamine formation (Scheme 1,
eq. 2).5

Although both reaction pathways described in Scheme 1
have been described previously,3a,e there is only a single ex-
ample that uses a nonsymmetrical alkyl ketone3e and, in
this example, higher loadings of palladium catalyst were re-
quired (20 mol%). We therefore decided to examine wheth-
er the catalyst system identified (Scheme 1, eq. 2) could
provide a general approach to azaindole synthesis using
various alkyl-substituted ketones.

First, the reaction of a range of 2-amino-3-halopyridine
derivatives 1 with acetone was investigated (Table 1). Pleas-
ingly, the reaction worked equally well with both bromide
(1a) and chloride (1b) derivatives (Table 1, entries 1 and 2).
Furthermore, unsubstituted 2-amino-3-bromopyridine
(1c) could be successfully converted into the target 7-azain-
dole (Table 1, entry 3), although a longer reaction time was
required. A tert-butyldiphenylsilyl protecting group (Table
1, entry 4) did not survive the reaction conditions, and only
the 2-amino-3-bromopyridine (1c) and product 2b could
be observed by LC–MS. The same was true in the case of the
tert-butoxycarbonyl protecting group (Table 1, entry 5).

The reaction conditions were then applied to a range of
different ketones (Table 2) using 2-aminobenzyl-3-bromo-
pyridine 1a as the test substrate.

In the case of 2-methyl levulinate the 7-azaindole syn-
thesis proceeded smoothly to provide product 3a in accept-
able yield (Table 2, entry 1). For the unsymmetrical ketones
2-pentanone and 4-methylpentan-2-one (Table 2, entries 2
and 3) the products 3b and 3c were prepared in good yield;
in these cases the excess ketone could be successfully re-
moved in vacuo. In the case of a more sterically hindered
ketone, 3,3-dimethylbutan-2-one (Table 2, entry 4), a mod-
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erate yield of the product 3d could also be obtained al-
though the reaction required longer to reach completion
(16 h). Acetophenone (Table 2, entry 5) also provided the
expected product 3e in acceptable yield.

Two examples were tested containing an ethyl rather
than a methyl ketone (Table 2, entries 7 and 8). In both cas-
es these reactions did provide some of the desired product
(3g 26% and 3h 28% yield); however, a major byproduct in
these cases was the dehalogenated starting material 1a.
Presumably the first step in the process (α-arylation of the

ketone) is slower for an ethyl ketone compared to a methyl
ketone and therefore the dehalogenation pathway becomes
competitive.6

Table 2  Synthesis of 7-Azaindole Products 3a

Scheme 1  (1) Targeted 7-azaindole synthesis with methyl levulinate. (2) Observed 7-azaindole synthesis with methyl levulinate. Reagents and condi-
tions: MgSO4, methyl levulinate, K3PO4 (3 equiv), Xphos first-generation catalyst (4 mol%), AcOH (1 equiv), 140 °C, 18 h.
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Table 1  Synthesis of 7-Azaindole Products 2a

Entry 2-Amino-3-halo-pyri-
dine derivative

Reaction 
time (h)

7-Azaindole 
product

Isolated yield 
(%)b

1 1a R = Bn, X = Br 6 2a R = Bn 80

2 1b R = Bn, X = Cl 6 2a R = Bn 79

3 1c R = H, X = Br 48 2b R = H 59

4 1d R = TBDPS, X = Br 48 2c R = TBDPS –

5 1e R = Boc, X = Br 48 2d R = Boc –
a Reaction conditions: 2-amino-3-halopyridine derivative (1.9 mmol), Mg-
SO4 (1715 mg), acetone (7.5 mL), AcOH (1.9 mmol), K3PO4 (3.8 mmol), 
chloro(2-dicyclohexylphosphino-2′,4′6′-triisopropyl-1,1′-biphenyl)[2-(2-
aminoethyl)phenyl]palladium(II) (0.076 mmol), 140 °C.
b Single regioisomer.
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Entry Ketone substrate 7-Azaindole product Reac-
tion 
time 
(h)

Isolated 
yield (%)

1 3a R1 = CH2CH2CO2Me, 
R2 = H

2 73

2 3b R1 = n-Pr, R2 = H 6 83

3 3c R1 = i-Bu, R2 = H 6 83

4 3d R1 = t-Bu, R2 = H 16 65
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Finally, attention was turned towards the synthesis of
other azaindole regioisomers from the corresponding ami-
no-bromopyridines 4. As described previously in Table 1,
the 2-amino-3-bromopyridine provided the target product
2b in modest yield (59%). However, in the case of 2-bromo-
3-aminopyridine 4a only dimerization of this starting ma-
terial could be detected (LC–MS), presumably due to the
propensity of the 2-bromo substituent to undergo substitu-
tion. Pleasingly, the other regioisomers tested (Table 3, en-
tries 3 and 4) did lead to the expected products 5b and 5c
albeit in lower yields than for the 7-azaindole derivative 2b.

In summary, the procedure described herein allows for
rapid and convenient access to a variety of 2-substituted 7-
azaindole derivatives in good yield from methyl ketones
and 2-amino-3-halopyridines. Two examples of 2,3-substi-
tuted 7-azaindoles could also be prepared using this meth-
odology, albeit in lower yield. Other regioisomeric bromo-
aminopyridines were tested under the standard reaction
conditions, providing both 5- and 6-azaindole derivatives.
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Table 3  Synthesis of Other Azaindole Regioisomersa

Entry Substrate Target product Isolated yield (%)

1

1c 2b

59

2

4a 5a
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28

4

4c
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26

a Reaction conditions (entries 2–4): Compound 2b was prepared using 
general procedure A,7 compounds 4a–c were subjected to the conditions 
described in general procedure B:7 amino-3-halo pyridine derivative (1.5 
mmol), MgSO4 (1354 mg), acetone (5.9 mL), AcOH (1.5 mmol), K3PO4 (3.0 
mmol), and chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-bi-
phenyl)[2-(2-aminoethyl)phenyl]palladium(II) (0.06 mmol), 140 °C, 48 h.
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General Procedure B
To a hydrogenation vial flushed with argon was added 2-amino-
3-halo pyridine derivative (1.5 mmol, 1 equiv), MgSO4 (1354
mg), acetone (5.9 mL), AcOH (0.086 mL, 1.5 mmol, 1 equiv),
K3PO4 (637 mg, 3.0 mmol, 2 equiv), and chloro(2-dicyclohexyl-
phosphino-2′,4′6′triisopropyl-1,1′biphenyl)[2-(2-aminoethyl)-
phenyl]palladium(II) (44 mg, 0.06 mmol, 0.04 equiv). The vial
was inserted into the hydrogenation apparatus, purged with

nitrogen twice, and heated at 140 °C for 48 h. The reaction
mixture was filtered through silica washing with acetone fol-
lowed by 20% MeOH in acetone. Concentration in vacuo pro-
vided the crude product that was purified as described in the
Supporting Information or below. Selected examples of azain-
doles prepared:
Methyl 3-(1-Benzyl-1H-pyrrolo[2,3-b]pyridin-2-yl)propa-
noate (3a)
Prepared following general procedure A, starting from N-
benzyl-3-bromopyridin-2-amine (1a) and methyl levulinate.
The reaction required 2 h heating at 140 °C. Purification by flash
chromatography (20% tert-butyl methyl ether in heptanes,
Rf = 0.18) followed by trituration with 2-methyl pentane gave
the product as a white powder (406 mg, 73%). 1H NMR (400
MHz, CDCl3): δ = 2.69 (obs. t, J = 7.6 Hz, 2 H), 3.00 (obs. t, J = 7.6
Hz, 2 H), 3.68 (s, 3 H), 5.59 (s, 2 H), 6.27 (s, 1 H), 7.02–7.09 (m, 3
H), 7.19–7.29 (m, 3 H), 7.85 (dd, J = 7.8, 1.5 Hz, 1 H), 8.29 (dd,
J = 4.6, 1.6 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 22.2, 32.2,
44.8, 51.8, 97.3, 116.0, 120.3, 126.4, 127.3, 127.6, 128.7, 137.9,
140.0, 142.2, 148.6, 172.7. LC–MS: m/z [M + H]+ calcd for
C18H19N2O2

+: 295.1; found: 295.1.
1-Benzyl-2-isobutyl-1H-pyrrolo[2,3-b]pyridine (3c)
Prepared following general procedure A, starting from N-
benzyl-3-bromopyridin-2-amine (1a) and 4-methylpentan-2-
one. The reaction required 6 h heating at 140 °C under micro-
wave irradiation. Purification by flash chromatography (5%
EtOAc in heptanes, Rf = 0.14) gave the product as an off-white
solid (418 mg, 83%). 1H NMR (400 MHz, CDCl3): δ = 0.95 (d,
J = 6.8 Hz, 6 H), 1.94 (obs. septet, J = 6.8 Hz, 1 H), 2.53 (dd,
J = 6.8, 0.8 Hz, 2 H), 5.57 (s, 2 H), 6.28 (obs. s, 1 H), 6.98–7.03 (m,
2 H), 7.06 (dd, J = 7.7, 4.6 Hz, 1 H), 7.18–7.28 (m, 3 H), 7.85 (dd,
J = 7.7, 1.6 Hz, 1 H), 8.26 (dd, J = 4.8, 1.5 Hz, 1 H). 13C NMR (101
MHz, CDCl3): δ = 22.6, 27.8, 36.2, 44.8, 98.5, 115.9, 120.5, 126.3,
127.1, 127.2, 128.6, 138.3, 141.1, 141.7, 148.5. LC–MS: m/z [M +
H]+ calcd for C18H21N2

+: 265.2; found: 265.2.
1-Benzyl-3-methyl-2-phenyl-1H-pyrrolo[2,3-b]pyridine (3g)
Prepared following general procedure A, starting from N-
benzyl-3-bromopyridin-2-amine (1a) and propiophenone. The
reaction required 48 h heating at 140 °C. Purification by
reverse-phase flash chromatography (50% MeCN in H2O to 100%
MeCN; Rf = 0.26, MeCN–H2O = 8:2) gave the product as an
orange oil (150 mg, 26%). 1H NMR (400 MHz, CDCl3): δ = 2.25 (s,
3 H), 5.44 (s, 2 H), 6.84–6.88 (m, 2 H), 7.08–7.15 (m, 4 H), 7.24–
7.27 (m, 2 H), 7.36–7.41 (m, 3 H), 7.89 (dd, J = 7.8, 1.5 Hz, 1 H),
8.35 (dd, J = 4.8, 1.5 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 9.1,
45.8, 107.5, 115.6, 121.2, 126.6, 126.7, 126.8, 128.2, 128.2,
128.3, 130.5, 131.5, 137.7, 138.7, 143.0, 148.4. LC–MS: m/z [M +
H]+ calcd for C21H19N2

+: 299.2; found: 299.2.
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