

EJ52-1999-445

Journal of the Chinese Chemical Society, 1999, 46, 445-452

Reactions of Difluorosilylene with Amines, Phosphines and Halomethanes The First Evidence of the Insertion of Difluorosilylene into Tetrafluorosilane

Chih-Wei Chang^a(張志維), Chao-Shiuan Liu^{*a}(劉兆玄) and Chi-Young Lee^{*b}(李紫原) ^aDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. ^bMaterials Science Center, National Tsing Hua University, Hsinchu Taiwan, R.O.C.

The reactions of SiF₂/SiF₄ with amines, phosphines and various halomethanes were studied. The results show that in the presence of strong Lewis base (Et₃N, HNEt₂, PR₃, PR₂Cl), SiF₂ inserts initially into SiF₄ to form Si₂F₆, which was followed by subsequent reactions leading to products containing SiF₃ groups. This is the first report of the insertion of SiF₂ into SiF₄. When the reactants were a weaker base (such as RPCl₂, CX₃Br, X=F, Cl), insertion of SiF₂ into P-Cl and C-Br bonds became predominant.

INTRODUCTION

The chemistry of difluorosilylene has been extensively studied.¹ Like all other silylenes (SiX₂), the main chemistry of SiF₂ can be classified as (1) addition onto carbon-carbon double bonds and triple bonds,² and (2) insertion into M-H bonds, where M=O, S, and M-X bonds where M=B, and C, X=I.³

Unlike other members of the silylene family however, SiF₂ forms at -196 °C dimeric diradical species \cdot SiF₂SiF₂· (sometimes trimeric diradical), which is responsible for the majority of the chemistry of difluorosilylene in condensation experiments. Also, gaseous SiF₂ has long been known to be inert toward SiF₄ whereas other SiX₂ species insert into Si-X bonds of SiX₄ to form Si₂X₆ readily (X=Cl, Br).⁴

$$SiX_{2(g)} + SiX_{4(g)} \rightarrow Si_2X_{6(g)}$$

X=Cl, Br X \neq F

In a series of systematic studies we have clarified the dilemma of monomeric SiF_2 vs. dimeric $\cdot SiF_2SiF_2$ · dispute.⁵ In this paper we report our rationalization about the other anomaly of SiF₂.

RESULTS AND DISCUSSION

(a) the insertion of SiF₂ into SiF₄

When the mixture of SiF₂ and SiF₄ passed the on-line IR cell, the spectrum showed typical bands for SiF₄ (1035 and 1029 cm⁻¹) and the broad bands near 860 cm⁻¹ for SiF₂.⁶ On introducing Lewis base (Et₃N, HNEt₂, PR₃, PR₂Cl) into the cell, the absorption of SiF₂ disappeared and the bands characteristic for Si₂F₆ (990, 822 cm⁻¹) grew up immediately (Fig. 1).

$$SiF_{2(g)} + SiF_{4(g)} \xrightarrow{B} Si_2F_{6(g)}$$

B=Et₃N, HNEt₂, PR₃, PR₂Cl

These results strongly suggest that in the presence of a Lewis base environment, SiF_2 inserts into Si-F bonds of SiF_4 to form Si_2F_6 . In order to figure out the detailed function of the Lewis base, a number of organic phosphorus compounds were used as Lewis bases to measure the yield of Si_2F_6 . The basicities and the cone angles of the phosphorus compounds and the yields of Si_2F_6 are listed in Table 1.

According to these results, we found that higher basicity causes higher yield of Si_2F_6 . However, when phosphins of similar basicity such as PMe₃, PEt₃, P^{*}Pr₃ P[']Pr₃ are compared, it was found that a smaller cone angle causes a higher yield of Si_2F_6 . When alkylchlorophosphines were used as Lewis bases, only monochlorophosphines showed the capability to help form Si_2F_6 . In the cases of dichloro-

Table 1. The IR Absorption Intensity of Si₂F₆ Generated from the in situ Reaction of SiF₂/SiF₄ with Various Phosphines

Lewis base	Isi2F6	cone angle, 0	рКа
PMe ₃	0.347	118	8.65
PMe ₂ Ph	0.279	122	6.50
PEt ₃	0.272	132	8.69
PEt ₂ H	0.277		
$P(^{n}Pr)_{3}$	0.243	132	-8.51
P(ⁱ Pr) ₃	0.200	160	~8.50
PMe ₂ Cl	0.212		
PMeCl ₂	Not observed		
PEt ₂ Cl	0.247		
PEtCl ₂	Not observed		
PCl ₃	Not observed		

Isi2F6 IR absorption intensity of Si2F6 observed at 990 cm⁻¹.

445

and trichloro-phosphines, where the basicity decreased as the chlorine atoms increased in the phosphines, no Si₂F₆ absorption could be observed in the IR spectra. It is generally known that the basicity and cone angle of a Lewis base are the indicators for the ability of coordination.⁷ Those results imply that the yield of Si₂F₆ is related to the coordinating ability of the base. The spectroscopic study and theoretical calculation of the 1:1 adduct of SiF₄ and NH₃ showed that SiF₄·NH₃ had a trigonal bipyramidal arrangement with NH₃ occupying one of the axial positions.⁸ The axial and equatorial Si-F bond distances were found to be 1.591 Å and 1.584 Å respectively, significantly longer than that in SiF₄ (1.556 Å).⁹

These data may suggest that the bonds of Si-F in the adduct are considerably weakened and the insertion of SiF_2 into Si-F bonds of the adduct may take place more easily.

(b) the insertion of SiF₂ into N-H bond

Ennan and Gavrilova reported the formation of adducts from SiF₄ and amines.¹⁰ In the case of diethylamine, thermal decomposition of the 1:2 adduct, SiF₄·2Et₂H, yielded diethyltrifluorosilylamine Et₂NSiF₃.¹¹ Since the difluorosilylene generated in our experimental conditions cannot be separated from the unreacted SiF₄ because it is actually a mixture of approximately 1:1 of SiF₂:SiF₄, the reactions between SiF₄ and the amines under these experimental conditions must be studied first as a "blank" test.

SiF₄ and NEt₃ were mixed in a 1:1 ratio and condensed at -190 °C. On warming the condensate to room temperature, adduct products SiF₄·NEt₃ and SiF₄·2NEt₃ were obtained. When the reaction was carried out with SiF₄:NEt₃ = 1:2, only the 1:2 adduct was obtained.

Under our experimental conditions, the reaction between SiF_4 and $HNEt_2$ yielded, in addition to $SiF_4 \cdot 2NEt_2H$ and Et_2NSiF_3 , a new product $(Et_2N)_2SiF_2$. This compound was considered the product from double dehydrofluorination of $SiF_4 \cdot 2NEt_2H$.

In the cocondensation reaction between SiF_2/SiF_4 and NEt₃ the only products were $SiF_4 \cdot nNEt_3$ (n = 1,2) and the $(SiF_2)_x$ polymer. However, an on-line IR experiment showed that the initial reaction product was hexafluorodisilane.

The cocondensation reaction between SiF_2/SiF_4 and diethylamine yielded Et_2NSiF_3 1, $HSiF_3$ 2 and Et_2NSiF_2H 3 in addition to the adduct product SiF_4 ·2NEt₂H. This reac-

Fig. 1. The in situ IR experiment of SiF2/SiF4 and Et3N: (A) before the introducing of Et3N. (B) after the introducing of Et3N.

tion can be best understood by the following studies:

(i) when SiF₂/SiF₄ and HNEt₂ were kept in 1:1 ratio, SiF₄·2NEt₂H, 1, 2 and 3 were obtained;

(ii) when SiF₂/SiF₄ and HNEt₂ were kept in 1:2 ratio, SiF₄·2NEt₂H, (NEt₂)₂SiF₂ 4 and (NEt₂)₂SiFH 5 were obtained;

(iii) when compounds 1, 2 and 3 from (i) were reacted with excess HNEt₂, complete conversion to compounds 4 and 5 was observed in 30 min;

and (iv) the on-line IR experiment showed that mixing SiF₂/SiF₄ and HNEt₂ yielded Si₂F₆, and HSiF₃ rapidly.

From the above results, it is reasonable to assume that the reaction between SiF_2/SiF_4 and $HNEt_2$ was initiated by the formation of Si_2F_6 , which reacted with $HNEt_2$ to form 1 and 2. Subsequent reactions of 1 and 2 with excess $HNEt_2$ lead to the products 3, 4 and 5 through dehydrofluorination.

In order to prove the assumption, freshly prepared Si_2F_6 was reacted with HNEt₂ under the same experimental conditions. On mixing Si_2F_6 and HNEt₂ (in excess) compounds 1, 2 and SiF_4 were observed immediately from the on-line IR spectrum. The gaseous mixture passing through the IR cell was condensed at -196 °C. On warming to room temperature the nmr showed that the products were 1, 2, 3, 4 and 5. This mixture of products reacted further with excess HNEt₂ and it was found that 1, 2 and 3 converted to 4 and 5 completely in 24 hr. These results agree entirely with the reaction scheme proposed above. The experimental conditions and reaction products are summarized in Table 2.

The formation of compounds 1 and 2 can be rationalized by a four-centered transition state:

$$\begin{array}{cccc} \text{Si}_2\text{F}_6 &+& \text{Et}_2\text{NH} & \longrightarrow & \left[\begin{array}{c} \text{H}^{----s} \text{SiF}_3\\ \vdots &\vdots\\ \text{Et}_2\text{N}^{---s} \text{SiF}_3\end{array}\right] & \longrightarrow & \text{HSiF}_3 + \text{Et}_2\text{NSiF}_3\\ & & 2 & 1\end{array}$$

If this were the true mechanism, such a reaction would not be expected between Si_2F_6 and Et_3N . Indeed, no product other than Si_2F_6 was observed in the gaseous reaction between SiF₂/SiF₄ and Et₃N. Similar reaction pathway involving the cleavage of Si-Si bond in Si₂Cl₆ was proposed for the reactions of Si₂Cl₆ with germyl and stannylphosphanes.¹²

It is interesting to note that two possible pathways may be responsible for the formation of Et_2NSiF_2H 3: (i) the insertion of SiF_2 into the N-H bond of HNEt₂, and (ii) the dehydrofluorination reaction between HNEt₂ and HSiF₃ 2. In the reaction of Si_2F_6 with HNEt₂, small amount of 3 was obtained. Although the yield was low (<5%), it confirmed the existence of dehydrofluorination pathway because no SiF_2 was involved in this case. In the reaction of SiF_2/SiF_4 with HNEt₂, however, the yield of compound 3 was much higher (~20%). It is quite certain that in the latter case the SiF_2 insertion pathway is significant. The overall reaction of SiF_2/SiF_4 and Et_2NH can be illustrated by the following scheme:

In the early literature of SiF₂ chemistry, the reaction of SiF₂ with methanol was considered rather unusual because its major products, HSiF₃ and F₃SiOCH₃ were neither insertion products nor addition products. It was interpreted that SiF₄ reacted with CH₃OH in the gas phase to form CH₃OSiF₃ and HF, and SiF₂ inserted into HF to give SiF₃H.¹³

$$CH_3OH + SiF_4 \rightarrow CH_3OSiF_3 + HF$$

 $SiF_2 + HF \rightarrow SiF_3H$

With our new understanding from this work, it is obvious that the reaction with methanol can also be interpreted by the initial formation of Si_2F_6 (just as in the case of the reaction with HNEt₂), which subsequently reacts with CH₃OH to form the observed products through a four-centered transition state.

$$CH_{3}OH + Si_{2}F_{6} \longrightarrow \begin{bmatrix} H \cdots SF_{3} \\ | & | \\ CH_{3}O \cdots SF_{3} \end{bmatrix}$$

$$\downarrow$$

$$HSF_{3} + CH_{3}OSF_{3}$$

Indeed, when SiF_2/SiF_4 and CH_3OH were introduced into the on-line IR cell, the spectrum showed clearly the im-

Reagent (reagent ratio)	Reaction condition	Products (relative ratio of the products)	
SiF4; NEt3 (1:1)	condense reaction	SiF4·NEt3; SiF4·2NEt3	
SiF4; NEt3 (1:2)	condense reaction	SiF4-2NEt3	
SiF4; HNEt2	condense reaction	$SiF_4 2NEt_2H$; $(Et_2N)_2SiF_2 4$	
SiF ₂ /SiF ₄ ; NEt ₃	condense reaction	SiF4-nNEt3 (n=1,2); (SiF2)n polymer	
SiF ₂ /SiF ₄ ; NEt ₃	in situ (gas)	Si ₂ F ₆	
SiF_2/SiF_4 ; HNEt ₂ (1:1)	condense reaction	Et2NSiF3 1; HSiF3 2; Et2NSiF2H 3 (20%)	
SiF ₂ /SiF ₄ ; HNEt ₂ (1:2)	condense reaction	SiF4-2NEt2H; (Et2N)2SiF2 4; (Et2N)2SiFH 5	
SiF ₂ /SiF ₄ ; HNEt ₂	in situ (gas)	Si ₂ F ₆	
Si2F6: HNEt2	in situ (gas)	Et2NSiF3 1; HSiF3 2; SiF4	
Si2F6: HNEt2	condense reaction	Et2NSiF3 1; HSiF3 2; Et2NSiF2H 3 (5%);	
		(Et2N)2SiF2 4; (Et2N)2SiFH 5	
EtaNSiFa 1: EtaNSiFaH 3: HNEta	room temperature reaction	(Et2N)2SiF2 4; (Et2N)2SiFH 5	
SiF ₂ /SiF ₄ ; CH ₃ OH	in situ (gas)	Si ₂ F ₆	

Table 2. Reactions Conditions and Products of the Reaction of SiF2 with Et2NH

mediate disappearance of SiF_2 and the formation of Si_2F_6 . (c) insertion of SiF_2 into C-X bond

The insertion reaction of SiF₂ with C-X bonds has seldomly been addressed in previous literature. Margrave and Sharp reported the reaction of SiF₂ and CF₃I.¹⁴ In addition to a number of mixed halosilanes, compound CF₃SiF₂I was obtained as the insertion product. Here, we report the cocondensation reactions of SiF₂ and alkyl halides.

Cocondensation reactions of SiF_2 with proplychloride, propylbromide carbon tetrachloride and carbon tetrabromide failed to form any insertion products. In the reactions with halogen substituted methanes only those possessing considerable dipole moment would react with SiF_2 and formed insertion products.

$$\begin{array}{ccccc} CH_3CH_2CH_2X & + & SiF_2 & & \text{no insertion products} \\ & X=Br, Cl \\ CX4 & + & SiF_2 & & \text{no insertion products} \\ & X=Br, Cl \\ & & & & \\ X_3C & -Br & + & SiF_2 & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

(d) insertion of SiF2 into P-Cl bond

The reaction pathway between SiF_2 and alkylchlorophosphines can be understood by the following studies:

(1) the reaction between SiF_2 and dimethylchlorophosphine

In the reaction between SiF_2 and dimethylchlorophosphine, instead of insertion products with -PSiF₂Cl fragment, (Me₂P)₂, Me₂PSiCl₃ and (Me₂P)₂SiCl₂ were obtained as the major products. When SiF_2/SiF_4 and dimethylchlorophosphine were introduced into the on-line IR cell, the spectrum showed clearly the disappearance of SiF_2 and the formation of Si_2F_6 . From these results, it is reasonable to assume that the reaction between SiF_2/SiF_4 and dimethylchlorophosphine was initiated by the formation of Si_2F_6 , which cleaved to SiF_3 radicals in the present of the phosphine compounds.¹⁵ Subsequent radical reactions that led to the products 9, 10 and 11 can be rationalized as follow:

$$SF_4 + SF_2 \xrightarrow{B} Si_2F_6 = B=PMe_2Cl$$

$$Si_2F_6 + PMe_2Cl \longrightarrow SiF_3 + SF_3Cl + PMe_2$$

$$\cdot SiF_3 + PMe_2Cl \longrightarrow SiF_3Cl + PMe_2$$

$$2 \cdot PMe_2 \longrightarrow (Me_2P)_2$$

$$9$$

$$\cdot SiF_3 + SiF_3Cl \xrightarrow{halogen exchange} SiCl_mF_{4:m} + SiCl_nF_{3:n}$$

$$\cdot SiCl_nF_{3:n} + PMe_2 \longrightarrow Me_2PSiCl_nF_{3:n}$$

$$halogen exchange$$

$$Me_2PSiCl_3$$

$$10$$

$$\cdot SiCl_nF_{3:n} + Me_2PSiCl_3 \longrightarrow SiCl_mF_{4:m} + PMe_2SiCl_2$$

$$10$$

$$PMe_2SiCl_2 + PMe_2 \longrightarrow (Me_2P)_2SiCl_2$$

$$11$$

$$n=0-4, n=0-3$$

In principle, compound 10 could also be formed via insertion of SiF_2 followed by halogen exchange. Based on our experimental evidence, this possibility cannot be ruled out. (2) the reaction between SiF_2 and ethyldichlorophosphine

$$\begin{split} SF_2/SF_4 + EtPCl_2 & \longrightarrow & (EtP)_5 + EtP(SF_3)_2 + EtP(SF_3)SF_2Cl_1 \\ 1 & : 1 \\ 1 & : 1 \\ & + EtP(SF_3)SFCl_2 + EtP(SF_3)SiCl_3 \\ & 15 \\ & 16 \\ & + EtP(SF_2Cl)_2 + EtP(SF_2Cl)SFCl_2 \\ & 17 \\ & 18 \\ & + EtP(SF_2Cl)SiCl_3 + EtP(SFCl_2)_2 \\ & 19 \\ & 20 \\ & + EtP(SFCl_2)SiCl_3 + EtP(SiCl_3)_2 \\ & 21 \\ & 22 \\ & + SF_mCl_n \\ \\ & rr=4-n, n=0-4 \end{split}$$

Compound 17, a typical product from the insertion of SiF_2 into the P-Cl bonds of $EtPCl_2$, was initially obtained as the major product. Compounds 13, 14, 15 and 16 were also present as minors. After the reaction mixture had been kept at room temperature for three days, the nmr spectra showed that compounds 13 and 14 disappeared, other compounds reduced in intensities, and compounds 19, 20, 21 and 22 became the major products. We propose that this reaction was initiated by the insertion of SiF_2 into P-Cl bonds of ethyldichlorophosphine, then the halogen exchange reaction converted compound 17 to the other compounds. Small amounts of 12 and $SiCl_nF_{4-n}$ were obtained, therefore the radical pathway cannot be entirely ruled out.

CONCLUSION

Difluorosilylene has been considered to be inert toward SiF₄ in the literature.^{4a} However, the evidence of the present work shows clearly this is invalid when certain Lewis bases are present in the mixture of SiF₂ and SiF₄. Insertion product Si₂F₆ was obtained immediately after the introduction of Lewis bases.

Therefore, when SiF_2/SiF_4 is reacted with amines and phosphines, two kinds of reaction pathways are possible: (1) an initial formation of Si_2F_6 which was followed by subsequent reactions leading to products containing SiF_3 groups; and (2) the traditional insertion reactions of SiF_2 into N-H or P-Cl bonds. The choice of the reaction pathway depends on the basicity of the amines and the phosphines. In the case of a strong Lewis base (R₃N, R₂NH, PR₃, PR₂Cl), the insertion of SiF_2 into Si-F bond of SiF_4 to form Si_2F_6 is the major initial reaction. In the case of a weaker Lewis base (PRCl₂), the insertion of SiF_2 into P-Cl bond followed by the subsequent halogen exchange reactions is the major reaction pathway.

EXPERIMENTAL SECTION

All reactions were carried out in a greaseless vacuum system and difluorosilylene was generated as a mixture of approximate 1:1 SiF₂/SiF₄ by passing SiF₄ through a column of silicon lumps heated at 1150 °C.¹⁶ All reagents were commercial products used without further purification. Liquid reagents were degassed before used. The quantities of reagents used in reactions were controlled by a mass flow control system.

All mass spectra were recorded on a JEOL JMS-SX102A mass spectrometer operating at 12 eV. The NMR spectra were obtained using a Bruker AM 400 spectrometer operating at 400.13, 376.5, 100.0 and 161.977 MHz for ¹H, ¹⁹F ¹³C and ³¹P spectra, respectively. Chemical shifts of ¹H and ¹³C spectra were measured as δ values; for the ¹³C data listed below, the spectral multiplicity following each chemical shift is due to the coupling with heteronuclei, whereas the coupling patterns in ¹³C-{¹H}_{cw} are included in parentheses. The ¹⁹F NMR chemical shifts were measured in parts per million upfield from the internal standard CCl₃F. The ³¹P NMR chemical shifts were measured in parts per million upfield from the standard H₃PO₄. In the ²⁹Si-{¹H} NMR data, the spectral multiplicity following each chemical shift is due to the coupling with heteronuclei.

Volatile products were fractionated and collected as various temperatures (-45 $^{\circ}$ C to 0 $^{\circ}$ C), but only partial separation was achieved. The attempt of further separating the volatile products was not successful because the boiling points of the products were close.

Reactions between SiF4 and Amines

SiF₄ and Et₃N in approximate 1:1 ratio were introduced into the vacuum system and condensed at -196 °C. No volatile products were found after the unreacted reagents were pumped out at room temperature; two solid products (one white and one yellow) were obtained. They are SiF₄·2NEt₃ (white) and SiF₄·NEt₃ (yellow), respectively, and are the same as those obtained by Ennan and Gavrilova's room temperature reaction.

SiF₄ and Et₃N in approximate 1:2 ratio were introduced into the vacuum system and condensed at -196 °C. After the unreacted reagents were pumped out at room temperature, white solid SiF₄·2NEt₃ was obtained as the only product. The yield base on the quantity of amine used was about 90%. SiF₄ and Et₂NH in approximate 1:1 ratio were introduced into the vacuum system and condensed at -196 °C. After unreacted reagents were pumped out, a white solid and a colorless liquid were obtained. The white solid is SiF₄·2Et₂NH and the colorless liquid is compound 4. The total yield of compound 4 and SiF₄·2Et₂NH base on the quantity of amine used was about 95%.

Reactions between SiF₂/SiF₄ and Amine

The reaction between SiF_2/SiF_4 and diethylamine was carried out at condensation reaction condition with different SiF_2/SiF_4 : amine ratio. SiF_2/SiF_4 and diethylamine were mixed in different ratios and introduced into the vacuum system and condensed at -196 °C. Compounds 1, 2 and 3 were obtained when the SiF_2/SiF_4 : amine ratio was kept at approximately 1:1. When the SiF_2/SiF_4 : amine ratio was kept to 0.5, 4, 5 and $SiF_4\cdot 2Et_2NH$ were obtained instead.

The reaction between SiF₂/SiF₄ and triethylamine was carried out at condensation reaction conditions. SiF₂/SiF₄ and Et₃N in approximate 1:1 ratio were introduced into the vacuum system and condensed at -196 °C. After unreacted reagents were pumped out, in addition to SiF₄·2NEt₃ (white) and SiF₄·NEt₃ (yellow), (SiF₂)₀ polymer was obtained. No volatile product was found.

Reactions between Si₂F₆ and Diethylamine

 Si_2F_6 and Et_2NH in approximate 1:1 ratio were introduced into the vacuum system and condensed at -196 °C. After unreacted reagents were pumped out, compounds 1, 2, 3, 4 and 5 were obtained as colorless liquids. The total yield of those compounds based on the quantity of amine used was about 95%.

Reactions between Et_2NSiF_3 1, Et_2NSiF_2H 3 and Diethylamine

Compounds $(Et_2N)_2SiF_2$ 4 and $(Et_2N)_2SiFH$ 5 were obtained by reacting Et_2NSiF_3 1, Et_2NSiF_2H 3 and Et_2NH at room temperature for 24 hr. The reaction was quantitative.

Reactions between SiF₂/SiF₄ and Various Halomethanes

The reaction between SiF₂/SiF₄ and various halomethanes was carried out at condensation reaction conditions with SiF₂/SiF₄ and halomethane in approximate 1:1 ratio. SiF₂/SiF₄ and halomethane were mixed and introduced into the vacuum system and condensed at -196 °C. After unreacted reagents were pumped out, in addition to $(SiF_2)_n$ polymer insertion product 6 was obtained in the reaction of SiF₂/SiF₄ with bromotrichloromethane. In the reaction of SiF₂/SiF₄ with dibromodichloromethane insertion product 7 was obtained. The reaction of SiF₂/SiF₄ with dibromochloChang et al.

rofluoromethane yielded insertion product 8.

Reaction between SiF₂/SiF₄ and Dimethylchlorophosphine

The reaction between SiF₂/SiF₄ and dimethylchlorophosphine was carried out at condensation experiment conditions with SiF₂/SiF₄ and dimethylchlorophosphine in approximate 1:1 ratio. SiF₂/SiF₄ and dimethylchlorophosphine were mixed in the vacuum system and condensed at -196 °C. After unreacted reagents were removed, compounds 9, 10, 11 and various chlorofluorosilanes (SiCl₄, SiCl₃F, SiCl₂F₂, SiClF₃) were obtained in addition to (SiF₂)_n polymer.

Reaction between SiF₂/SiF₄ and Ethyldichlorophosphine

The reaction between SiF_2/SiF_4 and ethyldichlorophosphine was carried out at condensation experiment conditions with SiF_2/SiF_4 and ethyldichlorophosphine in approximate 1:1 ratio. The liquid collected at -30 °C containing compounds 13, 14, 15, 16, 17, 18, 20, 21, 22 and various chlorofluorosilanes (SiCl₄, SiCl₃F, SiCl₂F₂, SiClF₃) was obtained. A solid product (EtP)₅ 12 was also obtained.

The in situ IR Experiment

The gaseous reagents were mixed and introduced into the IR gas cell that was connected to the pumping system. The IR spectra were taken as soon as the reagents were mixed. The reactions were initiated by the insertion of SiF₂ into SiF₄ in the presence of Lewis bases such as Et₂NH, CH₃OH, trialkylphosphine, dialkylchlorophosphine, alkyldichlorophosphine. In these reactions, Si₂F₆ was the common initial product. In the in situ IR experiment of Si₂F₆ and Et₂NH compounds Et₂NSiF₃ 1; HSiF₃ 2 and SiF₄ were detected.

The spectral data of the products:

(i) Compound 1 (C_2H_3)₂NSiF₃. Mass spectrum: m/e 157 (M⁺, $C_4H_{10}F_3NSi^+$), 142 ($C_3H_7F_3NSi^+$), 114 ($CH_3F_3NSi^+$), 95 ($CH_3F_2NSi^+$), 85 (F_3Si^+). IR adsorption: 2978.5, 2943.0, 2884.3, 1389.9, 1223.1, 1174.2, 1107.6, 1053.3, 979.1, 953.9, 853.8, 789.5, 656.7, 502.6 cm⁻¹. ¹H NMR: δ 1.77 t, -NCH₂CH₃, 3.61 qq, -NCH₂CH₃. ¹⁹F NMR: δ -151 s (br), -NSiF₃. ¹³C NMR: δ 16.01 q, -NCH₂CH₃; 39.90 t, -NCH₂CH₃. ²⁹Si{¹H} NMR: δ -87.10 q, -NSiF₃. ¹J_{Si-F} = 204 Hz.

(ii) Compound 3 $(C_2H_5)_2NSiF_2H$. Mass spectrum: m/e 139 (M⁺, C₄H₁₁F₂NSi⁺), 138 (C₄H₁₀F₂NSi⁺), 124 (C₃H₈F₂NSi⁺), 110 (C₂H₆F₂NSi⁺). IR adsorption: 2250, 2166, 1107, 906, 793, 717 cm⁻¹. ¹H NMR: δ 1.7 t, -NCH₂CH₃; 3.6 qt, -NCH₂CH₃; 5.1 t, -SiF₂H. ¹⁹F NMR: δ -130.8 s (dqⁿ), -SiF₂H. ¹³C NMR: δ 16.3 t (qm), -NCH₂CH₃; 39.9 t (tm), -NCH₂CH₃. ²⁹Si{¹H} NMR: δ -53.49 s, -S*i*F₂H. ¹J_{Si-F} = 274 Hz.

(iii) Compound 4 $[(C_2H_3)_2]_2NSiF_2$. Mass spectrum: m/e 210 (M⁺, C₈H₂₀F₂N₂Si⁺), 181 (C₆H₁₅F₂N₂Si⁺), 136 (C₄H₈F₂NSi⁺), 122 (C₃H₆F₂NSi⁺), 86 (C₃H₈NSi⁺). ¹H NMR: δ 1.75 t, -NCH₂CH₃; 3.58 qt, -NCH₂CH₃. ¹⁹F NMR: δ -144.0 s (br), -NSiF₂N-. ¹³C NMR: δ 16.24 q (qt), -NCH₂CH₃; 40.88 t (qtd), -NCH₂CH₃. ²⁹Si{¹H} NMR: δ -64.4 t, -NS*i*F₂N-. ¹J_{Si-F} = 222 Hz.

(iv) Compound 5 $[(C_2H_5)_2]_2$ NSiFH. ¹H NMR: δ 1.8 t, -NCH₂CH₃; 3.6 qd, -NCH₂CH₃; 5.1 d, -SiFH-. ¹⁹F NMR: δ -138.6 s (dm), -SiFH-. ¹J_{Si-F} = 273 Hz.

(v) Compound 6 CCl₃SiF₂Br. Mass spectrum: m/e 227 (M-Cl⁺, CCl₂BrF₂Si⁺), 183 (M-Br⁺, CCl₃F₂Si⁺), 145 (BrF₂Si⁺), 82 (CCl₂⁺), 47 (CCl₂⁺, FSi⁺). ¹⁹F NMR: δ -124.3 s (s), -SiF₂Br. ¹³C NMR: δ 83.5 t (t), -CCl₃. ¹J_{Si-F} = 320.0 Hz, ²J_{C-F} = 25.2 Hz.

(vi) Compound 7 CCl₂BrSiF₂Br. Mass spectrum: m/e 271 (M-Cl⁺, CClBr₂F₂Si⁺), 227 (M-Br⁺, CCl₂BrF₂Si⁺), 192 (M-ClBr⁺, CClBrF₂Si⁺), 145 (BrF₂Si⁺), 47 (CCl₂⁺, FSi⁺). ¹⁹F NMR: δ -124.0 s (s), -SiF₂Br. ¹³C NMR: δ 64.5 t (t), -CBrCl₂. ¹J_{Si-F} = 320.1 Hz, ²J_{C-F} = 24.1 Hz.

(vii) Compound 8 CClBrFSiF₂Br. Mass spectrum: m/e 255 (M-Cl⁺, CBr₂F₃Si⁺), 211 (M-Br⁺, CClBrF₃Si⁺), 178 (M-ClBr⁺, CBrF₃Si⁺), 132 (ClF₃Si⁺), 47 (CCl₂⁺, FSi⁺). ¹⁹F NMR: δ -80.05 br (br), CFBrCl, δ -124.5 AB (AB), -SiF₂Br. ¹³C NMR: δ 99.7 dt (dt), -CClBrF. ¹J_{Sl-F} = 323.6 Hz, ²J_{Sl-F} = 49.6 Hz, ²J_{C-F} = 28.0 Hz, ¹J_{C-F} = 301.0 Hz, ²J_{F-F} = 55.3 Hz, ³J_{F-F} = 0.8 Hz.

(viii) Compound 9 [(CH₃)₂P]₂. Mass spectrum: m/e 122 (M⁺, C₄H₁₂P₂⁺), 107 (C₃H₉P₂⁺), 79 (CH₅P₂⁺), 61 (CH₂P⁺), 45 (CH₂P⁺). ¹H NMR: δ 1.11 A₆XX'A'₆, -P(CH₃)₂. ¹³C NMR: δ 10.68 t (qt). -P(CH₃)₂ ¹J_{C-H} = 128.9 Hz. ³¹P{¹H} NMR: δ -58.2 s(m). -P(CH₃)₂ ¹J_{C-P} \approx ²J_{C-P} \approx 3.9 Hz, ²J_{H-P} = 2.9 Hz, ³J_{H-P} = 11.25 Hz.

(ix) Compound 10 (CH₃)₂PSiCl₃. Mass spectrum: m/e 194 (M⁺, C₂H₆Cl₃PSi⁺), 133 (SiCl₃⁺), 113 (CH₃SiCl₂⁺), 96 (C₂H₆PCl⁺), 61 (C₂H₆P⁺). ¹H NMR: δ 1.06 d, -P(CH₃)₂. ¹³C NMR: δ 8.38 d (qdq). -P(CH₃)₂. ³¹P{¹H} NMR: δ -96.5 s(m). -P(CH₃)₂. ²⁹Si{¹H} NMR: δ -64.4 t, -PSiCl₃. ¹J_{C-P} = 18.1 Hz, ¹J_{SI-P} = 82.5 Hz, ²J_{H-P} = 3.9 Hz.

(x) Compound 11 [(CH₃)₂P]₂SiCl₂. Mass spectrum: m/e 220 (M⁺, C₄H₁₂Cl₂P₂Si⁺), 205 (C₃H₉Cl₂P₂Si⁺), 160 (C₂H₇Cl₂PSi⁺), 113 (CH₃Cl₂Si⁺), 61 (C₂H₆P⁺). ¹H NMR: δ 1.23 A₆XX'A'₆, -P(CH₃)₂. ¹³C NMR: δ 7.0 AXX' (m). -P(CH₃)₂ ¹J_{C-H} = 128.9 Hz. ³¹P{¹H} NMR: δ -109.5 s(m). -P(CH₃)₂ ²⁹Si{¹H} NMR: δ 45.3 t, -PSiCl₂. ¹J_{Si-P} = 88.1 Hz, ²J_{H-P} = 3.1 Hz.

(xi) Compound 13 $C_2H_5P(SiF_3)_2$. Mass spectrum: m/e 230 (M⁺, $C_2H_5F_6PSi_2^+$), 202 (HF₆PSi₂⁺), 183 (HF₅PSi₂⁺), 85 (SiF₃⁺), 57 (C₄H₉⁺). ¹H NMR: δ 1.01 qm, -PCH₂CH₃, 1.61 tm, -PCH₂CH₃. ¹³C NMR: δ 5.93 d. -PCH₂CH₃, 16.14 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -220.3 m(m). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -117.45, d, -PSiF₃. ¹J_{Si-F} = 328.1 Hz, ²J_{P-F} = 10.77 Hz, ¹J_{C-P} = 12.5 Hz, ²J_{C-P} = 9.2 Hz.

(xii) Compound 14 C₂H₅P(SiF₃)(SiClF₂). Mass spectrum: m/e 246 (M⁺, C₂H₅ClF₅PSi₂⁺), 218 (HClF₅PSi₂⁺), 183 (HF₅PSi₂⁺), 85 (SiF₃⁺), 57 (C₄H₉⁺). ¹H NMR: δ 1.06 qm, -PCH₂CH₃, 1.63 tm, -PCH₂CH₃. ¹³C NMR: δ 7.21 d. -PCH₂CH₃, 16.01 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -196.9 qt (qtm). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -117.66, dt, -PSiF₃, -104.3, AB, -PSiF₂Cl. ¹J_{Si-F} = 328.6 Hz, ²J_{F-F} = 58.0 Hz, ¹J_{C-P} = 13.1 Hz, ²J_{C-F} = 10.3 Hz, ²J_{F-F} = 9.87 Hz, ³J_{H-H} = 7.65 Hz.

(xiii) Compound **15** C₂H₅P(SiF₃)(SiFCl₂). Mass spectrum: m/e 262 (M⁺, C₂H₅Cl₂F₄PSi₂⁺), 234 (HCl₂F₄PSi₂⁺), 215 (HF₃PSi₂⁺), 199 (HClF₄PSi₂⁺), 117 (SiFCl₂⁺). ¹H NMR: δ 1.12 qm, -PCH₂CH₃, 1.74 tm, -PCH₂CH₃. ¹³C NMR: δ 8.52 d. -PCH₂CH₃, 15.68 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -175.1 dq (dqm). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -117.87, dd, -PSiF₃, -95.5, dq, -PSiFCl₂. ¹J_{Si-F} = 329.7 Hz, ¹J_{Si-F} = 375.5 Hz, ⁴J_{F-F} = 2.90 Hz, ¹J_{C-P} = 13.9 Hz, ²J_{C-P} = 11.3 Hz, ²J_{F-P} = 8.98 Hz, ³J_{H-H} = 7.71 Hz.

(xiv) Compound 16 C₂H₅P(SiF₃)(SiCl₃). Mass spectrum: m/e 278 (M⁺, C₂H₅Cl₃F₃PSi₂⁺), 250 (HCl₃F₃PSi₂⁺), 215 (HCl₂F₃PSi₂⁺), 133 (Cl₃Si⁺), 98 (SiCl₂⁺). ¹H NMR: δ 1.18 qm, -PCH₂CH₃, 1.72 tm, -PCH₂CH₃. ¹³C NMR: δ 9.71 d. -PCH₂CH₃, 15.30 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -155.9 q (qm). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -118.22, d, -PSiF₃. ¹J_{Si-F} = 330.8 Hz, ¹J_{Si-P} = 57.5 Hz, ¹J_{C-P} = 14.3 Hz, ²J_{C-P} = 12.6 Hz, ²J_{F-P} = 8.53 Hz, ³J_{H-H} = 7.67 Hz.

(xv) Compound 17 C₂H₅P(SiClF₂)₂. Mass spectrum: m/e 262 (M⁺, C₂H₅Cl₂F₄PSi₂⁺), 234 (HCl₂F₄PSi₂⁺), 215 (HF₃PSi₂⁺), 199 (HClF₄PSi₂⁺), 117 (SiFCl₂⁺). ¹H NMR: δ 1.12 qm, -PCH₂CH₃, 1.65 tm, -PCH₂CH₃. ¹³C NMR: δ 8.52 d. -PCH₂CH₃, 15.68 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -175.1 m (m). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -104.5, AB, -PSiF₂Cl. ²J_{F-F} = 59.0 Hz, ¹J_{C-P} = 13.5 Hz, ²J_{C-P} = 11.3 Hz, ²J_{F-P} = 7.8 Hz, ²J_{F-P} = 2.8 Hz, ³J_{H-H} = 7.71 Hz.

(xvi) Compound **18** C₂H₅P(SiFCl₂)(SiClF₂). Mass spectrum: m/e 278 (M⁺, C₂H₅Cl₃F₃PSi₂⁺), 250 (HCl₃F₃PSi₂⁺), 215 (HCl₂F₃PSi₂⁺), 133 (Cl₃Si⁺), 98 (SiCl₂⁺). ¹H NMR: δ 1.18 qm, -PCH₂CH₃, 1.72 tm, -PCH₂CH₃. ¹³C NMR: δ 9.73 d. -PCH₂CH₃, 15.18 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -155.1 ddd (dddm). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -95.8, dt, -PSiFCl₂, -104.0, AB, -PSiF₂Cl. ¹J_{Si-F} = 376.6 Hz, ¹J_{C-P} = 14.3 Hz, ²J_{C-P} = 12.9 Hz, ²J_{F-P} = 7.9 Hz, ²J_{F-P} = 13 Hz, ²J_{F-P} = 3.7 Hz, ³J_{H-H} = 7.67 Hz.

(xvii) Compound **19** $C_2H_5P(SiCl_3)(SiCl_2)$. Mass spectrum: m/e 294 (M⁺, $C_2H_5Cl_4F_2PSi_2^+$), 266 (HCl₄F₂PSi₂⁺), 231 (HCl₃F₂PSi₂⁺), 142 (C₂H₅PSiFCl⁺), 114 (HPSiFCl⁺). ¹H

NMR: δ 1.22 qm, -PCH₂CH₃, 1.79 tm, -PCH₂CH₃. ¹³C NMR: δ 10.82 d. -PCH₂CH₃, 14.85 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -137.4 dd (m). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -104.0, AB, -PSiF₂Cl. ¹J_{Si-P} = 45.3 Hz, ¹J_{C-P} = 15.1 Hz, ²J_{C-P} = 13.9 Hz, ²J_{F-P} = 9.7 Hz, ²J_{F-P} = 4.7 Hz, ³J_{H-H} = 7.65 Hz, ²J_{F-F} = 57 Hz.

(xviii) Compound **20** C₂H₅P(SiFCl₂)₂. Mass spectrum: m/e 294 (M⁺, C₂H₅Cl₄F₂PSi₂⁺), 266 (HCl₄F₂PSi₂⁺), 231 (HCl₃F₂PSi₂⁺), 142 (C₂H₅PSiFCl⁺), 114 (HPSiFCl⁺). ¹H NMR: δ 1.22 qm, -PCH₂CH₃, 1.79 tm, -PCH₂CH₃. ¹³C NMR: δ 10.85 d. -PCH₂CH₃, 14.80 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -136.8 dd (m). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -96.1, d (dm), -PSiFCl₂. ¹J_{Si-F} = 378.2 Hz, ¹J_{Si-P} = 44.5 Hz, ¹J_{C-P} = 15.1 Hz, ²J_{C-P} = 13.8 Hz, ²J_{F-P} = 12.1 Hz, ²J_{F-P} = 4.7 Hz, ³J_{H-H} = 7.65 Hz.

(xix) Compound **21** C₂H₃P(SiCl₃)(SiFCl₂). Mass spectrum: m/e 310 (M⁺, C₂H₅Cl₅FPSi₂⁺), 295 (CH₂Cl₅FPSi₂⁺), 231 (HCl₅FPSi₂⁺), 142 (C₂H₅PSiFCl⁺), 114 (HPSiFCl⁺). ¹H NMR: δ 1.28 qm, -PCH₂CH₃, 1.84 tm, -PCH₂CH₃. ¹³C NMR: δ 11.9 d. -PCH₂CH₃, 14.60 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -121.1 d (dm). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -96.5, d(dm), -PSiFCl₂. ¹J_{Si-F} = 379.3 Hz, ¹J_{C-P} = 15.9 Hz, ²J_{C-P} = 14.8 Hz, ²J_{F-P} = 11.7 Hz, ³J_{H-H} = 7.72 Hz.

(xx) Compound **22** C₂H₅P(SiCl₃)₂. Mass spectrum: m/e 326 (M⁺, C₂H₅Cl₆PSi₂⁺), 298 (HCl₆PSi₂⁺), 263 (HCl₅PSi₂⁺), 130 (HCl₂PSi⁺), 63 (SiCl⁺). ¹H NMR: δ 1.33 qm, -PCH₂CH₃, 1.89 tm, -PCH₂CH₃. ¹³C NMR: δ 12.96 d. -PCH₂CH₃, 14.41 d. -PCH₂CH₃. ³¹P{¹H} NMR: δ -106.4 s (m). -PCH₂CH₃. ¹⁹F{¹H} NMR: δ -96.5, d(dm), -PSiFCl₂. ¹J_{Si-P} = 66.3 Hz, ¹J_{C-P} = 16.8 Hz, ²J_{C-P} = 15.6 Hz, ³J_{H-H} = 7.9 Hz.

Received December 24, 1998.

Key Words

Difluorosilylene; Amine; Phospine; Insertion.

REFERENCES

- (a) Margrave, J. L.; Wilson, P. W. Acc. Chem. Res. 1971,
 4, 145. (b) Perry, D. L.; Margrave, J. L. J. Chem. Educ.
 1976, 53, 696. (c) Margrave, J. L.; Perry, D. L. Inorg. Chem. 1977, 16, 1820.
- 2. Liu, C. S.; Thompson, J. C. Can. J. Chem. 1972, 50, 459.
- (a) Thompson, J. C.; Wright, A. P. G. Can. J. Chem. 1979, 57, 994. (b) Timms, P. L.; Ehlert, T. C.; Margrave, J. L.; Brinckman, F. E.; Farrar, T. C.; Coyle, T. D. J. Am. Chem. Soc. 1965, 87, 901.
- 4. (a) Margrave, J. L.; Wilson, P. W. Acc. Chem. Res. 1971,
 4, 145. (b) Thompson, J. C.; Margrave, J. L. Science
 1967, 155, 669. (c) Margrave, J. L.; Williams, D. L.;
 Wilson, P. W. Inorg. Nucl. Chem. Letters 1971, 7, 103.
- 5. Liu, C. S.; Hwang, T. L. J. Am. Chem. Soc. 1979, 101, 2996.
- Khanna, V. M.; Hauge, R.; Curl, R. F.; Margrave, J. L. J. Chem. Phys. 1967, 47, 5031.
- (a) Rahman, M. Organometallics 1989, 8, 1 and references contained therein.
 (b) Tolman, C. A. Chem. Rev. 1977, 77, 313.
- 8. Ault, B. S. *Inorg. Chem.* 1979, *18*, 3339 and references contained therein.
- Hu, J.; Schaad, L. J.; Hess, B. A., Jr. J. Am. Chem. Soc. 1991, 113, 1463.
- 10. Ennan, A. A.; Gavrilova, L. A. Russ. J. Inorg. Chem. 1974, 11, 19.
- 11. Allan, M.; Aylett, B. J.; Ellis, I. A.; Porritt, C. J. Chem. Soc., Dalton Trans. 1973, 2675.
- 12. Martens, R.; Mont, W. W. du. Chem. Ber. 1993, 126, 1115.
- Margrave, J. L.; Sharp, K. G.; Wilson, P. W. Inorg. Nucl. Chem. Lett. 1969, 5, 995.
- 14. Sharp, K. G. Inorg. Chem. 1975, 14(6), 1241.
- 15. Phosphines are known to be efficient to open the ring structure of tetrafluorodisilacyclobutenes by cleaving the Si-Si linkage. Lee, C. Y. Ph.D. Dissertation, National Tsing Hua University, R.O.C. 1986.
- Timms, P. L.; Kent, R. A.; Ehlert, T. C.; Margrave, J. L. J. Am. Chem. Soc. 1965, 5, 2824.