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A B S T R A C T

A new highly efficient and reusable Cu(I)-MOF has been developed for the synthesis of propargylamine

compounds via the three-components reaction of secondary amines, alkynes, and aromatic aldehydes

under solvent-free conditions. The desired propargylamines were obtained in good to excellent yields

with a low catalyst loading. The catalyst may be recovered and reused for up to 5 cycles without major

loss of activity. This protocol has the advantages of excellent yields, low catalyst loading, and catalyst

recyclability.

� 2014 Bang-Lin Chen and John C.-G. Zhao. Published by Elsevier B.V. on behalf of Chinese Chemical

Society. All rights reserved.
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1. Introduction

Propargylamine is an important motif that can be found in
many natural products and therapeutic drugs [1–4]. They are also
key intermediates for the preparation of many nitrogen-containing
natural products and biologically active compounds, such as b-
lactams [5] and oxotremorine [6] analogues. Because of their
importance, many synthetic methods have been developed [7];
however, the most convenient preparation method for propargy-
lamines is the catalytic three-component reaction involving the
coupling of an aldehyde, an amine, and a terminal alkyne, which is
known as an A3 coupling reaction in the literature [8,9]. Neverthe-
less, most of the reported A3 coupling catalysts used for the
synthesis of propargylamines are homogeneous and have some
serious drawbacks, such as the difficulty in the separation and
subsequent reuse of the expensive catalysts and the indispensable
use of organic solvents [10,11]. New heterogeneous catalysts with
greater reusability, efficiency, and ease of synthesis are constantly
45
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50
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sought out of environmental concerns. In recent years, micro/
mesoporous materials have been extensively studied for their high
internal surface area where the hybrid solids composed of organic
struts and inorganic pore/channel catalytic sites lead to improved
efficiency [12,13]. Metal–organic frameworks (MOFs) are crystal-
line nodes and have emerged as a novel class of porous materials
[14,15]. Thanks to their catalysis friendly features such as large
surface areas, porosity, and tunable and functionalizable pore
walls, MOFs have proven to be more advantageous than traditional
organic and inorganic porous materials in heterogeneous catalysis.
Not surprisingly, several MOF-based catalysts, such as Pd/Zn-MOF
[16], Cu(2-pymo)2 [17], and post-modified MOF-supported Cu(I)
catalysts [18], have been used as the heterogeneous catalysts in the
A3 coupling reaction for the synthesis of propargylamines and
demonstrated high stability and catalytic activity. Nonetheless,
organic solvents are required for these catalytic systems, which is
not green according to the green chemistry principles [19]. Recent
studies indicate MOFs could be used as green heterogeneous
catalysts in water or under solvent-free condition [20–22]. How-
ever, to our knowledge, there is no report on a MOF-catalyzed
system that operates under solvent-free conditions for this A3

coupling reaction.
As a small subgroup of MOFs, cationic MOFs occur when the

positive charges on the metal ions outnumber the negative charges
etal-organic framework as a highly efficient and reusable catalyst
itions, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/
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 the organic linkers [23]. Extra anions are necessary to balance
e charge due to the net positive charge on the frameworks.

ong cationic MOFs, sulfonate-based MOFs have been proven to
 efficient heterogeneous catalysts due to their strong Lewis
idity as a result of the weak interactions between the sulfonate
mplates and the cationic metal-organic frameworks. According-
, Oliver and coworkers reported the first application of sulfonate-
sed MOFs as the catalyst for the ketal formation reaction
4]. Our groups are interested in developing novel MOFs for the
plications in chiral separations and organic reactions
5,26]. Previously, we reported that sulfonate-based Zn- and
-MOFs are highly efficient catalysts for the Biginelli reaction [27]
d for the synthesis of multi-functional pyridine derivatives [28]
der mild conditions. Deng group has also reported that a
lfonate cadmium coordination polymer can be used to promote
e epoxide ring-opening reaction of epoxides and amines
9]. Recently, a copper-exchanged USY zeolite has been reported
 the catalyst for the production of propargylamine under solvent-
e conditions [30] and a Ag(I)-exchanged K10 montmorillonite

ay has been used as heterogeneous catalyst for the synthesis of
opargylamine in water [31]. These two materials are both ion-
changeable and show high Lewis acidity. On the basis of these
dings, we speculated that Cu(I)-MOFs containing cationic
. 1. (a) Coordination environment of Cu(I) ion in Cu(I)-MOF and (b) crystallographic

rogen: blue, hydrogen atoms are omitted for clarity purpose). (For interpretation of r

icle.)

Please cite this article in press as: P. Li, et al., A sulfonate-based Cu(I) m
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framework and flexible anionic sulfonate template may also be
highly efficient catalysts for the A3 coupling reaction used for the
synthesis of propargylamines due to their strong Lewis acidity and
structural flexibility and robustness. Herein we report the
synthesis, characterization of a new sulfonate-based Cu(I)-MOF
and its application as a heterogeneous catalyst in the synthesis of
propargylamines under solvent-free conditions.

2. Experimental

2.1. General

The crystallographic measurement of the Cu(I)-MOF was
collected at 98(2) K on a Rigaku X-ray diffractometer system
equipped with a Mo-target X-ray tube (l = 0.71073 Å) with Saturn
724 CCD detector. Powder X-ray diffraction (PXRD) patterns were
recorded by a RigakuUltima IV diffractometer operated at 40 kV
and 44 mA with a scan rate of 1.0 deg/min. 1H NMR and 13C NMR
spectra were obtained using a Varian Mercury 300 MHz spec-
trometer at room temperature. Tetramethylsilane (TMS) and
deuterated solvents (CDCl3, d 77.0; DMSO-d6, d 39.5) were used
as internal standards in 1H NMR and 13C NMR experiments,
respectively.
 a-projection of Cu(I)-MOF (copper: cyan; carbon: gray; sulfur: yellow; oxygen: red;

eference to color in this figure legend, the reader is referred to the web version of this

etal-organic framework as a highly efficient and reusable catalyst
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http://dx.doi.org/10.1016/j.cclet.2014.10.022
http://dx.doi.org/10.1016/j.cclet.2014.10.022


94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112
113
114

115

116

117
118
119
120
121
122
123
124
125
126
127
128

Table 1
Optimization of the reaction conditions.a

Entry Catalyst (mol %) Temp (8C) Time (h) Yield (%)b

1 10.0 80 14 90

2 0 80 14 0

3 10.0 60 20 85

4 10.0 40 28 49

5 10.0 rt 24 0

6 5.0 80 18 91

7 2.5 80 24 90

8 1.0 80 48 64

a Unless otherwise specified, all reactions were carried out with 1a (0.50 mmol), 2a (0.50 mmol), 3a (0.50 mmol), and the Cu(I)-MOF catalyst (amount specified in the table)

under neat conditions.
b Yield of the isolated product after column chromatography.
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2.2. Synthesis of the Cu(I)-MOF

Cu(OAc)2�2H2O (0.036 g, 0.2 mmol), 2,4,6-tri(4-pyridyl)-1,3,
5-triazine (TPT) (0.062 g, 0.2 mmol), and 2,6-naphthalenendisul-
fonic acid disodium salt (NSA) (0.032 g, 0.1 mmol) were dissolved
in 10 mL deionized water and were heated at 170 8C for 4 days
under autogenous pressure, followed by slow cooling at a rate of
10 8C/min to room temperature. Dark red block crystals were
isolated after filtration and washed by D.I. water three times (yield:
0.072 g, 74% based on Cu(OAc)2�2H2O).

2.3. General procedure for the three-component reaction

In a sample vial, to a mixture of piperidine (42.5 mg,
0.50 mmol), benzaldehyde (53.1 mg, 0.50 mmol), and phenylace-
tylene (51.1 mg, 0.50 mmol) was added the Cu(I)-MOF catalyst
(6.7 mg, 0.0125 mmol, 2.5 mol%). The mixture was then stirred at
80 8C for the time given in the tables. After completion of the
reaction (monitored by TLC), CH2Cl2 (2 mL) was added and the
mixture was centrifuged to recover the catalyst. The crude product
obtained after removing the solvent under reduced pressure was
Table 2
Three-component synthesis of propargylamines using piperidine catalyzed by the Cu(I

Entry R1 R2

1 H Ph 

2 H 2-BrC6H4

3 H 4-MeOC6H4

4 H 2-CF3C6H4

5 Cl Ph 

6 Br Ph 

7 Me Ph 

a All reactions were carried out with 1a (0.50 mmol), 2 (0.50 mmol), and 3 (0.50 mm
b Yield of the isolated product after column chromatography.

Please cite this article in press as: P. Li, et al., A sulfonate-based Cu(I) m
for the synthesis of propargylamines under solvent-free cond
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purified by column chromatography. Before reuse, the recovered
catalyst was washed with CH2Cl2 (5 mL) and activated by heating
at 50 8C under vacuum for 2 h.

3. Results and discussion

3.1. Crystal structure of the Cu(I)-MOF

Single crystal structure reveals that the Cu(I)-MOF crystallizes in
triclinic space group P-1 and every Cu center is coordinated by with
three nitrogen atoms from TPT ligands and one oxygen from a NSA
ligand in a tetrahedral coordination geometry (Fig. 1a). There exists a
guest water molecule in the lattice. The interactions between the
sulfonate ligand and Cu(I) ion [Cu–O distance is 2.370(2)Å] is
relatively weak, which renders the Cu(I) site readily accessible as
Lewis acid for potential heterogeneous catalysis. The Cu(I) ions are
linked by TPT and NSA ligands into 2D frameworks, which are
further stabilized by p–p stacking along a axis (Fig. 1b). However,
due to condensed packing, Cu(I)-MOF does not show any pores in 3D
structure, and no permanent porosity has been established.
)-MOF.a

Time (h) Yield (%)b

24 90

24 83

26 87

27 85

24 89

24 88

24 88

ol) and the MOF catalyst (0.0125 mmol, 2.5 mol %) under neat conditions at 80 8C.

etal-organic framework as a highly efficient and reusable catalyst
itions, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/
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Table 3
Three-component synthesis of propargylamines using pyrrolidine catalyzed by the Cu(I)-MOF.a

Entry R1 R2 Time (h) Yield (%)b

1 H Ph 24 89

2c H 4-MeOC6H4 26 58

3 CH3 Ph 26 86

4 Cl Ph 24 62

5 MeO Ph 24 59

a Unless otherwise indicated, all reactions were carried out with 1b (0.50 mmol), 2 (0.50 mmol), and 3 (0.50 mmol) and the MOF catalyst (0.0125 mmol, 2.5 mol%) under

neat conditions at 80 8C.
b Yield of the isolated product after column chromatography.
c With a catalyst loading of 10 mol %.
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2. Optimization of model reaction

Using piperidine (1a), benzaldehyde (2a), and phenylacetylene
a) as the model substrates, we first examined the catalytic
tivity of the Cu(I)-MOF in the three-component reaction. The
action was attempted under neat conditions in order to avoid the
e of any organic solvent [18]. The results are summarized in
ble 1. As the data in Table 1 show, when 10 mol % of the Cu(I)-
OF was applied at 80 8C under neat conditions, the desired
opargylamine 4a was formed in a high yield (90%) after 14 h
ntry 1). The catalytic activity of the Cu(I)-MOF for this
actions was unequivocally established by conducting a control
action in the absence of the catalyst: No formation product 4a
as observed without the MOF catalyst under otherwise
entical reaction conditions (Table 1, entry 2). When the
action temperature was decreased, a significant loss of the
talytic activity was observed, as is evident from the longer
action times and lower product yields (entries 3 and 4). In
dition, when the reaction was performed at room tempera-
re, there was no observable conversion of the substrates (entry
. Nevertheless, the catalyst loading can be reduced (entries 6
d 7) and the reaction proceeds well even with a catalyst

ading of only 2.5 mol %, without affect the product yield,
though the reaction time is slightly longer (entry 7). However,
rther reducing the catalyst loading to 1.0 mol% led to a much
ower reaction and the product yield dropped significantly to
% (entry 8).
ble 4
talyst recyclability study.a

ntry Cycle Catalyst recove

 I 96 

 II 96 

 III 96 

 IV 95 

 V 95 

Unless otherwise specified, all reactions were carried out with 1 (0.50 mmol), 2a (0

at conditions at 80 8C.

Yield of the isolated product after column chromatography.
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3.3. Scope of the A3 coupling reaction

With the optimized reaction conditions at hand, we then
evaluated the scope of this reaction. The results are summarized in
Table 2. As shown by the data in Table 2, besides phenylacetylene,
2-bromophenylacetylene also underwent the coupling reaction
smoothly to yield the corresponding propargylamine in good yield
(83%, entry 2). Similarly, high yields were obtained for phenyla-
cetylenes with an electron-donating group (4-MeO) or an electron-
withdrawing group (2-CF3) on the phenyl ring (entries 3 and 4).
Substituted benzaldehydes are also good substrates for this
coupling reaction. High product yields were obtained when 4-
halo-substituted benzaldehydes were reacted with phenylacety-
lene and piperidine (entries 5 and 6). When 4-methylbenzalde-
hyde was used, the corresponding propargylamine was obtained in
88% yield (entry 7).

Next pyrrolidine was used in the three-component coupling
reaction under identical conditions. The results are summarized in
Table 3. When benzaldehyde and phenylacetylene were used as
the starting materials, the corresponding propargylamine was
obtained in 89% yield (entry 1), which is similar to that of
piperidine (Table 2, entry 1). However, unlike that of piperidine
(Table 2, entry 3), 4-methoxyphenylacetylene is much less reactive
and gave a much lower yield of the propargylamine (58%) even
with a much higher catalyst loading (10 mol %, entry 2). On the
other hand, 4-methylbenzaldehyde produced a good yield of the
expected product (entry 3). However, 4-chloro- and 4-methoxy
ry (%) Time (h) Yield (%)b

14 91

22 82

15 88

15 88

20 87

.50 mmol), and 3a (0.50 mmol) and the MOF catalyst (0.0125 mmol, 2.5 mol%) under

etal-organic framework as a highly efficient and reusable catalyst
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Fig. 2. PXRD of simulated Cu(I)-MOF (black), fresh Cu(I)-MOF (red) and Cu(I)-MOF

after five times catalytic cycle (blue). (For interpretation of reference to color in this

figure legend, the reader is referred to the web version of this article.)
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groups on benzaldehyde resulted in much lower product yields
(entries 4 and 5). Thus, the coupling reaction with pyrrolidine as
the amine component is highly substrate-dependent.

3.4. Catalyst stability and recyclability

The major advantages of the MOF catalysts lie in the fact that
they can be readily recovered after the reaction and reused due to
their stability and heterogeneous nature.

To verify the stability of the catalyst under the experimental
conditions, leaching experiment was performed by examining the
1H NMR of the supernatant of reaction mixture. No leaching of TPT
or NSA ligand was observed in the supernatant. To further confirm
that the catalysis is indeed heterogeneous, we filtered the reaction
mixture after 5 h, and continued to monitor the progress of the
reactions in the filtrate. No further catalytic reactions has been
observed in the filtrated solution.

We also investigated the recyclability of this new Cu(I)-MOF
using piperidine (1a), benzaldehyde (2a) and phenylacetylene (3a).
The results are summarized in Table 4. In fact, the MOF catalyst
could be easily recovered by centrifuging the reaction mixture
after the reaction. The PXRD pattern indicates the crystal
structures of Cu(I)-MOF maintained after the catalytic reactions
(Fig. 2).

After washing the recovered MOF with CH2Cl2 (5 mL) to remove
traces of the previous reaction mixture and drying it under
vacuumed at 50 8C for 2 h, the MOF catalyst can be directly used in
the next cycle. As the data in Table 4 show, the Cu(I)-MOF catalyst
may be easily recovered and successfully reused for up to 5 cycles
without any significant loss in the catalytic activity.

4. Conclusion

In summary, we have developed a new Cu(I)-MOF that is a
highly efficient catalyst for the three-component synthesis of
propargylamines under solvent-free conditions. The correspond-
ing propargylamines were obtained in good to excellent yields,
especially when piperidine was used as the amine component.
Heterogeneity tests demonstrate the absence of leaching under the
examined experimental conditions. The MOF catalyst can be
readily recycled and reused without major loss of their activity
for up to five cycles. This heterogeneous catalyst based on the
Please cite this article in press as: P. Li, et al., A sulfonate-based Cu(I) m
for the synthesis of propargylamines under solvent-free cond
j.cclet.2014.10.022
Cu(I)-MOFs might lead to its practical applications on the
production of propargylamine in an environmentally benign
manner.
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