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Abstract—A new synthetic entry to the FR901483 core is described. The Pd-mediated cyclization of amino-tethered vinyl halides
and ketone enolates from the azaspiro[4.5]decan-8-ones 5 and 10 gives the functionalized 7,10a-methanoperhydropyrrolo[1,2-a]-

azocines 1 and 11, respectively.
© 2003 Elsevier Ltd. All rights reserved.

FR901483, a natural potent immunosuppressant, con-
tains a 2-azabicyclo[3.3.1]Jnonane framework and a
pyrrolidine ring, which form an azaspirotricyclic skele-
ton (Fig. 1).! The four total syntheses reported so far
for this natural product use an aldol process,”> in
which the C(7)-C(8) bond is formed, for the ring
closure of the azatricyclic core. In this work, we report
a new synthetic entry to the tricyclic skeleton of
FR901483,°° involving the formation of the C(7)-C(8)
bond through a Pd-mediated intramolecular coupling
of an amino-tethered vinyl halide and ketone enolate.!*'2

Initial investigations to evaluate the feasibility of this
strategy centered around the synthesis of 1. To access
the tricyclic skeleton of FR901483 through the pro-
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posed methodology we required a cyclization precursor
embodying a l-azaspiro[4.5]decan-8-one framework.
Initially, to assemble this azabicyclic system we decided
to use a protocol inspired by the classical procedure for
preparing spirolactams from nitrocyclohexanes, based
on the a-alkylation of a nitrocycloalkane followed by
the reduction and subsequent lactamization of the nitro
ester obtained (Scheme 1).!1%14

The unknown 4-nitrocyclohexanone was achieved by a
Diels—Alder reaction between nitroethylene and 2-
(trimethylsilyloxy)-1,3-butadiene. Treatment of the
resulting Diels—Alder adduct with ethylene glycol in
benzene at reflux in the presence of a catalytic amount
of TsOH furnished the nitro acetal 2,'> which on reac-
tion with tetramethylguanidine (TMG) and methyl
acrylate!® gave the nitro ester 3. This compound was
quite resistant to the reduction process, but Pd/C and
ammonium formate!” provided the corresponding lac-
tam, which after treatment with NaBH, in acetic acid'®
led to spiro compound 4. Alkylation with 2,3-dibromo-
propene followed by hydrolysis of the acetal provided
the amino tethered vinyl halide 5, which was submitted
to the Pd-promoted cyclization in the presence of KO¢-
Bu. NMR analysis of spiro compound 5 showed that in
its preferred conformation the bond between the spiro
carbon and the nitrogen atom is equatorial,'® hence a
conformational change is necessary for the success of
this intramolecular vinylation,?® in which a nucleophilic
substitution takes place upon the vinylpalladium inter-
mediate. This ring-forming reaction, involving the treat-
ment of a THF solution of 5 with 0.2 equiv. of
Pd(PPh;), and 1.5 equiv. of KO¢-Bu at reflux tempera-
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Scheme 1.

ture for 30 min, led to the azatricyclic compound 1 in
54% yield and constitutes a novel approach to the
heterocyclic system found in FR901483.

This promising result prompted us to begin the synthe-
sis of compound 11, which embodies the amino group
at C(3) present in FR901483 and thus could be consid-
ered as an advanced intermediate for the synthesis of
this fungal metabolite.

The synthesis of compound 11 was carried out as
depicted in Scheme 2.2! The required azaspirocyclic
system present in compound 10 was prepared following
our procedure developed in the synthesis of a seco
derivative of FR901483,'* in which the N-C(2) bond is
formed by iodoaminocyclization of a homoallylamine.
Thus, reaction of the monoethylene acetal of 1,4-cyclo-
hexanedione and benzylamine followed by the addition
of allylmagnesium bromide upon the initially formed
imine gave 6. Treatment of 6 with iodine provided the
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iodide 7, which was converted into the corresponding
methylamino derivative 8 either by treatment with a
solution of methylamine in EtOH for one week fol-
lowed by methoxycarbonylation, or by reaction with
sodium azide followed by reduction of the azide inter-
mediate with triphenylphosphine to give the corre-
sponding primary amine (not shown), which
sequentially reacted with methyl chloroformate and
methyl iodide in the presence of sodium hydride. Both
sequences to the 3-methylamino protected azabicyclic
compound 8 gave similar overall yields. Debenzylation
of the latter compound under a slight pressure of
hydrogen rendered the amine 9 which, after deprotec-
tion of the acetal, was alkylated with 2,3-dibromo-
propene to give the vinyl halide 10 required for the key
cyclization step. Treatment of 10 with 0.2 equiv. of
Pd(PPh;), and 1.5 equiv. of KO-#Bu in refluxing THF
gave 11 in 48% yield as a nearly equimolecular mixture
of stereoisomers. It became clear from this result that
the substituent at C(3) does not influence the regiocon-
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Scheme 2. Synthesis of the azatricyclic core of FR901483.
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Figure 2. NMR ('H and '*C) data of compound 11b.

trol in the formation of the enolate that reacts with the
intermediate vinylpalladium species. The two stereoiso-
mers formed were separated and the relative stereo-
chemistry of compound 11b, elucidated by 2D NMR
spectra (COSY, HSQC, HMBC, NOESY), corre-
sponded to that of FR901483 (Fig. 2).?

In summary, we report a new method for the synthesis
of functionalized 7,10a-methanoperhydropyrrolo[1,2-a]-
azocines embodying the tricyclic core of FR901483,
consisting of Pd-promoted cyclization of vinyl bromides
with ketone enolates. Work is underway to achieve a
regiocontrolled process, install the side-chains and
obtain the oxidation level of the natural product.
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