# Accepted Manuscript

Solvent-Controlled Direct Radical Oxyphosphorylation of Styrenes Mediated by Manganese(III)

Guo-Yu Zhang, Cheng-Kun Li, Da-Peng Li, Run-Sheng Zeng, Adedamola Shoberu, Jian-Ping Zou

PII: S0040-4020(16)30266-6

DOI: 10.1016/j.tet.2016.04.013

Reference: TET 27656

To appear in: *Tetrahedron* 

Received Date: 17 January 2016

Revised Date: 3 April 2016

Accepted Date: 6 April 2016

Please cite this article as: Zhang G-Y, Li C-K, Li D-P, Zeng R-S, Shoberu A, Zou J-P, Solvent-Controlled Direct Radical Oxyphosphorylation of Styrenes Mediated by Manganese(III), *Tetrahedron* (2016), doi: 10.1016/j.tet.2016.04.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



# ACCEPTED MANUSCRIPT

# **Graphical Abstract**

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

# Solvent-Controlled Direct Radical Oxyphosphorylation of Styrenes Mediated by Manganese(III)

Guo-Yu Zhang,<sup>a</sup> Cheng-Kun Li,<sup>a</sup> Da-Peng Li,<sup>a</sup> Run-Sheng Zeng,<sup>\*a</sup>Adedamola Shoberu,<sup>a</sup>Jian-Ping Zou<sup>\*a,b</sup>

 <sup>a</sup>Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China.
 <sup>b</sup>Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

POR<sub>2</sub>  $\frac{Mn(OAc)_3}{CH_3OH, air}$ 



# Tetrahedron journal homepage: www.elsevier.com

# Solvent-Controlled Direct Radical Oxyphosphorylation of Styrenes Mediated by Manganese(III)

Guo-Yu Zhang,<sup>a</sup> Cheng-Kun Li,<sup>a</sup> Da-Peng Li,<sup>a</sup> Run-Sheng Zeng,<sup>\*a</sup>Adedamola Shoberu,<sup>a</sup>Jian-Ping Zou<sup>\*a,b</sup>

<sup>a</sup> Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China.

<sup>b</sup>Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

# ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Keyword\_10xyphosphorylation Keyword\_2 radical reaction Keyword\_3 styrene Keyword\_4 manganese acetate

# ABSTRACT

Direct radical oxyphosphorylation of styrenes with diarylphosphine oxides and dialkyl phosphites mediated by  $Mn(OAc)_3$  is described. The solvent played a key role in this selective difunctionalization reaction.

2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Difunctionalization reaction involving alkenes has been of considerable interest in organic synthesis due to advantages such as its high efficiency, atom and step economy.<sup>1</sup> One of the most significant among this type of reactions are those involving a phosphorus-containing functional group since the resultant product can be easily transformed into other compounds such as  $\beta$ -keto,  $\beta$ -amino, and  $\beta$ -hydroxyphosphonates.<sup>2</sup> Several methods of C-P bond formation have been described in literature, however, reports on the difunctionalization of alkenes involving a phosphorus-containing group are few.<sup>5</sup> In 2011, Ji's group described the first example involving transition metal-catalyzed oxyphosphorylation of alkenes with dioxygen and Hphosphonates<sup>5g</sup>. More recently, our group reported Manganese(III)-mediated acetoxyphosphorylation of alkenes<sup>6</sup> with diphenylphosphine oxide or dimethyl phosphite leading exclusively to acetoxyphosphorylation products. The method proceeded via a phosphorus-centred radical addition to the alkene to form (I), subsequent oxidation and solvent (HOAc) attack tandem process, followed by deprotonation gave compound (IV) (Scheme 1). The Mn(OAc)<sub>3</sub>/HOAc system employed possesses a high oxidative potential as it oxidized both diphenylphosphine oxide (or dimethyl phosphite) and the intermediate carboncentred radical (I) to the corresponding phosphorus-centered radical and carbocation (II) respectively. We envisioned that if the oxidizing ability of  $Mn(OAc)_3$  can be controlled by changing some reaction conditions involved in the process described in Scheme 1, the resultant intermediate carbon-centered radical obtained from the initial addition of the phosphorus-centered radical might be prevented from further oxidation. This could then be subjected to other radical transformations thus achieving a new type of selective difunctionalization of alkenes. Herein, we report a new protocol involving oxyphosphorylation of alkenes in the presence of  $Mn(OAc)_3$  and air. In this reaction, both Hphosphonates and diarylphosphine oxides were tolerated giving the corresponding products.



Scheme 1. Plausible mechanism of acetoxyphosphorylation of styrene

Tetrahedron

<sup>\*</sup>Corresponding author. Tel.: +0-86-512-65880336; fax: +0-86-512-65880335; e-mail: jpzou@suda.edu.cn

#### 2. Results and Discussion

To test our hypothesis, the reaction between styrene (1a) and diphenylphosphine oxide (2) was carried out in the presence of Mn(OAc)<sub>3</sub> under aerobic conditions. At the outset, polar solvents such as MeOH, t-BuOH, CH<sub>3</sub>CN, THF, DMF, and DMSO were used. To our delight, a new product, 2-(diphenylphosphoryl)-1phenylethanone (3a) was observed in all cases (Table 1, entries 1-6). MeOH, t-BuOH and CH<sub>3</sub>CN were the best solvents among which MeOH was selected for further optimization. Subsequently, ratio reaction temperature, time and the of styrene/HP(O)Ph<sub>2</sub>/Mn(OAc)<sub>3</sub> were screened. The best result was obtained when a ratio of styrene/HP(O)Ph<sub>2</sub>/Mn(OAc)<sub>3</sub> (1:2:2) was reacted in MeOH for 1 h at 30°C (Table 1, entry 7). It was interesting that the yield of product obtained under air was higher than in  $O_2$  atmosphere (Table 1, entry 10); this implied that the concentration of oxygen has an important influence on the outcome of reaction.

**Table 1.** Optimization of the reaction conditions



| Entry | Slovent        | 1a:2:Mn(OAc) <sub>3</sub> | Temp./ºC | Time/min | Yield/% <sup>a</sup> |
|-------|----------------|---------------------------|----------|----------|----------------------|
| 1     | CH₃OH          | 1:2:2                     | 50       | 30       | 67                   |
| 2     | <i>t-</i> BuOH | 1:2:2                     | 50       | 30       | 65                   |
| 3     | CH₃CN          | 1:2:2                     | 50       | 30       | 60                   |
| 4     | THF            | 1:2:2                     | 50       | 30       | 43                   |
| 5     | DMF            | 1:2:2                     | 50       | 30       | 30                   |
| 6     | DMSO           | 1:2:2                     | 50       | 30       | 32                   |
| 7     | CH₃OH          | 1:2:2                     | 30       | 60       | 75                   |
| 8     | CH₃OH          | 1:2:2                     | 70       | 20       | 60                   |
| 9     | CH₃OH          | 1:1.8:1.8                 | 30       | 60       | 64                   |
| 10    | CH₃OH          | 1:2:2                     | 30       | 60       | 50 <sup>b</sup>      |

<sup>a</sup> Isolated yield;

<sup>b</sup>The reaction was carried out under O<sub>2</sub> atmosphere.

The optimal reaction conditions obtained above were applied to different set of styrenes to evaluate the scope of this reaction. In general, electronic effect had less influence on the yield as both electron-withdrawing and electron-donating styrene all afforded the expected 2-(diphenylphosphoryl)-1-arylethanones in yields ranging from 60–75% (Table 2, **3a-i**). However, the reaction of 4-nitrostyrene with **2** produced a mixture of 2-(diphenylphosphoryl)-1-(4-nitrophenyl)ethanone (**3j**) and (2-hydroxy-2-(4-nitrophenyl)ethyl)diphenylphosphine oxide (**3j**') in 55% combined yield. The strong electron-withdrawing group NO<sub>2</sub> could be responsible for the competitive reaction pathways involved.

Considering the success of the reaction with diphenylphosphine oxide 2, the reaction with dialkylphosphites was also tested. With, dimethylphosphite (4), the best condition

was observed in MeOH for 1 hour at 70°C. The results showed that styrenes bearing either electron-donating or electronwithdrawing groups on the phenyl ring all afforded oxyphosphorylation products in moderate to good yields (up to 69%, Table 3, **5a-i**). Interestingly, the reaction of 4-nitrostyrene in this case yielded only a major product **5j** in 50% yield thus indicating that radical reaction is sensitive to the nature of the phosphorus radical.

**Table 2.** Reactions of styrenes 1 and diphenylphosphine oxide  $2^{a, b}$ 



<sup>a</sup> Reaction conditions: styrene (1.0 mmol), HP(O)Ph<sub>2</sub> (2.0 mmol), Mn(OAc)<sub>3</sub> (2.0 mmol) in MeOH (10 mL), 30 °C, 60 min;

<sup>b</sup> Isolated yield.

**Table 3.** Reactions of styrenes 1 and dialkylphosphites  $4^{a, b}$ 



<sup>a</sup> Reaction conditions: styrene (1.0 mmol), HPO(OR)<sub>2</sub> (2.0 mmol), Mn(OAc)<sub>3</sub> (2.0 mmol) in CH<sub>3</sub>OH (10 mL), 70 °C, 60 min; <sup>b</sup> Isolated yield.

Moving further, the effects of  $\alpha$ - or  $\beta$ -substituents on styrene MAN were studied. The reactions of both  $\alpha$ -methylstyrene (1k) and  $\alpha$ phenylstyrene (1m) with diphenylphosphine oxide (2) afforded the hydroxyphosphorylation products 3k and 3m in 73% and 74% yields respectively (Table 4). Oxyphosphorylation products were not observed in this case due to the presence of  $\alpha$ -substituents. However, in a situation where the  $\alpha$ -substituent could be lost easily, oxyphosphorylation products were obtained as is the case with  $\alpha$ -bromostyrene (11); the reaction with 2 and 4 produced 3a and 5a respectively in moderate yields. Surprisingly, the reaction of 1m with dimethylphosphite (4) yielded alkenylphosphonate 5m in 75% yield. Product 5m could have been derived from the dehydration of the corresponding hydroxyphosphonylation intermediate. Furthermore, the reactions of both  $\beta$ -methylstyrene (1n) and  $\beta$ -phenylstyrene (1p) with 2 gave the corresponding hydroxyphosphorylation products 3n (73%) and 3p (65%) respectively (Table 4). The reaction of 1n with 4 gave benzoic acid rather than the expected product 5n due to the oxidation of **1n**. Also, the reactions of  $\beta$ -bromostyrene (10) with 2 and 4 both led to addition-elimination products 30 and 50 via the phosphorus-centred radical addition to the terminal C=C double bond, followed by elimination of bromo radical to form alkenylphosphonylation products. The attack of oxygen on intermediate carbon radical is not observed in this case. Based on the results above, the reactions of  $\alpha$ - or  $\beta$ -substituted styrenes with diphenylphosphine oxide (2) and dimethylphosphite (4) gave diverse products depending on the nature and position of substituents. Finally, reactions involving several non-conjugated terminal alkenes were carried out giving exclusively hydrophosphorylation products 3q-t in good yields (Table 4).

To confirm the reaction proceeded via radical process, a control experiment has been done, and the result indicates that the reaction of styrene with diphenylphosphine oxide can be inhibited by addition of 1,1-diphenyl styrene (Scheme 2). A mechanism for the reactions of alkenes with diphenylphosphine oxide (2) and dialkyl phosphites (4) is proposed in Scheme 2. A phosphorus-centred radical 6 derived from 2 or 4 selectively adds to the terminal end of C=C double bond of 1 to form a carbon-centered intermediate radical 7. When R is an alkyl, 7 becomes reactive thus abstracting a proton to give hydrophosphorylation products. On the other hand, if R is an aryl, 7 could be stabilized making it to interact with  $O_2$  to form peroxy radical 8; subsequent proton abstraction and dehydration leads to products 3 or 5.

#### 3. Conclusion

In conclusion, a new general protocol of Mn(OAc)<sub>3</sub>-mediated oxyphosphorylation of styrenes in air has been developed. The solvent played an important role in this reaction leading exclusively to oxyphosphorylation products. Advantages of this methodology include mild reaction conditions, wide scope of substrates, and the need for no further additives or oxidant. Both diarylphosphine oxides and dialkyl phosphites were suitable under this transformation. This protocol provides a new route to  $\beta$ -ketophosphonates which can be easily transformed into other compounds such as  $\alpha$ , $\beta$ -unsaturated carbonyl compounds, chiral  $\beta$ -amino and  $\beta$ -hydroxy phosphonic acids etc.

#### 4. Experimental Section

# 4.1. General

<sup>1</sup>H NMR(400 MHz or 300 MHz) and <sup>13</sup>C NMR (100 or 75 MHz) spectra were determined with CDCl<sub>3</sub> or DMSO- $d_6$  as solvent and tetramethylsilane (TMS) as internal standard or 85% H<sub>3</sub>PO<sub>4</sub> as external standard for <sup>31</sup>P NMR (162 MHz). Chemical shifts were

**Table 4.** Reactions of  $\alpha$ - and  $\beta$ -substituted styrenes 1 with diphenylphosphine oxide 2 and dimethyl phosphite 4<sup>a,t</sup>



<sup>a</sup>Reaction conditions: styrene (1.0 mmol), HP(O)Ph<sub>2</sub> (2.0 mmol), Mn(OAc)<sub>3</sub> (2.0 mmol) in MeOH (10 mL), 30 °C, 60 min; styrene (1.0 mmol), HP(O)(OCH<sub>3</sub>)<sub>2</sub> (2.0 mmol), Mn(OAc)<sub>3</sub> (2.0 mmol) in CH<sub>3</sub>OH (10 mL), 70 °C, 60 min;



Scheme 2. Possible mechanism of oxyphosphorylation of alkenes

reported in ppm from internal TMS( $\delta$ ), all coupling constants ( $J \wedge A$ -(4-Chlorophenyl)-2-(diphenylphosphoryl)ethanone (3e)<sup>10</sup> values) were reported in Hertz (Hz). High resolution mass spectra were recorded on a TOF machine (ESI). Column chromatography was performed with 300-400 mesh silica gel using flash column techniques. All of the reagents were used directly as obtained commercially unless otherwise noted. All alkenes were purified by flash column chromatography (Al<sub>2</sub>O<sub>3</sub>) before use.

#### 4.2. General procedure for the preparation of 2-(diphenylphosphoryl)-1-arylethanones3

Typical procedure for the of2preparation (diphenylphosphoryl)-1-phenylethanone (3a). To a solution of methanol (10 mL), styrene (0.11 g, 1.0 mmol) and diphenylphosphine oxide (0.40 g, 2.0 mmol) was added Mn(OAc)<sub>3</sub> (0.54 g, 2.0 mmol) over 30 minutes at 30°C, and the mixture was stirred for another 30 minutes to complete the reaction. Then, the solvent was removed under vacuum. To the residue was added water (20 mL) and extracted with ethyl acetate (10 mL  $\times$  3). The combined organic fractions were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum to yield the crude product, which was purified by column chromatography (silica gel, petroleum ether/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (10:1:1)) to give pure 2-(diphenylphosphoryl)-1-phenylethanone (3a).

#### 4.3 Characterization

#### 2-(Diphenylphosphoryl)-1-phenylethanone $(3a)^7$

White solid, mp 160–161 °C, 75% yield (240.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.98 (d, J = 7.4 Hz, 2H), 7.84–7.78 (m, 4H), 7.54–7.40 (m, 9H), 4.15 (d, J = 15.3 Hz, 2H);<sup>13</sup>C NMR (75 MHz,  $CDCl_3$ ): $\delta$ 192.8 (d, J = 5.2 Hz), 136.9, 133.6, 132.6, 132.2, 131.1 (d, J = 9.8 Hz), 129.2, 128.7, 128.5, 43.2 (d, J = 57.8 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):δ26.91; HRMS (ESI-TOF) *m/z*:  $(M+H)^{+}$ Calcd for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>P 321.1044, found 321.1047.

#### 2-(Diphenylphosphoryl)-1-(p-tolyl)ethanone (**3b**)<sup>8</sup>

White solid, mp 152–153°C, 65% yield (217.1 mg); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3)$ :  $\delta$ 7.89 (d, J = 7.2 Hz, 2H), 7.76–7.85 (m, 4H), 7.43–7.54 (m, 6H), 7.21 (d, J = 7.2 Hz, 2H), 4.12 (d, J = 15.2 Hz, 2H), 2.38 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ192.3, 144.6, 134.4, 132.4, 132.1, 131.4, 131.1 (d, J = 9.7Hz), 129.3 (d, J =17.6 Hz), 128.5 (d, J = 12.3 Hz), 43.1 (d, J = 58.4 Hz), 21.6; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>21</sub>H<sub>20</sub>O<sub>2</sub>P 335.1, found 335.1.

#### 2-(Diphenylphosphoryl)-1-(4-methoxyphenyl)ethanone (3c)<sup>9</sup>

White solid, mp 147–148 °C, 62% yield (217.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): $\delta$ 7.99 (d, J = 8.8 Hz, 2H), 7.87–7.76 (m, 4 H),7.55–7.43 (m, 6 H),6.89(d, J = 8.7 Hz, 2H), 4.09 (d, J = 15.3Hz, 2H), 3.85 (s, 3 H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ191.0 (d, J = 5.3 Hz), 164.0, 132.6, 132.1 (d, *J* = 2.3 Hz), 131.8, 131.2 (d, *J* = 9.7 Hz), 130.2, 128.6 (d, J = 12.2 Hz), 113.7, 55.5, 43.3 (d, J =58.3 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 27.13; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>21</sub>H<sub>20</sub>O<sub>3</sub>P 351.1, found 351.1.

#### 2-(Diphenylphosphoryl)-1-(4-fluorophenyl)ethanone (3d)

White solid, mp 156–157 °C, 61% yield (206.2 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.02 (dd, J = 8.4, 5.5 Hz, 2H), 7.80 (dd, J = 11.8, 7.5 Hz, 4H), 7.55–7.41 (m, 6H), 7.07 (t, J = 8.5 Hz, 2H), 4.11(d, J = 15.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 191.2 (d, *J* = 5.6 Hz), 166.0 (d, *J* = 256.0 Hz), 133.4 (d, *J* = 2.8 Hz), 132.3, 132.2 (d, J = 2.8 Hz), 132.1 (d, J = 9.6 Hz), 131.3, 131.1 (d, J = 9.8 Hz), 128.7 (d, J = 12.4 Hz), 115.6 (d, J = 22.0 Hz), 43.5 (d, J = 56.9 Hz);<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ 26.81; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd forC<sub>20</sub>H<sub>17</sub>FO<sub>2</sub>P 339.0950, found 339.0944.

White solid, mp 159–160 °C, 70% yield (247.8 mg); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ8.02-7.97 (m, 2H), 7.86-7.79 (m, 4H), 7.59–7.48 (m, 8H), 4.54 (d, J = 14.6 Hz, 2H);<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ): $\delta$ 192.9 (d, J = 6.4 Hz), 139.0, 136.2, 133.7 (d, J = 101.4 Hz), 132.3 (d, J = 2.6 Hz), 131.4, 131.1 (d, J = 9.7Hz),129.1 (d, J = 5.1 Hz), 129.0, 41.9 (d, J = 59.8 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):δ26.67; HRMS (ESI-TOF) *m*/*z*: (M+H)<sup>+</sup>Calcd

# 1-(3-Chlorophenyl)-2-(diphenylphosphoryl)ethanone (3f)

for C<sub>20</sub>H<sub>17</sub>ClO<sub>2</sub>P 355.0655, found 355.0664.

White solid, mp 158–159 °C, 65% yield (230.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.81 (d, J = 12.0 Hz, 2H), 7.70 (dd, J = 11.2, 8.0 Hz, 4H), 7.43–7.34 (m, 7H), 7.29–7.24 (m, 1H), 4.03 (d, J = 14.9 Hz, 2H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 191.7 (d, J = 5.6 Hz), 138.5, 134.82, 133.5, 132.34 (d, J = 2.4 Hz), 131.1, 131.0, 129.9, 128.9, 128.7 (d, J = 12.3 Hz), 127.7, 43.4 (d, J = 57.2 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ 26.80; HRMS (ESI-TOF) m/z:  $(M+H)^+$ Calcd for C<sub>20</sub>H<sub>17</sub>ClO<sub>2</sub>P 355.0655, found 355.0670.

#### 1-(4-Bromophenyl)-2-(diphenylphosphoryl)ethanone (3g)

White solid, mp 144–145 °C,60 % yield (238.8 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.91–7.84 (m, 2H), 7.83–7.74 (m, 4H), 7.59-7.50 (m, 4H), 7.43-7.49 (m, 4H), 4.10 (d, J = 15.2 Hz, 2H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 191.9 (d, J = 5.6 Hz), 135.7, 132.3 (d, *J* = 2.8 Hz), 131.9, 131.1 (d, *J* = 9.8 Hz), 130.9, 129.1, 128.7 (d, J = 12.3 Hz), 43.6 (d, J = 56.7 Hz); <sup>31</sup>P NMR (162) MHz, CDCl<sub>3</sub>):  $\delta$  26.90; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup> Calcd for C<sub>20</sub>H<sub>17</sub>BrO<sub>2</sub>P 399.0150, found 399.0177.

#### 2-(Diphenylphosphoryl)-1-(3-(trifluoromethyl)phenyl)ethanone (3h)

White solid, mp 173–174°C, 60% yield (232.8 mg); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3): \delta 8.26 \text{ (d, } J = 7.8 \text{ Hz}, 1\text{H}), 8.18-8.14 \text{ (m, 1H)},$ 7.84–7.75 (m, 5H), 7.58–7.46 (m, 7H), 4.17 (d, J = 15.3 Hz, 2H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 191.3 (d, J = 5.5 Hz), 136.9, 132.3, 131.9 (d, J = 2.6 Hz), 130.6, 130.5, 129.4 (q, J = 3.5 Hz), 128.8, 128.3, 128.2, 125.3 (q, *J* = 3.8 Hz), 43.2 (d, *J* = 56.3 Hz);  $^{31}\text{P}$  NMR (162 MHz, CDCl<sub>3</sub>):  $\delta 26.51;$  HRMS (ESI-TOF) m/z: $(M+H)^{+}$ Calcd for C<sub>21</sub>H<sub>17</sub>F<sub>3</sub>O<sub>2</sub>P 389.0918, found 389.0941.

#### 1-(4-Cyanophenyl)-2-(diphenylphosphoryl)ethanone(3i)

White solid, mp 169–170 °C, 60% yield (207.0 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.13 (d, J = 8.2 Hz, 2H), 7.79 (dd, J = 12.0, 7.5 Hz, 4H), 7.72 (d, J = 8.2 Hz, 2H), 7.57–7.53 (m, 2H), 7.51–7.46 (m, 4H), 4.15 (d, J = 15.0 Hz, 2H),<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 191.8 (d, J = 5.8 Hz), 139.8, 132.5 (d, J = 2.7 Hz), 132.4, 131.0 (d, J = 9.8 Hz), 129.8, 128.8 (d, J = 12.4 Hz), 117.9, 116.7, 44.1 (d, J = 55.4 Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ (M+H)<sup>+</sup>Calcd 26.50; HRMS (ESI-TOF) m/z: forC<sub>21</sub>H<sub>17</sub>NO<sub>2</sub>P346.0997, found 346.0990.

#### 2-(Diphenylphosphoryl)-1-(4-nitrophenyl)ethanone $(3j)^{ll}$

Yellow solid, mp 163–164 °C,30% yield (109.0 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.26 (d, J = 8.9 Hz, 2H), 8.20 (d, J = 8.9 Hz, 2H), 7.83–7.76 (m, 4H), 7.56 (td, J = 7.2, 1.3 Hz, 2H), 7.52– 7.47 (m, 4H), 4.17 (d, J = 15.1 Hz, 2H); <sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ): $\delta$ 191.6 (d, J = 5.8 Hz), 150.5, 141.2, 132.5 (d, J = 2.9Hz), 131.9, 131.0 (d, J = 9.9 Hz), 130.5, 128.9 (d, J = 12.4 Hz), 123.7, 44.3 (d, J = 55.1 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 26.55; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>20</sub>H<sub>19</sub>NO<sub>4</sub>P 366.1, found 366.1.

#### 2-(Diphenylphosphoryl)-1-(4-nitrophenyl)ethanol(3j')

Yellow solid, mp 170-171 °C, 25% yield (92.1 mg); <sup>1</sup>H NMR

#### 2-(Diphenylphosphoryl)-1-methyl-1-phenyl)ethanol(3k)<sup>12</sup>

White solid, mp 178–179°C, 73% yield (245.4 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.74 (dd, J = 11.1, 7.4 Hz, 2H), 7.54–7.46 (m, 3H), 7.37-7.30 (m, 5H), 7.24-7.19 (m, 2H), 7.07 (t, J = 7.3Hz, 2H), 7.01 (t, J = 7.1 Hz, 1H), 5.05 (s, 1H), 2.92 (d, J = 9.3Hz, 2H), 1.60 (s, 3H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 146.7 (d, J = 5.9 Hz), 132.0 (d, J = 2.6 Hz), 131.2 (d, J = 2.7 Hz), 130.3 (d, J = 9.6 Hz), 128.8 (d, J = 11.7 Hz), 128.2 (d, J = 12.1 Hz), 127.8, 126.6, 124.8, 74.2 (d, J = 5.3 Hz), 42.3 (d, J = 69.1 Hz), 32.9 (d, J = 9.5 Hz;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 32.74; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>21</sub>H<sub>22</sub>O<sub>2</sub>P 337.1, found 337.1.

#### 2-(Diphenylphosphoryl)-1,1-diphenyl)ethanol(3m)<sup>12</sup>

White solid, mp 183–184 °C, 74% yield (294.6 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): *b*8.05–7.97 (m, 2H), 7.60 (s, 3H), 7.51 (dd, J = 11.3, 7.4 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7.24–7.14 (m, 4H), 7.10-7.01 (m, 6H), 6.89-6.84 (m, 2H), 5.51 (d, J = 7.2 Hz, 1H), 5.17 (s, 1H), 3.64 (d, J = 8.0 Hz, 1H);<sup>13</sup>C NMR (100 MHz,  $CDCl_3$ ): $\delta$ 141.2 (d, J = 12.2 Hz), 132.2 (d, J = 2.4 Hz), 131.9 (d, *J*= 2.9 Hz), 131.6 (d, *J* = 2.5 Hz), 131.3 (d, *J* = 6.9 Hz), 131.1 (d, J = 8.7 Hz), 130.8 (d, J = 9.1 Hz), 129.1 (d, J = 11.4 Hz), 128.3 (d, J = 12.0 Hz), 127.7, 127.2, 127.1, 125.9, 72.6, 53.2(d, J = 66.6 Hz);<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):*3*33.24; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>26</sub>H<sub>24</sub>O<sub>2</sub>P 399.1, found 399.1.

#### 2-(Diphenylphosphoryl)-2-methyl-1-phenyl)ethanol(3n)<sup>13</sup>

White solid, mp 189–190°C, 70% yield (235.3 mg); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3)$ :  $\delta$ 7.75 (d, J = 6.5 Hz, 2H), 7.38–7.27 (m, 4H), 7.21-7.13 (m, 4H), 7.12-7.02(m, 5H), 4.62 (d, J = 30.7 Hz, 1H), 3.03-2.91 (m, 1H), 1.05 (dd, J = 16.6, 7.5 Hz, 3H),<sup>13</sup>C NMR  $(100 \text{ MHz}, \text{CDCl}_3):\delta 139.3 \text{ (d}, J = 4.0 \text{ Hz}), 135.4 \text{ (d}, J = 95.4 \text{ Hz}),$ 132.2 (d, J = 8.4 Hz), 130.9 (d, J = 2.4 Hz), 130.7 (d, J = 4.2 Hz), 130.6, 128.1 (d, J = 11.1 Hz), 127.9, 127.5 (d, J = 11.3 Hz), 126.7, 53.7 (d, J = 3.0 Hz), 37.2 (d, J = 70.3 Hz), 16.7;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 37.54; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>21</sub>H<sub>22</sub>O<sub>2</sub>P 337.1, found 337.1.

# (E)-2-(Diphenylphosphoryl)-1-phenyl)ethylene (3o)<sup>14</sup>

White solid, mp 169-170 °C, 68% yield (206.7 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.76 (dd, J = 11.9, 7.4 Hz, 4H), 7.58–7.43 (m, 9H), 7.41–7.32 (m, 3H), 6.84 (dd, J = 22.3, 17.4 Hz, 1H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 147.6 (d, J = 3.6 Hz), 135.1 (d, J =17.9 Hz), 133.5, 132.5, 131.9 (d, J = 2.7 Hz), 131.4 (d, J = 10.0 Hz), 130.1, 128.9, 128.6 (d, *J* = 12.2 Hz), 127.8, 119.8, 118.7<sup>31</sup><sub>,</sub>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 24.48; MS (ESI-TOF) m/z:  $(M+H)^+$ Calcd for C<sub>20</sub>H<sub>18</sub>OP 305.1, found 305.1.

# 2-(Diphenylphosphoryl)-1,2-diphenyl)ethanol (3p)<sup>15</sup>

White solid, mp248–249°C, 65% yield (258.8 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ8.06–7.96 (m, 2H), 7.63–7.56 (m, 3H), 7.51 (dd, J = 11.3, 7.4 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7.24–7.14 (m, 4H), 7.11–7.01 (m, 6H), 6.90–6.84 (m, 2H), 5.51 (d, J = 7.2 Hz, 1H), 5.17 (s, 1H), 3.65 (d, J = 8.0 Hz, 1H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 141.2 (d, J = 12.2 Hz), 132.2 (d, J = 2.4 Hz), 131.9 (d,

5

(d, J = 8.7 Hz), 130.7 (d, J = 9.1 Hz), 129.1 (d, J = 11.4 Hz), 128.3 (d, J = 12.0 Hz), 127.7, 127.2, 127.1, 125.9, 72.6, 53.2 (d, J = 66.6 Hz;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 36.70; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>26</sub>H<sub>24</sub>O<sub>2</sub>P 399.1, found 399.1.

#### Diphenyl(3-phenylpropyl)phosphine oxide $(3q)^{16}$

White solid, mp 116.5-117.0 °C, 80% yield (256.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.72–7.63 (m, 4H), 7.56–7.38 (m, 7H), 7.25–7.22 (m, 1H), 7.20–7.16 (m, 1H), 7.11 (d, J = 6.9 Hz, 2H), 2.76-2.68 (m, 2H), 2.39-2.15 (m, 2H), 1.97-1.94 (m, 2H);<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): $\delta$ 140.8, 131.7, 130.7 (d, J = 9.0Hz), 128.7, 128.6, 128.5, 128.4, 126.1, 36.6 (d, J = 14.8 Hz), 28.9 (d, J = 71.9 Hz), 23.0;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 32.46; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>21</sub>H<sub>22</sub>OP 321.1408, found 321.1416.

#### Diphenyl(4-phenylbutyl)phosphine oxide $(3r)^{17}$

White solid, mp 92–93°C, 86% yield (287.4 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.75–7.69 (m, 4H), 7.54–7.43 (m, 6H), 7.26-7.09 (m, 5H), 2.61-2.56 (m, 2H), 2.32-2.24 (m, 2H), 1.75-1.67 (m, 4H);<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):δ141.9, 133.7, 132.4, 131.7, 130.8 (d, J = 8.9 Hz), 128.6 (d, J = 11.3 Hz), 128.3, 125.8, 35.4, 32.7 (d, J = 14.2 Hz), 29.6 (d, J = 71.7 Hz), 21.2;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 32.38; MS (ESI-TOF) m/z: (M+H)<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>OP 335.1, found 335.1.

# Diphenyl 3-(p-tolyloxy)propyl)phosphine oxide $(3s)^{17}$

White solid, mp 113–114°C, 79% yield (276.6 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.82-7.67 (m, 4H), 7.55-7.43 (m, 6H), 7.05 (d, J = 8.1 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 4.00-3.92 (m, 2H),2.54–2.42 (m, 2H), 2.27 (s, 3H), 2.16–2.02 (m, 2H);<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):δ156.5, 132.8 (d, J = 98.9 Hz), 131.8, 130.8 (d, J = 9.1 Hz), 130.0, 129.9, 128.7 (d, J = 11.5 Hz), 114.3, 67.6 (d, J = 14.3 Hz), 26.4 (d, J = 72.8 Hz), 21.2 (d, J = 102.8 Hz);<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): *δ*32.55; HRMS (ESI-TOF) *m/z*: (M+H)<sup>+</sup>Calcd for C<sub>22</sub>H<sub>24</sub>O<sub>2</sub>P 351.1514, found 351.1513.

#### Diphenyloctylphosphine oxide $(3t)^{17}$

White solid, mp57–58°C, 61% yield (191.6 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ7.78–7.70 (m, 4H), 7.53–7.44 (m, 6H), 2.34-2.18 (m, 2H), 1.70-1.54 (m, 2H), 1.43-1.33 (m, 2H), 1.28-1.17 (m, 8H), 0.85 (t, J = 6.7 Hz, 3H);<sup>13</sup>C NMR (75 MHz,  $CDCl_3$ ): $\delta 132.8$  (d, J = 97.9 Hz), 131.6 , 130.6 (d, J = 9.0 Hz), 128.5 (d, J = 11.3 Hz), 31.6, 30.8 (d, J = 14.2 Hz), 29.5 (d, J =72.1 Hz), 28.9, 22.4, 21.2 (d, J = 2.7 Hz), 21.1, 13.9;<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 32.96; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>20</sub>H<sub>27</sub>OP 315.2, found 315.2.

Preparation of dimethyl (2-oxo-2-arylethyl)phosphonates 5. Typical procedure for the preparation of dimethyl (2-oxo-2phenylethyl)phosphonate (5a). To a solution of methanol (10 mL), styrene (0.11 g, 1.0 mmol) and dimethylphosphite (0.22 g, 2.0 mmol) was added Mn(OAc)<sub>3</sub> (0.54 g, 2.0 mmol) over 30 minutes at 70°C, and the mixture was stirred for another 30 minutes to complete the reaction. Then, the solvent was removed under vacuum. To the residue was added water (20 mL) and extracted with ethyl acetate (10 mL $\times$  3). The combined organic fractions were dried over anhydrous Na2SO4, and concentrated under vacuum to yield the crude product, which was purified by chromatography column (silica gel, petroleum ether/EtOAc/CH<sub>2</sub>Cl<sub>2</sub>(10:1:1) ) to give pure dimethyl (2-oxo-2phenylethyl)phosphonate (5a).

# Dimethyl (2-oxo-2-phenylethyl)phosphonate (5a)<sup>18</sup>

Colorless liquid; 69% yield (157.4 mg); <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>):  $\delta 8.04-7.97$  (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.79 (d, J = 11.2 Hz, 6H), 3.65 (d, J = 22.6 Hz, 2H);<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): $\delta 191.7$  (d, J = 6.6 Hz), 136.3 (d, J = 2.5 Hz), 133.8, 128.9,128.7, 53.2 (d, J = 6.5 Hz), 37.4 (d, J = 131.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta 22.80$ ; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub>P 229.0630, found 229.0635.

#### Dimethyl (2-oxo-2-(p-tolyl)ethyl)phosphonate $(5b)^{18}$

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): $\delta$ 7.98 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 7.5 Hz, 2H), 3.86 (d, J = 11.2 Hz, 6H), 3.70 (d, J = 22.6 Hz, 2H), 2.50 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 190.8 (d, J = 6.6 Hz), 144.4, 133.5 (d, J = 2.5 Hz), 128.9, 128.7, 52.7 (d, J = 6.5 Hz), 36.9 (d, J = 131.4 Hz), 21.2; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 23.08; MS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>11</sub>H<sub>16</sub>O<sub>4</sub>P 243.1, found 243.0.

#### Dimethyl (2-(4-methoxyphenyl)-2-oxoethyl)phosphonate $(5c)^{19}$

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.99 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H), 3.78 (d, J = 11.2 Hz, 6H), 3.60 (d, J = 22.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 189.6 (d, J = 6.5 Hz), 163.6, 130.9, 129.0 (d, J = 2.4 Hz), 113.4, 55.0, 52.6 (d, J = 6.5 Hz), 36.7 (d, J = 131.0 Hz);<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 23.24; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>11</sub>H<sub>16</sub>O<sub>5</sub>P 259.0735, found 259.0725.

# Dimethyl (2-(4-fluorophenyl)-2-oxoethyl)phosphonate (5d)<sup>19</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): $\delta$ 8.11–7.99 (m, 2H), 7.20–7.12 (m, 2H), 3.79 (d, *J* = 11.2 Hz, 6H), 3.62 (d, *J* = 22.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 189.7 (d, *J* = 6.5 Hz), 165.7 (d, *J* = 255 Hz), 132.3 (dd, *J* = 2.0, 3.0 Hz),131.3 (d, *J* = 9.6 Hz), 115.4 (d, *J* = 22.0 Hz), 52.7 (d, *J* = 6.6 Hz), 37.1 (d, *J* = 130.9 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 22.45; HRMS (ESI-TOF) *m*/*z*: (M+H)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>13</sub>FO<sub>4</sub>P 247.0535, found 247.0530.

#### Dimethyl (2-(4-chlorophenyl)-2-oxoethyl)phosphonate $(5e)^{19}$

Colorless liquid, 63% yield (165.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.96 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 3.79 (d, J = 11.2 Hz, 6H), 3.61 (d, J = 22.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 190.6 (d, J = 6.6 Hz), 140.4, 134.7 (d, J = 2.2 Hz), 130.4, 129.0, 53.2 (d, J = 6.5 Hz), 37.6 (d, J = 130.7 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 22.42; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>13</sub>ClO<sub>4</sub>P 263.0240, found 263.0238.

#### Dimethyl (2-(4-bromophenyl)-2-oxoethyl)phosphonate $(5g)^{19}$

Colorless liquid, 58% yield (117.5 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.88 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 3.79 (d, J = 11.2 Hz, 6H), 3.61(d, J = 22.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 190.8 (d, J = 6.0 Hz), 135.1 (d, J = 2.2 Hz), 132.1, 130.5, 129.3, 53.3 (d, J = 6.5 Hz), 37.6 (d, J = 130.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  22.30; MS (ESI-TOF) m/z: (M+Na)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>12</sub>BrO<sub>4</sub>PNa 328.9, found 328.9.

# *Dimethyl* (2-oxo-2-(3-(trifluoromethyl)phenyl)ethyl)phosphonate (5h)

Colorless liquid, 60% yield (117.6 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.27 (s, 1H), 8.21 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 7.8 Hz, 1H), 3.80 (d, *J* = 11.3 Hz, 6H), 3.68 (d, *J* = 22.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 190.5 (d, *J* = 6.7 Hz), 136.8 (d, *J* = 2.1 Hz), 132.2, 131.4 (q, *J* = 33.0 Hz), 130.1 (q, *J* = 3.5 Hz), 129.4, 125.8 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 270.9 Hz), 53.2 (d, *J* = 6.6 Hz), 37.8 (d, *J* = 130.7 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ 21.80; HRMS (ESI-TOF) *m/z*: (M+H)<sup>+</sup>Calcd for C<sub>11</sub>H<sub>13</sub>F<sub>3</sub>O<sub>4</sub>P 297.0504, found 297.0509.

Dimethyl (2-(4-cyanophenyl)-2-oxoethyl)phosphonate (5i)

A Colorless liquid, 59% yield (149.0 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.12 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 8.6 Hz, 2H), 3.78 (d, J = 13.5 Hz, 6H), 3.66 (d, J = 22.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 190.1 (d, J = 6.7 Hz), 138.7 (d, J = 1.9 Hz), 132.1, 128.9, 117.3, 116.5, 52.9 (d, J = 6.6 Hz), 37.5 (d, J = 130.2 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  21.41; HRMS (ESI-TOF) m/z: (M+H)<sup>+</sup>Calcd for C<sub>11</sub>H<sub>13</sub>NO<sub>4</sub>P 254.0582, found 254.0583.

#### Dimethyl (2-(4-nitrophenyl)-2-oxoethyl)phosphonate (5j)

Yellow liquid, 50 % yield (136.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.34 (d, J = 8.7 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 3.81 (d, J = 11.3 Hz, 6H), 3.71 (d, J = 22.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  190.4 (d, J = 6.8 Hz), 150.6, 140.6 (d, J = 2.0 Hz), 130.1, 123.9, 53.4 (d, J = 6.6 Hz), 38.1 (d, J = 129.5 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  21.30; HRMS (ESI-TOF) m/z: (M+Na)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>12</sub>NNaO<sub>6</sub>P 296.0300, found 296.0318.

#### Dimethyl (2,2-diphenylvinyl)phosphonate $(5m)^{20}$

Colorless liquid; 75% yield (216.1 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.42–7.27 (m, 10H), 6.18 (d, *J* = 15.6 Hz, 1H), 3.50 (d, *J* = 11.1 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$ 160.8 (d, *J* = 6.4 Hz), 141.1 (d, *J* = 29.7 Hz), 138.7 (d, *J* = 7.6 Hz), 129.5, 128.7, 128.3, 128.1, 127.9, 127.0, 125.7, 114.8, 112.2, 52.1 (d, *J* = 6.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 19.47; HRMS (ESI-TOF) *m/z*: (M+H)<sup>+</sup>Calcd for C<sub>16</sub>H<sub>18</sub>O<sub>3</sub>P 289.0994, found 289.1003.

# (E)-Dimethyl styrylphosphonate $(5o)^{21}$

Colorless liquid, 64% yield (135.7 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.54–7.62 (m, 1H), 7.49–7.53 (m, 2H), 7.38–7.43 (m, 3H), 6.19–6.29 (m, 1H), 3.79 (d, J = 11.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$ 149.7 (d, J = 6.7 Hz), 134.6 (d, J = 23.3 Hz), 130.4, 128.9, 127.8, 112.3 (d, J = 191.3 Hz), 52.5 (d, J = 5.6 Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): $\delta$ 22.35; MS (ESI-TOF) *m/z*: (M+H)<sup>+</sup>Calcd for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub>P 213.0, found 213.0.

#### Supplementary data

Copies of the  ${}^{1}$ H,  ${}^{13}$ C and  ${}^{31}$ P NMR spectra for compounds **3** and **5** are available.

#### Acknowledgements

J.-P.Z. expresses gratitude to the National Natural Science Foundation of China (Nos. 20772088, 21172163, 21472133), the Priority Academic Program Development of Jiangsu Higher Education Institutions & State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials for their financial support.

#### **References and notes**

 Selective recent publications: (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev., 1994, 94, 2483. (b) Li, G. G.; Kim, S. H.; Wei, H. X. Tetrahedron Lett. 2000, 41, 8699. (c) Wei, H. X.; Siruta, S.; Li, G. G. Tetrahedron Lett.2002, 43, 3809. (d)Chen, D. J.; Timmons, C.; Wei, H. X.; Li, G. G. J. Org. Chem. 2003, 68, 5742. (e) Chen, D. J.; Guo, L; Liu, J. Y.; Kirtane, S.; Cannon, J. F.; Li, G. G. Org. Lett. 2005, 7, 921. (f) Liu, J. Y.; Wang, Y. N.; Li, G. G. Eur. J. Org. Chem. 2006, 3112. (g) Minatti, A.; Muñiz, K. Chem. Soc. Rev.2007, 36, 1142. (h) Zhi, S. J.; Han, J. L.; Chen, L.; An, G. H.; Pan, Y.; Li, G. G. Synthesis, 2008, 1570. (i) Huang, S.-X.; Ding, K.-L. Angew. Chem. Int. Ed.2011, 50, 7734. (j) Bataille, C. J. R.; Donohoe, T. J., Chem. Soc. Rev. 2011, 40, 114. (k) Muñiz, K.; Martínez, C. J. Org. Chem.2013, 78, 2168. (l) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3 (1076 (m) Egami, MAN 51 S (a) Richard, V.; Fisher, H. C.; Montchamp, J.-L. H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294. Tetrahedron Lett. 2015, 56, 3197. (b) Xu, J.; Li, X. Q.; Ga

- (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (b) Yan, B.; Spilling, C. D. J. Org. Chem.2008, 73, 5385. (c) Perumal, S. K.; Adediran, S. A.; Pratt, R. F., Bioorg. Med. Chem. 2008, 16, 6987 (d) Cotton, F. A.; Schunn, R. A. J. Am. Chem. Soc. 1963, 85, 2394. (e) Ryglowski, A.; Kafarski, P. Tetrahedron1996, 52, 10685. (f) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931. (g) Woodyer, R. D.; Li, G.; Zhao, H.; van der Donk, W. A. Chem. Commun. 2007, 359 (h) Cui, P.; Tomsig, J. L.; McCalmont, W. F.; Lee, S.; Becker, C. J.; Lynch, K. R.; Macdonald, T. L. Bioorg. Med. Chem. Lett. 2007, 17, 1634 (i) Munos, J. W.; Moon, S. J.; Mansoorabadi, S. O.; Chang, W.; Hong, L.; Yan, F.; Liu, A.; Liu, H. W. Biochemistry2008, 47, 8726.
- 3. Selected recent P-centered radical reviews: (a)Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-Lafollée, S.; Gil, R.; Prim, D.; Schulza, E.; Hannedouche, J. Dalton Trans. 2015, 44, 12029.(b)Zhang, H.; Zhang, X.-Y.; Dong, D.-Q.; Wang, Z.-L. *RSC Adv.* **2015**, *5*, 52824.(c) Wauters. I.: Debrouwer, W.; Stevens, C. V.; Beilstein J. Org. Chem. 2014, 10, 1064. (d) Hideki, Y. Beilstein J. Org. Chem.2013, 9, 1269. (e) Van der Jeught, S.; Stevens, C. V., Chem. Rev. 2009, 109, 2672(f) Coudray, L.; Montchamp, J. L. Eur. J. Org. Chem.2008, 3601.(g) Arbuzova, S. N.; Gusarova, N. K.; Trofimov, B. A. Arkivoc2006, 12. (h)Laca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34, 858.(i) Marque, S.; Tordo, P. Topics in Curr. Chem. 2005, 250, 43.(j) Delacroix, O.; Gaumont, A. C. Curr. Org. Chem. 2005, 9, 1851.
- (4)Selected recent P-centered radical papers: (a) Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604. (b) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023. (c) Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q.Org. Lett. 2015, 17, 1786. (d) Zeng, Y.-F.; Tan, D.-H.; Lv, W.-X.; Li, Q.; Wang, H.Eur. J. Org. Chem.2015, 4335. (e) Zhang, P.; Zhang, L. L.; Gao, Y. Z.; Xu, J.; Fang,H.; Tang, G.; Zhao, Y. F. Chem. Commun.2015, 51, 7839. (f) Chen, X.; Li, X.; Chen, X.-L.; Qu, L.-B.; Chen, J.-Y.; Sun, K.; Liu, Z.-D.; Bi, W.-Z.; Xia, Y.-Y.; Wu, H.-T.; Zhao, Y. F. Chem. Commun., 2015, 51, 3846. (g) Xuan, J.; Zeng, T.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.Chem. Eur. J. 2015, 21, 4962. (h) Sobhani, S.; Vahidi, Z.; Zeraatkar, Z.; Khodadadi, S.RSC Adv.2015, 5, 36552. (i) Hu,K.; Werner,W. J.; Allenc,K. D.; Wang, S. C. Magn. Reson. Chem. 2015, 53, 267. (j) Saidulu, G.; Kumar, R. A,;Anitha, T.; Srinivasulu, A.; Sridhar, B.; Liu, S. T.; Reddy, K. R. RSC Adv. 2014, 4, 55884. (k) Iranpoor, N.; Firouzabadi, H.; Moghadam, K. R.; S. Motavalli, RSC Adv.2014, 4, 55732. (1) Ma, W.; Ackermann, L. Synthesis2014, 46, 2297. (m) Zhang, F.; Wang, L.; Zhang C.; Zhao, Y. Chem. Commun., 2014, 50, 2046. (n)Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett., 2014, 16, 250. (o)Mi,X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356. (p)Chu, X.-Q.; Zi, Y.; Meng, H.; Xu X.-P.; Ji, S.-J., Chem. Commun., 2014, 50, 7642. (q)Chen, X.-L.; Li, X.; Qu, L.-B.; Tang, Y.-C.; Mai, W.-P.; Wei, D.-H.; Bi, W.-Z.; Duan, L.-K.; Sun, K.; Chen, J.-Y.; Ke, D.-D.; Zhao, Y.-F. J. Org. Chem. 2014, 79, 8407.(r) Li, Y.; Qiu, G.; Ding, Q.; Wu, J. Tetrahedron, 2014, 70, 4652. (s)Yoo, W.-J.; Kobayashi, S.Green Chemistry2014, 16, 2438.(t)Kong, W.; Merino, E.; Nevado, C., Angew. Chem. Int. Ed. 2014, 53, 5078. (u)Chen,S.-Y.; Zeng,R.-S.; Zou,J.-P.; Asekun, O. T., J. Org. Chem., 2014, 79, 1449. (v)Chen, Y.-R.; Duan, W.-L., J. Am. Chem. Soc., 2013, 135, 16754. (w)Biresaw, G.; Bantchev, G. B., J. Am. Oil Chem. Soc., 2013, 90, 891.(x)Hernandez-Guerra, D.; Rodriguez, M. S.; Suarez, E. Org. Lett., 2013, 15, 250.

- (a) Richard, V.; Fisher, H. C.; Montchamp, J.-L. *Tetrahedron Lett.*2015, 56, 3197. (b) Xu, J.; Li, X. Q.; Gao, Y. Z.; Zhang, L. L.; Chen, W. Z.; Fang,H.; Tang, G.; Zhao, Y. F.*Chem. Commun.*2015, 51, 11240.(c) Kong, W. Q.; Merino, E.; Nevado, C.*Angew. Chem. Int. Ed.* 2014, 53, 5078. (d) Chanthamath,S.; Ozaki, S.; Shibatomi, K.; Iwasa, S. *Org. Lett.* 2014, 16, 3012. (e) Gao, Y. Z.; Wu, J.; Xu, J.; Zhang, P. B.; Tang, G.; Zhao, Y. F. *RSC Adv.* 2014, 4, 51776.(f) Zhang, C.-W.; Li, Z.-D.; Zhu, L.; Yu, L.- M.; Wang, Z.-T.; Li, C.-Z. J. Am. Chem. Soc., 2013, 135, 14082.(g) Wei, W.; Ji, J.-X. *Angew. Chem. Int. Ed.*, 2011, 50, 9097.
- 6. Zhou, S.-F.; Li, D.-P.; Liu, K.; Zou, J.-P.; Asekun, O. T., *J. Org. Chem.*, **2015**, *80*, 1214.
- 7. González-Nogal, A. M.; Cuadrado P.; Sarmentero, M. A.Eur. J. Org. Chem., 2009, 850.
- Li,D.-P.; Pan, X.-Q.; An, L.-T.; Zou, J.-P.; Zhang, W., J. Org. Chem., 2014, 79, 1850.
- 9. Manfred, R.; Walter, A., Chem. Ber., 1969, 102, 2216.
- 10. Antonio, L. P., J. Organomet. Chem., 2010, 696, 362.
- 11. Steenis, V.; Hein, J.; Arne, V. G., Eur. J. Org. Chem., 2011, 5, 897.
- 12. Christiane, S. R., Synthesis, 1988, 1, 64.
- 13. Jason, E.; David, H.; Stuart, W., *Tetrahedron Lett.*, **1989**, *30*, 601.
- 14. Takaki, K., Tetrahedron Lett., 2001, 42, 6357.
- 15. Roberts, T. G.; Whitham,G. H., J. Chem. Soc., PerkinTrans. 1: Org. Bio.Chem., **1985**, 9, 1953.
- 16. Vedejs, E., J. Org. Chem., 1981, 46,5253.
- 17. Kawaguchi, S., Tetrahedron Lett, 2009, 50, 624.
- 18. Maloney, K. M.; Chung, J. Y. L., J. Org. Chem., **2009**, 74, 7574.
- 19. Tao, X. M., Org. Lett., 2013, 15, 72.
- 20. Kawashima, T., Tetrahedron Lett, 1983, 24, 739.
- 21. Young, Y. J.; Oh, D. Y., Synth. Commun., 1995, 25, 2587.