THORIUM DETERMINATION IN INTERCOMPARISON SAMPLES AND IN SOME ROMANIAN BUILDING MATERIALS BY GAMMA RAY SPECTROMETRY

A. Pantelica[†], I. I. Georgescu[‡], M. D. Murariu-Magureanu[‡], I. Margaritescu[‡] and E. Cincu[†]
[†]"Horia Hulubei" National Institute of Physics and Nuclear Engineering (IFIN-HH)
PO Box MG-6, 76900 Bucharest, Romania
[‡]"Politehnica" University, Faculty of Industrial Chemistry
Polizu Street 1, 78126 Bucharest, Romania

Abstract — Thorium content in zircon sand, thorium ore and a thorium liquid sample (EU Laboratories Network Intercomparison), as well as in some Romanian building materials: sand, wood, tufa, asbestos-cement, cement mill dust, coal fly ash, bricks, and tile (28 samples) was determined by gamma ray spectrometry. For the building materials, ²²⁶Ra, ⁴⁰K and ¹³⁷Cs specific activities were also measured. The results were compared with the Romanian legal norms concerning the highest admissible levels for ²³²Th, ²²⁶Ra, and ⁴⁰K radioactivity, and to Th, U, and K concentration values previously determined in our laboratory on similar types of samples.

INTRODUCTION

The paper presents the results our laboratory has obtained in thorium analysis by gamma ray spectrometry on some mineral samples. ²³²Th activity concentration was calculated from its decay products ²²⁸Ac, ²¹²Pb, ²¹²Bi, and ²⁰⁸Tl, assuming radioactive equilibrium among all ²³²Th decay chain isotopes. By comparison, it should be mentioned that radioactive equilibrium does not exist within biological samples such as tissues because of the different metabolic behaviour of ²³²Th decay radionuclides (e.g. ²²⁴Ra and ²²⁸Ra are largely transported from the liver to the bone, while ²²⁰Rn enters the general circulation)⁽¹⁾.

Zircon sand, thorium ore and a thorium liquid sample were analysed in the framework of the European Commission Project 'Thematic Network on the Analysis of Thorium and its Isotopes in Workplace Materials' coordinated by the Health and Safety Laboratory (HSL), Sheffield, United Kingdom⁽²⁾. Sand, wood, tufa, asbestos-cement, cement mill dust, coal fly ash, tile, red and autoclaved cellular concrete (ACC) bricks collected from building material factories in different zones of Romania were investigated for natural and artificial radioactivity. The results were compared to the Romanian legal norms for maximum permissible ²³²Th, ²²⁶Ra, and ⁴⁰K activity concentrations in building materials⁽³⁾.

Thorium content in ores (monazite) was previously analysed in our institutes by emanation, autoradiography with nuclear emulsions, and gamma spectrometry methods⁽⁴⁾. Moreover, Instrumental Neutron Activation Analysis (INAA) was used to determine Th and U concentration in Romanian zircon samples⁽⁵⁾ and in some building materials (raw material for cement production, cement, furnace slag, phosphogypsum, cold compacted

Contact author E-mail: apantel@ifin.nipne.ro

brick, and coal fly ash)^(6,7). Fission and/or alpha track methods were applied to determine U concentration in wood building materials (tree and rush)⁽⁸⁾.

EXPERIMENTAL

Thorium nitrate solution containing ²³²Th in equilibrium with its decay products and two thorium minerals (an ore and zircon sand) without any prior treatment were prepared as test samples by the Centre for Ionizing Radiation Metrology at the UK National Physical Laboratory (NPL), Teddington, England⁽²⁾.

Building materials (28 samples) were collected from different factories in the southern half of Romania: coal fly ash from Deva and Paroseni (sub-bituminous coalfired power plants), cement mill dust from Hoghiz and Fieni, and the other types of investigated building materials from Horezu, Targu Jiu, Rovinari, Slatina, and Craiova. The samples were collected during the summer of 1999, except for the cement mill dust from Hoghiz (April 1994) and Fieni (May 1995), as well as the coal fly ash from Deva (March 1995).

Sample preparation

Zircon sand and thorium ore intercomparison samples of 5.7326 ± 0.0003 g and 5.2800 ± 0.0003 g, respectively, were maintained inside sealed glass vessels of 2.5 cm diameter and 6 cm height. The liquid thorium intercomparison sample (10 ml in 2 M nitric acid solution) was diluted to 100 ml and put into a polyethylene pot (Sarpagan type, 7.2 cm diameter and 4 cm height).

The bulk building materials were air-dried, except for the wood samples which were dried in an oven at 60°C. Brick, tile, tufa and asbestos-cement samples were then ground and homogenised, while cement and coal fly ash powder, as well as the sand samples were only hom-

187

ogenised in a mortar. Wood material was cut in pieces less than 5 mm each. Building material (30–150 g and 80–150 cm³) was placed within Sarpagan polyethylene pots.

All samples were kept tightly closed in the pots for about one month to avoid losses of the gaseous ²²²Rn (²³⁸U series) and ²²⁰Rn (²³²Th series) in order to reestablish radioactive equilibrium from their precursors ²²⁶Ra and ²²⁴Ra, respectively.

Sample analysis

Gamma ray spectrometry was carried out using a HPGe (EG&G Ortec) detector of 2.3 keV FWHM at 1332.5 keV of 60 Co, and 30% relative efficiency, mounted in a low background shielding. Counting time varied between 4 and 27 h.

As calibration standards, water equivalent solid volume sources (133 Ba, 137 Cs, 152 Eu, and 241 Am) of 100 and 150 cm³ prepared by the Radionuclide Metrology Laboratory (RML) of IFIN-HH^(9,10), as well as Th(NO₃)₄.5H₂O (p.a. Merck, Germany) for zircon sand and thorium ore samples (2.6306 g and 4.4748 g, respectively) were used. RML is legally, metrologically authorised to supply reference materials that are directly traceable to the national activity standard.

In addition, appropriate IAEA Reference Materials of geometry and densities similar to those of the investigated building materials were chosen as calibration standards. They consisted of: IAEA-373 (Chernobyl grass) for wood; IAEA-300 (Baltic Sea sediment) for ACC brick, coal fly ash, and tufa; IAEA-135 (Irish Sea sediment) for red brick and tile, sand, cement, and asbestos-cement samples.

Detection efficiency calibration curves were calculated for different building materials using certified activity concentration values of ¹³⁴Cs, ¹³⁷Cs, and ⁴⁰K in all the calibration standards considered and also of ²⁴¹Am and ²³²Th in IAEA-135^(11–13). The self-absorption correction factors for samples relative to the calibration standards were determined by transmission measurements of gamma ray point sources.

The major chemical components of IAEA-135 sediment, are respectively the following: SiO₂ 61.7%; Al₂O₃ 9.3%; FeO 4.4%; CaCO₃ 11.2% and CaO 3.6%⁽¹³⁾. The major contents of mineral building materials lie within the following ranges: SiO₂ 25–50% (coal fly ash, red brick and tile) and ~95% (sand); Al₂O₃ 2–15%; Fe₂O₃ 0.5–15% or Fe₃O₄ 7–10% (cement); CaO 6–12% (coal fly ash, red brick and tile, ACC brick) and 35–40% (cement)⁽¹⁴⁾.

Cellulose is the main constituent of the cell walls of plants and also of wood (beside the lignin).

RESULTS AND DISCUSSION

Table 1 shows the characteristic gamma rays taken into account and their absolute emission probabilities for ²²⁸Ac, ²¹²Pb, ²¹²Bi, and ²⁰⁸Tl radionuclides of the natural ²³²Th series. The ²⁰⁸Tl gamma ray emission probability in this table has been corrected for the ²¹²Bi decay branching ratio (BR A = 35.94%)⁽²⁾.

Table 2 includes the ²³²Th activity concentration by its decay products ²²⁸Ac, ²¹²Pb, ²¹²Bi and ²⁰⁸Tl in intercomparison samples (in Bq.kg⁻¹). The presence of the same radionuclides, save for ²¹²Bi, in building materials is given in Table 3. Tables 2 and 3 also contain the corresponding thorium mass concentration in mg.kg⁻¹ (1 g Th yields 4057.2 Bq⁽²⁾).

The activity concentrations of ²²⁶Ra (by ²¹⁴Pb and ²¹⁴Bi decay products), ⁴⁰K, and ¹³⁷Cs measured in building materials are given in Table 4.

Overall uncertainty values in all the tables are calculated as squared roots of the sum of squared type A and type B components (k = 1). Type A uncertainties stem from sample and standard statistical counting; type B uncertainty values correspond to detection efficiency calibration (2–5%), self-absorption (<3%), and activity concentration certified for calibration standards (1.5–5%). Detection limits (3 σ) for the non-measured elements are also shown in the tables.

As can be seen from Tables 2 and 3, a rather good agreement between the activity values was obtained for the measured ²³²Th decay products in every investigated sample. ²³²Th activity concentration was calculated as arithmetic (unweighted) mean of its progeny's activities.

For the intercomparison samples, the ²³²Th results determined (Table 2) are in good agreement with the NPL target values of 551 ± 21 Bq.kg⁻¹ in zircon sand, 2494 ± 32 Bq.kg⁻¹ in thorium ore, and 10716 ± 102 Bq.kg⁻¹ in thorium nitrate solution (analyst/NPL ratios of 1.045, 0.99 and 0.97, respectively).

For the building materials, Th, U, and K concentrations obtained in the present work (Tables 3 and 4) are similar to those previously determined by INAA in cement, a cold compacted brick, and coal fly ash samples^(6,7), as well as by fission and/or the alpha track method in wood⁽⁸⁾ (Table 5). It was taken into account that 1 g of U and 1 g of K yield 12,358 Bq ²³⁸U and 33.11 Bq ⁴⁰K, respectively.

Concerning the radioactivity levels in building materials, higher (by about 1.3-2 times) values were found for ²³²Th in two of the red brick samples, and for ²³²Th, ²²⁶Ra, and ⁴⁰K in almost all tile samples compared with the Romanian legal norms. The accepted radioactivity levels are 53.3 Bq.kg⁻¹ for ²³²Th, 100 Bq.kg⁻¹ for ²²⁶Ra, and 832 Bq.kg⁻¹ for ⁴⁰K in red brick, as well as 32.2 Bq.kg⁻¹ for ²³²Th, 32.6 Bq.kg⁻¹ for ²²⁶Ra, and 466 Bq.kg⁻¹ for ⁴⁰K in tile⁽³⁾.

CONCLUSIONS

The gamma ray spectrometry method could successfully be used in the thorium analysis of liquid and solid mineral samples, provided that the radioactive equilibrium between ²³²Th and its decay products can be estab-

Radionuclide	²²⁸ Ac	²²⁸ Ac	²¹² Pb	²¹² Bi	²⁰⁸ Tl
Energy (keV)	338.3	911.2	238.6	727.3	583.1
Gamma ray emission probability (%)	11.27	25.8	43.4	6.75	30.6

THORIUM IN INTERCOMPARISON SAMPLES AND BUILDING MATERIALS Table 1. Nuclear data for ²²⁸Ac, ²¹²Pb, ²¹²Bi, and ²⁰⁸Tl (²³²Th radioactive series)⁽²⁾.

 Table 2. ²²⁸Ac, ²¹²Pb, ²¹²Bi, ²⁰⁸Tl and ²³²Th activity concentrations (Bq.kg⁻¹) and Th content (mg.kg⁻¹) in intercomparison samples.

Sample	²²⁸ Ac	²¹² Pb	²¹² Bi	²⁰⁸ Tl	²³² Th	
					(Bq.kg ⁻¹)	(mg.kg ⁻¹)
Zircon sand Thorium ore Liquid sample	541 ± 18 2451 ± 76 10520 ± 569	595 ± 18 2744 ± 123 10429 ± 643	568 ± 41 2328 ± 123 11006 ± 596	599 ± 37 2366 ± 66 9787 ± 535	576 ± 14 2472 ± 47 10435 ± 294	142 ± 3 609 ± 12 2572 ± 72

Table 3. ²	²²⁸ Ac,	²¹² Pb,	²⁰⁸ Tl and	²³² Th activity	concentrations	$(Bq.kg^{-1})$	and Th	content	$(mg.kg^{-1})$	in building	materials.
-----------------------	--------------------	--------------------	-----------------------	----------------------------	----------------	----------------	--------	---------	----------------	-------------	------------

Sample	²²⁸ Ac	²¹² Pb	²⁰⁸ Tl	²³² Th	
				(Bq.kg ⁻¹)	(mg.kg ⁻¹)
Red brick, Horezu	38.3 ± 3.4	41.3 ± 3.7	39.3 ± 4.7	39.6 ± 2.3	9.8 ± 0.6
Red brick, Targu Jiu	87.4 ± 7.9	85.0 ± 4.2	83.6 ± 9.3	85.3 ± 4.3	21.0 ± 1.1
Red brick, Rovinari	117.5 ± 8.5	101.6 ± 7.8	104.8 ± 8.0	108.0 ± 4.7	26.6 ± 1.2
Red brick, Slatina	49.5 ± 3.7	45.5 ± 3.7	41.0 ± 2.9	45.3 ± 2.0	11.2 ± 0.5
Red brick, Craiova	50.1 ± 4.0	49.2 ± 4.5	50.0 ± 5.8	49.8 ± 2.8	12.3 ± 0.7
ACC brick, Targu Jiu	14.7 ± 3.7	12.2 ± 1.3	10.4 ± 1.3	12.4 ± 1.4	3.1 ± 0.3
ACC brick, Slatina	11.7 ± 3.5	15.3 ± 3.9	14.5 ± 2.0	13.8 ± 1.9	3.4 ± 0.5
ACC brick, Craiova	10.8 ± 1.8	12.8 ± 2.4	10.1 ± 1.7	11.2 ± 1.1	2.8 ± 0.3
Tile, Horezu	60.4 ± 3.0	56.8 ± 4.0	52.4 ± 3.1	56.5 ± 2.0	13.9 ± 0.5
Tile, Targu Jiu	52.3 ± 5.3	47.8 ± 3.1	49.6 ± 3.9	49.9 ± 2.4	12.3 ± 0.6
Tile, Rovinari	65.1 ± 3.3	71.7 ± 5.0	63.4 ± 3.2	66.7 ± 2.3	16.4 ± 0.6
Tile, Slatina	58.1 ± 4.0	60.3 ± 8.4	59.8 ± 8.9	59.4 ± 4.3	14.6 ± 1.1
Cement mill dust, Hoghiz	17.0 ± 3.6	15.2 ± 2.5	16.1 ± 3.0	16.1 ± 1.8	4.0 ± 0.4
Cement dust, Fieni	16.6 ± 3.7	14.6 ± 2.6	16.8 ± 2.0	16.0 ± 1.6	3.9 ± 0.4
Asbestos-cem., Horezu	10.1 ± 3.0	11.6 ± 2.5	10.6 ± 3.0	10.8 ± 1.6	2.7 ± 0.4
Asbestos-cem., Targu Jiu	10.7 ± 1.5	11.2 ± 1.5	10.4 ± 1.9	10.8 ± 0.9	2.7 ± 0.2
Asbestos-cem., Craiova	13.8 ± 3.1	12.7 ± 2.1	13.9 ± 2.0	13.5 ± 1.4	3.3 ± 0.3
Coal fly ash, Deva	103.9 ± 7.8	90.1 ± 7.2	96.1 ± 14.2	96.7 ± 5.9	23.8 ± 1.5
Coal fly ash, Paroseni	70.6 ± 8.4	82.8 ± 7.4	76.8 ± 5.4	76.7 ± 4.1	18.9 ± 1.0
Sand, Horezu	23.4 ± 4.2	17.6 ± 2.0	17.4 ± 2.3	19.5 ± 1.7	4.8 ± 0.4
Sand, Targu Jiu	30.5 ± 2.4	27.4 ± 2.3	28.7 ± 2.5	28.9 ± 1.4	7.1 ± 0.3
Sand, Rovinari	38.2 ± 4.6	29.8 ± 2.0	28.4 ± 3.0	32.1 ± 1.9	7.9 ± 0.5
Sand, Slatina	16.5 ± 2.2	13.6 ± 1.6	13.8 ± 1.6	14.6 ± 1.1	3.6 ± 0.3
Sand, Craiova	12.6 ± 1.5	16.6 ± 2.5	12.5 ± 1.6	13.9 ± 1.1	3.4 ± 0.3
Tufa, Horezu	12.9 ± 3.6	9.4 ± 3.1	7.1 ± 2.3	9.8 ± 1.8	2.4 ± 0.4
Wood, Horezu	<5.4	1.7 ± 1.4	<4.0	1.7 ± 1.4	0.42 ± 0.35
Wood, Targu Jiu	3.9 ± 3.4	1.8 ± 1.3	<3.6	2.9 ± 1.8	0.71 ± 0.44
Wood, Craiova	<5.6	1.7 ± 1.4	<4.7	1.7 ± 1.4	0.42 ± 0.35

lished. The method also makes it possible to analyse uranium and potassium contents in mineral samples (building materials, in particular) by measuring ²³⁸U (in equilibrium with its radioactive progeny) and ⁴⁰K radioactivity.

Thorium concentrations determined by gamma ray spectrometry of thorium minerals and of some Romanian building materials are found to lie in a range from 0.42 ± 0.35 mg.kg⁻¹ in wood to 24.4 ± 0.8 mg.kg⁻¹ in red brick, and 643 ± 13 mg.kg⁻¹ in thorium ore samples.

Table 4. Ra. R. and CS activity concentrations in building materials (bu.k)	Kg -)
---	-------

Sample	²²⁶ Ra	⁴⁰ K	¹³⁷ Cs
Red brick, Horezu	25.2 ± 2.4	588 ± 48	14.5 ± 1.7
Red brick, Targu Jiu	55.7 ± 5.0	727 ± 51	1.7 ± 0.8
Red brick, Rovinari	104.9 ± 4.1	760 ± 30	< 0.8
Red brick, Slatina	21.7 ± 2.2	615 ± 25	< 0.8
Red brick, Craiova	30.0 ± 2.1	655 ± 26	1.4 ± 0.6
ACC brick, Targu Jiu	6.2 ± 1.6	233 ± 13	4.3 ± 0.8
ACC brick, Slatina	5.0 ± 1.4	279 ± 17	< 0.8
ACC brick, Craiova	12.4 ± 1.1	279 ± 14	4.1 ± 0.7
Tile, Horezu	37.7 ± 2.5	892 ± 33	8.0 ± 0.4
Tile, Targu Jiu	29.9 ± 2.2	706 ± 35	< 0.9
Tile, Rovinari	59.2 ± 2.8	826 ± 37	<1.1
Tile, Slatina	55.4 ± 5.2	742 ± 52	<1.6
Cement mill dust, Hoghiz	<3.5	633 ± 30	3.9 ± 0.7
Cement mill dust, Fieni	<4.2	209 ± 23	1.7 ± 0.6
Asbestos-cement, Horezu	7.6 ± 1.8	46.5 ± 9.3	7.6 ± 0.5
Asbestos-cement, Targu Jiu	4.3 ± 1.1	46.6 ± 6.5	0.9 ± 0.5
Asbestos-cement, Craiova	8.9 ± 1.2	56.6 ± 9.0	7.7 ± 1.0
Coal fly ash, Deva	121.5 ± 8.0	729 ± 55	3.3 ± 1.6
Coal fly ash, Paroseni	113.7 ± 7.3	617 ± 37	<2.1
Sand, Horezu	5.5 ± 0.9	410 ± 21	1.3 ± 0.5
Sand, Targu Jiu	12.4 ± 0.7	662 ± 26	1.9 ± 0.4
Sand, Rovinari	10.9 ± 1.5	592 ± 21	3.2 ± 0.6
Sand, Slatina	3.4 ± 1.8	501 ± 18	2.7 ± 0.3
Sand, Craiova	<1.6	370 ± 22	1.1 ± 0.3
Tufa, Horezu	10.5 ± 2.4	180 ± 27	9.6 ± 0.9
Wood, Horezu	<6.7	140 ± 34	3.8 ± 0.8
Wood, Targu Jiu	<4.8	40.9 ± 33.7	14.3 ± 1.3
Wood, Craiova	<3.3	44.3 ± 35.4	9.7 ± 1.4

Table 5. Th, U, and K contents in building materials by INAA and by fission and/or alpha track method (mg.kg⁻¹).

Elem.	Cement ⁽⁶⁾	Brick ⁽⁶⁾	Coal fly ash ⁽⁷⁾	Wood ⁽⁸⁾
Th U K	$\begin{array}{c} (4.7\pm0.1)-(5.9\pm0.3)\\ (1.6\pm0.1)-(3.9\pm0.2)\\ (3900\pm400)-(6500\pm400) \end{array}$	$\begin{array}{c} 15.9 \pm 0.5 \\ 7.4 \pm 0.4 \\ 11700 \pm 500 \end{array}$	$18.7 \pm 0.9 \\ 7.7 \pm 0.7 \\ 21100 \pm 1100$	na* 0.006 – 0.25 na

*na-not analysed.

REFERENCES

- De Goeij, J. J. M. and Rasmussen, C. E. Thorium Determination in a Liver Autopsy Sample via Direct γ-spectrometry and Neutron Activation Analysis. J. Radioanal. Nucl. Chem. Lett. 175(5), 325–332 (1993).
- Howe, A. M. and Butler, O. T. Thematic Network on the Analysis of Thorium and its Isotopes in Workplace Materials: Report on the 3rd Intercomparison Exercise. (Health and Safety Laboratory, Sheffield S3 7HQ, United Kingdom) Report IEAS/01/01 (2001).
- 3. Gheorghe, R., Milu, C., Modoran, G., Gheorghe, D. and Dobrescu, E. Natural Radioactivity of Classic Building Materials in Romania. In: Proc. Int. Congress on Radiation Protection, Vienna, 2, 2 (1996).

- Georgescu, I. I., Ciohodaru, L. and Cojocaru, V. Determination of Thorium in Different Monazite Ore Samples. Rev. Roum. Phys. 10(7), 755–767 (1965).
- Salagean, M. N., Pantelica, A. I., Znamirovchi, V. and Motiu, A. Neutron Activation Analysis of some Zircon Samples from the Apuseni Montains (Romania). In: Proc. First Balkan Conf. on Activation Analysis, Varna. pp. 149–151 (1985).
- Salagean, M. N., Pantelica, A. I., Georgescu, I. I. and Muntean, M. I. Neutron Activation Analysis of some Building Materials. Czech. J. Phys. 49/S1, 355–358 (1999).
- Salagean, M. N., Pantelica, A. I., Georgescu, I. I. and Barca, F. *Environmental Pollution Elements in Fly Coal Ashes on Industrial Filters Determined by INAA*. In: Proc. Int. Workshop on Neutron Activation Analysis on Environment, Dubna, Russia, 18–20 Sept. 1990. D14–93–325 pp. 416–420 (1993).
- Murariu-Magureanu, M. D., Georgescu, I. I., Oprica, H. M. I., Ciubotariu, M. and Danis, A. Uranium Content Measurements in Building Materials using Track Detection. J. Radioanal. Nucl. Chem. 224(2), 41–44 (1997).
- Sahagia, M. and Grigorescu, E. L. Water-equivalent Solid Standard Sources. Nucl. Instrum. Methods Phys. Res. A 312, 236–239 (1992).
- Sahagia, M., Grigorescu, E. L., Popescu, C. C. and Razdolescu, A. C. National Comparison of Environmental Sample Activity Measurement. Nucl. Instrum. Methods Phys. Res. A 339, 38–42 (1994).
- 11. Report of the Intercomparison Run IAEA-0373, Radionuclides in Grass. IAEA/Al/073 (February 1996).
- 12. Report of the Intercomparison Run IAEA-300, Radionuclides in Marine Sediment. IAEA/Al/046 (September 1994).
- 13. Report of the Intercomparison Run IAEA-135, Radionuclides in Irish Sea Sediment. IAEA/Al/063 (August 1993).
- 14. Barca, F. "Politehnica" University, Faculty of Industrial Chemistry, Bucharest, Romania (private communication).

Downloaded from http://rpd.oxfordjournals.org/ at Warsaw University on March 22, 2016