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Design, radiosynthesis, and biological evaluation of two radiotracers (N-(3-[18F]fluoropropyl)-6-(4-
(trifluoromethyl)benzoyl)-piperazin-1-yl)pyridazine-3-carboxamide (18F-FPPPT) and (N-(4-[18F]
fluoroaniline)-6-(4-(trifluoromethyl)benzoyl)-piperazin-1-yl)pyridazine-3-carboxamide (18F-FAPPT))
are described for noninvasive assessment of stearoyl-CoA desaturase-1 (SCD-1). The overexpression of
SCD-1 in multiple solid tumors associates with poor survival in cancer patients. The two radiotracers,
18F-FPPPT and 18F-FAPPT, were each prepared in three steps in radiochemical yields of 21% and 3%,
respectively. The practicality of imaging SCD-1 with 18F-FPPPT was tested in two mouse models bearing
xenograft tumors with different levels of SCD-1 expression, which afforded a 1.8-fold uptake difference
correspondingly. Our work indicates that it is possible to develop SCD-1 specific imaging probes from
previously reported SCD-1 inhibitors.

� 2015 Elsevier Ltd. All rights reserved.
The family of stearoyl-CoA desaturase (SCD) enzymes catalyzes
the formation of a double bond at the C9 position in saturated fatty
acids (SFAs) to create monounsaturated fatty acids (MUFAs).1–3 Of
the two isoforms in humans, SCD-1 is predominant and ubiqui-
tously expressed in the brain, liver, fat, heart and lung.4 Upregu-
lated expression of SCD-1 has been reported in multiple solid
tumors (e.g., prostate, breast, lung, and ovarian cancer) with impli-
cations in cancer progression, which is indicative of poor prognosis
in cancer patients.5,6 The important role of SCD-1 in de novo fatty
acid (FA) metabolism, a pathway elevated across all cancer types,
makes it an ideal target for cancer therapy. To date, small organic
inhibitors of SCD-1 have shown desired anti-cancer effects by
inducing cancer cell apoptosis and slowing tumor-growth in pre-
clinical tumor xenograft mouse models.6–8 Given the reported cor-
relation of SCD-1 expression with cancer progression,
measurement of SCD-1 levels can potentially serve as a biomarker
for cancer treatment planning and prognostic evaluation post-
treatment.

Clinically, the expression of SCD-1 is often measured by the
desaturation index (DI) from plasma and tissue or immunohisto-
chemical analysis on tissue biopsies.5,9,10 Suboptimal accuracy of
biopsies aside, major drawbacks of both methods include the inva-
siveness of obtaining biopsies from tissues and long sample
processing times. A noninvasive imaging technique would be
highly desirable in the clinic for the assessment of SCD-1
expression.

To date, numerous SCD-1 inhibitors with sub-lMbinding affini-
ties have been reported for cancer treatment.11–15 These inhibitors
can potentially serve as lead compounds for SCD-1 targeted radio-
tracer development.

To enable positron emission tomography (PET) imaging of SCD-
1, the design of radiotracers labeled with 18F (t1/2 = 109.8 minutes;
b+ 0.63 MeV, 97%) was based on two previously reported SCD-1
inhibitors, N-pentyl-6-(4-(2-(trifluoromethyl)benzoyl)piperazin-
1-yl)pyrazine-3-carboxamide and N-phenethyl-6-(4-(2-(trifluo-
romethyl)benzoyl)piperazin-1-yl)pyrazine-3-carboxamide.15 Their
half maximal inhibitory concentrations (IC50) were measured at 25
and 18 nM, respectively, for human SCD-1. Shown in Scheme 1, the
18F synthon (1) for 18F-FAPPT (N-(4-[18F]fluoroaniline)-6-(4-(triflu-
oromethyl)benzoyl)-piperazin-1-yl)pyridazine-3-carboxamide)
was synthesized as previously described.16 To make the synthon
(5) for 18F-FPPPT (N-(3-[18F]fluoropropyl)-6-(4-(trifluoromethyl)
benzoyl)-piperazin-1-yl)pyridazine-3-carboxamide), the desired
tosylated precursor (3) was first prepared through reacting N-
(tert-butoxycarbonyl)-3-hydroxypropylamine (2)17 with p-tolue-
nesulfonyl chloride in the presence of triethylamine (Et3N) (63%
yield).18 Synthesis of 18F-FPPPT was accomplished in 3 steps within
120 min, as outlined in Scheme 1.19 Radiolabeling of 3with 18F was
performed under basic conditions in the presence of kryptofix 2,2,2
(K2,2,2)/K2CO3 and the reaction was carried out at 110 �C for 15 min.
The resulting protected 3-[18F]fluoro-propylamine 4 was isolated
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Scheme 1. Synthesis of 18F-FPPPT, 18F-FAPPT, synthons 1 and 5, FPPPT, and FAPPT. Reagents and conditions: (i) p-toluenesulfonyl chloride, DMAP, Et3N, dichloromethane
(DCM); (ii) K2,2,2/K2CO3, acetonitrile (ACN), 110 �C, 15 min; (iii) TFA, rt, 8 min; (iv) thionyl chloride, DCM, 50 �C, overnight; (v) 5, Et3N, ACN, rt, 15 min; (vi) 1, Et3N, ACN, rt,
15 min; (vii) 3-fluoropropylamine hydrochloride, HBTU, DIPA, dimethylformamide (DMF); (viii) 4-fluoroanline, HBTU, DIPEA, DMF.
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on a C-18 Sep-Pak cartridge, which was eluted into a vial and dried
under a nitrogen flow. Compound 4was then deprotected by triflu-
oroacetic acid (TFA, neat) for 8 min generating 18F-fluoro-propy-
lamine (5) in 51% radiochemical yield (RCY). After removal of
TFA, the silica Sep-Pak cartridge trapped 5 was eluted with ace-
tonitrile for further radiochemistry. For the synthesis of 18F-FPPPT
and 18F-FAPPT, 6-(4-(2-(trifluoromethyl)benzoyl)piperazine-1-yl)-
pyridazine-3-carboxylate (6) was prepared according to a
published procedure, from which the amine reactive acid chloride
analog 7 was obtained by reacting with thionyl chloride.
Compound 7 is the common precursor to make both 18F-FPPPT
and 18F-FAPPT by reacting with synthons 5 and 1, respectively.20

The coupling reaction between 5 and 7 was carried out at room
temperature (rt) for 15 min, followed by HPLC purification of
18F-FPPPT on a semi-preparative C-18 column. The decay corrected
RCY at the end of synthesis (EOS) was 21%. The radiochemical
purity of the obtained 18F-FPPPT was 99%. The synthesis of
18F-FAPPT was accomplished in a similar way by reacting 1 with
7.21 The decay corrected RCY of 18F-FAPPT was lower at 3% at the
EOS, due to the poor reactivity of aromatic amines as opposed to
the aliphatic in 18F-FPPPT synthesis, and its radiochemical
purity was 99%. The average (n = 3) specific radioactivity for
18F-FPPPT and 18F-FAPPT was 507 ± 148 MBq lmol�1 and
61 ± 28 MBq lmol�1, respectively. The reference standard
compounds, the 19F counterparts of 18F-FPPPT and 18F-FAPPT, were
synthesized by reacting 6 with 3-fluoropropylamine or
4-fluoroaniline in the presence of N,N-diisopropylethylamine
(DIPEA) using O-(benzotriazo-1-yl)-N,N,N0N0-tetramethyluronium
hexafluorophosphate (HBTU) as the coupling agent at yields of
85% and 80%, respectively, as shown in Scheme 1.22,23

The lipophilicity of 18F-FPPPT and 18F-FAPPT measured by parti-
tion coefficient (logP) was assessed in a bi-phasic mixture of
n-octanol and water.24 The logP values of 18F-FPPPT and 18F-FAPPT
were determined to be 1.23 and 2.08, respectively. The lipophilicity
difference of 18F-FPPPT and 18F-FAPPT can be attributed to the fact
that different linkers, phenyl and propyl, were used for their con-
struction. The stability of 18F-FPPPT and 18F-FAPPT in fetal bovine
serum (FBS) was assessed by radio-HPLC after 3 h of incubation
at 37 �C. Both radiotracers were found nearly 100% intact.

The SCD-1 mediated retention of 18F-FPPPT and 18F-FAPPT was
assayed in SCD-1 positive prostate cancer cells (C4-2; Fig. 1a)
with a commercially available SCD-1 inhibitor, 4-(2-chlorophe-
noxy)-N-[3-[(methylamino)carbonyl]phenyl]-1-piperidinecarbox-
amide (IC50 = 37 nM for human SCD-1) (Fig. 1b).25,26 Briefly,
�2.0 lCi of each radiotracer was incubated with or without the
inhibitor in C4-2 cells for 30 min, followed by rinsing with fresh
media to remove non-specifically bound radiotracer. The cells were
later trypsinized and the activity was measured and normalized to
the cell numbers. Shown in Figure 1b, the SCD-1 mediated C4-2
cell uptake reduced by 40% and 39% for 18F-FPPPT and 18F-FAPPT,
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Figure 1. In vitro evaluation of 18F-FPPPT and 18F-FAPPT in cancer cells. (a) Western
blot showing protein expression of SCD-1 in C4-2 and MDA-MB-231 cells with
GAPDH as loading control. (b) SCD-1 mediated retention of 18F-FPPPT and 18F-
FAPPT in C4-2 cells with and without co-incubation of an SCD-1 inhibitor and MDA-
MB-231 cells.

PC-3 MDA-MB-231

%
ID
/g

0.0

5.0

SCD-1

Actin

a

b

Figure 2. (a) Western blot showing protein expression of SCD-1 in PC-3 and MDA-
MB-231 cells with actin as loading control. (b) Transaxial PET images of PC-3 and
MDA-MB-231 tumors with 18F-FPPPT in NOD-SCID mice (1 h p.i.). Tumors marked
with white arrows.
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respectively, by the blockade with the inhibitor, which indicates
the specific binding of the radiotracers to SCD-1. Further, 18F-FPPPT
and 18F-FAPPT showed 2.2-fold and 1.5-fold higher uptake, respec-
tively, in C4-2 cells than in a low SCD-1 expressing MDA-MB-231
cell line (Fig. 1a).

Given its higher SCD-1 specific uptake, 18F-FPPPT was selected
to test the feasibility of imaging SCD-1 in vivo in mouse models
bearing tumor xenografts with high (PC-3) and low (MDA-MB-
231) SCD-1 expression as determined by western blot (Fig. 2a).
Each mouse was injected with �100 lCi and underwent PET imag-
ing at 1 h post-injection (p.i.).27 As shown in Figure 2b, the tumor
with high SCD-1 expression, PC-3, was clearly visualized, while
the one with low SCD-1 expression, MDA-MB-231, showed an
uptake level barely above the background. Further quantitative
analysis revealed that the uptake of 18F-FPPPT in the PC-3 tumor
was 1.8-fold higher than in the MDA-MB-231 tumor, which is con-
sistent with the in vitro result presented in Figure 1. Of note, high
bone uptake was observed in the scans of both animal models,
likely due to defluorination of 18F from the alkyl subunit. Other
18F-labeled synthons with higher stability will be employed to
minimize or overcome the problem of defluorination in future.

In summary, we have successfully synthesized two PET radio-
tracers (18F-FPPPT and 18FPPPT) for noninvasive imaging of SCD-
1. The synthesis of each radiotracer was achieved with low to high
RCY with high specific radioactivity and radiochemical purity. Both
radiotracers were found to exhibit SCD-1 mediated retention in
SCD-1 expressing prostate cancer cells in vitro, with 18F-FPPPT
having higher specific retention. In vivo evaluation in mouse xeno-
graft models demonstrated the ability of PET with 18F-FPPPT to dif-
ferentiate tumors with high and low SCD-1 expression.
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