A new and efficient one-pot solid-supported synthesis of 1,2,4,6-tetraaryl-1,4-dihydropyridines

Anil K. Verma, Summon Koul, Tej K. Razdan, and Kamal K. Kapoor

Abstract: 1,2,4,6-Tetraaryl-1,4-dihydropyridines were obtained by the one-pot reaction of chalcones and substituted anilines on the surface of Bi(III)nitrate-Al₂O₃. The reaction seems to proceed via β -oxygenation of Bi(III) enolised chalcones followed by Michael addition and heteroannulation with simultaneous retro aldol disproportionation. The presence of the ring-activating groups at ortho and para positions in the aniline seems to be essential for the reaction.

Key words: 1,2,4,6-tetraryl-1,4-dihydropyridines, chalcones, substituted anilines, Bi(III) nitrate-alumina catalyst.

Résumé : On a réalisé la synthèse de 1,2,4,6-tétraaryl-1,4-dihydropyridines par le biais d'une réaction monotope de chalcones avec des anilines substituées à la surface d'un catalyseur de nitrate de Bi(III)-Al₂O₃. La réaction semble impliquer une β -oxygénation des sels de Bi(III) des chalcones énolisées, suivie d'une addition de Michael et d'une hétéroannelation accompagnée d'une dismutation simultanée rétroaldolique. Il semble que la présence de groupes activants dans les positions ortho et para de l'aniline soit essentielle à la réalisation de la réaction.

Mots clés : 1,2,4,6-tétraaryl-1,4-dihydropyridines, chalcones, anilines substituées, catalyseur de nitrate de Bi(III)-alumine.

[Traduit par la Rédaction]

Introduction

1,4-Dihydropyridine derivatives participate actively in biochemical oxidoreductase (1) and transaminase (2) reactions. They serve as key intermediates in the biogenesis of indole alkaloids (3) as well as the synthesis of several naturally occurring bioactive alkaloids (4) and substituted pyridines (5). These products are primarily potent calcium antagonists (6) and the activity is dictated by the stereochemistry at C-4 (7). The compounds also exhibit a wide range of other therapeutic properties such as antioxidant (8), antimutagenic (9), antidiabetic (10), hepatoprotective (11), antiaddictive (12), bronchodilating (13), herbicidal (14), and anticancer (15) activity. Therefore, the synthesis of 1,4dihydropyridine derivatives continues to be a subject of fruitful research. These products, especially the calcium channel regulators, are synthesized chiefly by Hantzsch synthesis (14) or its modifications and by the reduction of pyridine derivatives or pyridinium salts. Several reviews (16) have exhaustively dealt with the synthesis, chemistry, pharmacology, and industrial utility of 1,4-dihydropyridine derivatives.

Our interest in the synthesis of 1,2,4,6-tetraaryl-1,4dihydropyridines originated from the presumption that because of the planarity of the 1,4-dihydropyridine nucleus

Received 3 April 2006. Accepted 26 June 2006. Published on the NRC Research Press Web site at http://canjchem.nrc.ca on 12 October 2006.

A.K. Verma, S. Koul,¹ T.K. Razdan,² and K.K. Kapoor. Department of Chemistry, University of Jammu, Ambedkar Road, Jammu 180006, India.

¹Present address: Department of Organic Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

²Corresponding author (e-mail: tk_razdan@rediffmail.com).

(17) these products may display the photodynamic activity akin to the symmetrical 2,4,6-triarylthiopyrylium, selenopyrylium, and telluropyrylium photosensitizers, which have been recommended for cell-specific cancer therapy (18). Moreover, since most of the known syntheses (16) of 1,4dihydropyridine derivatives are multistage laborious processes and involve harsh or environmentally hazardous reaction conditions, together with the fact that the alkyl and the aryl primary amines have not gained popularity in their synthesis, we opined that a new and straightforward catalytic method, employing aryl primary amine as one of the substrates, was needed for the synthesis of 1,2,4,6-tetraaryl-1,4dihydropyridines. Herein, we report a simple, convenient, and cost-effective one-pot solid-supported synthesis of these compounds from chalcones and substituted anilines using the hitherto unexplored Bi(III) nitrate-Al₂O₃ reagent.

Results and discussion

Although Bi(III) nitrate is easily available in pure form and has negligible toxicity (19) and high stability in air and moisture, its catalytic efficacy has not been thoroughly explored. This led us to evaluate the possible catalytic utility of Bi(III) nitrate immobilized on neutral alumina in the synthesis of the title products. The catalyst was selected on the assumption that Bi(III) ions, being moderately acidic (20) in nature, could bind efficiently to the surface of neutral alumina, prevent its restructuring, synergise its catalytic activity (21), and initiate a reaction under mild conditions. The catalyst was prepared by adsorbing Bi(III) nitrate·5H₂O (5% w/w) on neutral alumina and activation of the air-dried mixture in a hot air oven at 110 ± 5 °C, for six hours. The catalyst was reactivated each time before use.

The chalcone substrates 1a-1k were prepared from the appropriate benzaldehyde and acetophenone by classical

Scheme 1. 1,2,4,6-Tetraaryl-1,4-dihydropyridines from chalcones.

Claisen–Schmidt condensation (22). Subsequent reactions of **1a–1k** with *o*-phenylenediamine, **2a**, (2:1 mol/L), and Bi(III) nitrate-Al₂O₃ (Scheme 1), in the proportion by weight of chalcones, were carried out in a thermostatically controlled hot air oven at 130 \pm 5 °C, for 4 to 5 h. The resulting product mixtures were isolated with chloroform and separated by column chromatography to yield the major products **3a–3k** (56%–76%) (Table 1) and the minor products **4a–4k** (8%–10%). These reactions also afforded the aldehyde (5%–6%) from which **1a–1k** were prepared. The compounds **3a–3k** and **4a–4k** were analysed by spectral methods, HREI-MS, IR, ¹H NMR, ¹³C NMR and DEPT 135°. The spectra established the structures of **3a–3k** as 1,2,4,6-tetraaryl-1,4-dihy-

dropyridine derivatives (Scheme 1). The expanded peak segregated ¹H NMR spectra of the products showed a characteristic one proton triplet (J = 3.8 Hz) near $\delta 5.37$ because of the α proton (5*a*, 23) at C-4, δ_C 54.7, coupled to the protons at C-3 and C-5, δ 6.80–7.1 (d, J = 3.9 Hz, 2H), δ_C 145.2, of the dihydropyridine nucleus. The IR absorption band at υ_{max} 3455 cm⁻¹ and a broad singlet near δ 7.23 (2H) in the ¹H NMR spectra revealed the presence of a free amino group in the compounds. The ¹³C NMR signals were assigned on the basis of DEPT 135 experiments. The mass spectra of **3a–3k** exhibited fragmentations typical of 1,4dihydropyridines (24) and displayed abundant ion peaks corresponding to the loss of an aryl radical from the C-4 of the

	Oven	MW yield		Oven	MW	MW time
Compound	yield (%)	(%)	Compound	yield (%)	yield (%)	(min)
3 a	70.0	72.4	4a	8	6	20
3b	76.0	78.3	4b	8	7	22
3c	56.2	59.1	4 c	10	12	20
3d	60.8	61.2	4d	10	10	23
3e	64.5	68.0	4e	9	12	22
3f	61.0	65.0	4f	10	12	23
3g	67.5	67.4	4g	8	14	19
3h	72.0	73.5	4h	8	6	23
3i	70.0	71.2	4i	9	9	25
3ј	62.5	65.0	4j	9	10	25
3k	65.7	66.5	4k	7	9	26

Table 1. Yield of the products 3a-3k and 4a.

Scheme 2. Reaction of 1b with different substituted anilines.

molecular ion. The base peak fragment ion at m/z 246 resulted from the loss of the second aryl radical from the C-2 or C-6 position of the (M⁺ – Ar⁻) fragment ion. Except for compounds **3f** and **3k**, which possessed two monosubstituted aryl rings at positions 2 and 6 of the 1-(2-aminophenyl)-1,4-dihydropyridine nucleus, and compound **3a**, which possessed unsubstituted phenyl rings at positions 2,4, and 6 of the nucleus, all products had a lone substituted phenyl ring at position 4 of the nucleus.

The ¹H NMR spectra of the minor products **4a–4k** displayed resonance signals near δ 3.0 (dd, J = 8.2, 11.5 Hz,

 H_a -6), 3.20 (dd, J = 4.1, 11.5 Hz, H_b -6), 5.10 (dd, J = 4.1, 8.2 Hz, H-7), and 3.80–3.90 (s, br, 1H, NH) typical of benzo-1,4-diazepines. These compounds were known and their spectral data and melting points were consistent with the literature (25).

To generalize this reaction and assess the influence of the ring-activating and ring-deactivating substituents in anilines on the percentage yield of the products, chalcone **1b** was reacted separately but under identical conditions with *ortho-*, *meta-*, and *para-*hydroxyaniline **2b–2d**, bromoaniline **2e–2g**, nitroaniline **2h–2j**, and aniline **2k** (Scheme 2). Aniline, *o*-

Scheme 3. Probable mechanism for formation of 1,2,4,6-tetraaryl-1,4-dihydropyridine.

Table 2.	Yield	of the	products	of	1b	with	different
anilines 2	2b–2h						

	Oven yield	MW yield	MW time
Product	(%)	(%)	(min)
5	65.6	68.2	20
6	22.5	26.0	26
7	72.0	74.3	25
8	73.4	75.4	18
9	19.5	19.8	25
10	76.5	78.5	20
11	32.5	33.0	20

nitroaniline, and *p*-nitroaniline failed to afford the desired 1,2,4,6-tetraaryl-1,4-dihydropyridines while *meta*- nitroaniline afforded the product **11**, albeit in low yield (Table 2). The ring-activating groups in anilines seem to favour the reaction and formed compounds **5–10** with the percentage yield in the expected order of para > ortho > meta substituted anilines (Table 2).

Since crystalline bismuth nitrate exists as Bi(NO₃)₃·5H₂O and alumina also chemisorbs water readily (25) and retains some of it even after activation at 110 ± 5 °C, the mechanism of the reaction may be rationalised as involving β -oxygenation of the Bi(III) nitrate activated chalcone enolate, which may then undergo a Michael addition to a second α_{β} unsaturated ketone (Scheme 3) to form a 1,5-diketone enolate adduct. Subsequent heteroannulation with substituted anilines via condensation and retro-aldol disproportionation (26) may form 2-hydroxy-1,2,4,6-tetraaryl-1,2,3,4-tetrahydropyridine derivatives, which may undergo dehydration to yield 1,2,4,6-tetraaryl-1,4-dihydropyridines. This mechanism is supported by the fact that the products obtained from 4substituted chalcones, like 3b, possessed only one substituted phenyl group at position 4-4 of the 1-(2-aminophenyl)-1,4-dihydropyridines nucleus.

To substantiate the proposed mechanism, cross-reactions of chalcones **1b** and **1f** and also **1b** and *p*-chloroacetophenone (1:1 mol/L) with equimolar amounts of **2a** and 5% Bi(III) nitrate-Al₂O₃, in proportion by weight of the substrates, were carried out at 130 ± 5 °C (Scheme 4). The reaction of **1b**, **1f**, and **2a** yielded **3b** (20%), **3f** (22%), **3l** (36%),

Scheme 5. Reaction of 1b and p-chloroacetophenone in the absence of aniline derivatives.

4b (5%), and **4f** (7%). The reaction involving **1b**, *p*-chloroacetophenone, and **2a** gave **3b** and **3l** in nearly equal proportions and **4l** (13%).

We attempted the reaction of equimolar quantities of 1b, p-chloroacetophenone, and equal mass of Bi(III)nitrate- Al_2O_3 at 130 ± 5 °C (Scheme 5) in the absence of arylamines. The reaction afforded two products, 12a and 12b, which were separated by column chromatography and identified by spectral methods as 2-(4-methoxyphenyl)hydroxymethyl-3-(4-methoxy)phenyl-1,5-diphenylpentan-4-en-5-ol-1one (12a) and 1-(4-chloro)phenyl-3-(4-methoxy)phenyl-5phenylpentan-4-en-5-ol-1-one (12b) (Scheme 5). The ¹H NMR, ¹³C NMR and DEPT 135 spectra for 12a and 12b showed the presence of a carbonyl group, δc 197.3, and an enol hydroxyl, δ 12.9 (s br, exch. D₂O, 1H). The spectra of 12a revealed the absence of a methylene carbon whose presence in 12b was evident from the resonance signals at δ 2.69 (d, J = 4.5 Hz, 2H) in its ¹H NMR spectrum and $\delta_{\rm C}$ 25.3 in its ¹³C NMR and DEPT 135 spectra. The spectra of 12a showed the presence of a secondary hydroxyl displaying resonance signals at δ 2.80 (s br, exch. D₂O, 1H) and 5.01 (d, J = 3.6 Hz, 1H, -CH-OH), $\delta_{\rm C}$ 83.2. These signals were absent in the spectra of **12b**. These observations were consistent with the proposed mechanism and indicated that the retro-aldol disproportionation is probably triggered by the heteroannulation of the Michael adduct with substituted anilines, especially the anilines having a ring-activating group at the ortho or para position.

The reaction is sensitive to temperature with the optimum temperature being 130 ± 5 °C. The reaction failed to proceed in solution or when neat Al₂O₃ or Bi(III) nitrate were used as the reagent. We repeated all the reactions in a domestic microwave (2450 MHz) using 60% power and followed the procedure of Mukhopadhyay et al. (27), which allows the temperature to remain at ca. 130 °C. The reactions were completed in 19–26 min without any appreciable improvement in the yield of the 1,2,4,6-tetraaryl-1,4-dihydropyridines (Tables 1 and 2).

Conclusion

In conclusion, we have devised a new one-pot environmentally benign and general solid-supported catalytic method for the synthesis of 1,2,4,6-tetraaryl–1,4-dihydropyridines from the easily accessible chalcones and substituted anilines using Bi(III) nitrate immobilized on Al_2O_3 as a reagent. An advantage of this method is the low toxicity (19) and the antiulcerative (28) properties of bismuth compounds. Further studies on the scope and limitations of immobilized Bi(III) nitrate in organic transformations are under way.

Experimental

General

Melting points are uncorrected and were determined on Perfit melting point apparatus. IR, on KBr discs, were taken on a Brucker 4800 IR spectrometer. ¹H NMR (200 MHz) and ¹³C NMR (50.3 MHz) were recorded in DMSO or CDCl₃ using a Brucker Ac DPX-200 spectrometer; some spectra were recorded on Varian Gemini 300 MHz instrument. HREI-MS were recorded on JEOL D-300 mass spectrometer at 70 eV. TLC was performed on 0.5 mm thick plates using BDH silica gel-G adsorbent. Column chromatography was performed on silica gel (BDH, mesh size 60– 120) using graded solvent systems of petroleum ether (40– 60 °C), petroleum ether – CHCl₃ and CHCl₃–EtOAc. Microwave irradiations were carried out in a domestic microwave oven (LG Model No. MS-255R, No. 4140W1A347A) with frequency 2450 MHz and R_f output of 900W.

Preparation of catalyst

Bi(III) nitrate-5H₂O (2.5 g) was dissolved in 50% MeOH (150 mL) and the solution was added to neutral alumina (50 g) and stirred for 12 h at room temperature. The mixture was air dried and then heated at 110 ± 5 °C in a thermostatic hot air oven for 6 h. The activated Bi(III) nitrate-Al₂O₃ mixture was cooled in a dessicator and preserved. The catalyst was reactivated at 110 ± 5 °C for 0.5 h each time before use.

Preparation of chalcones 1a-1k

Chalcones **1a–1k** were prepared from the appropriate benzaldehyde and acetophenone by the well known procedure for Claisen–Schmidt condensation (22). Chalcones were purified by CC on silica gel using petroleum ether – CH_2Cl_2 (9:1, 7:3, and 1:1 ν/ν , 40–60 °C) followed by crystallization from $CHCl_3$ –MeOH.

General procedure for the preparation of 3a–3k, 5–11 and cross-reactions of 1b

The solution of chalcone 1a-1k (2 × 10⁻³ mol/L) and ophenylenediamine 2a $(1 \times 10^{-3} \text{ mol/L})$ in chloroform (10 mL) were adsorbed on a Bi(III) nitrate-Al₂O₃ mixture in proportion by weight of the chalcones. The solvent was evaporated in air and the air-dried solid mixture was charged into a stoppered flask. The flask was heated in a thermostatically controlled hot air oven and maintained at 130 ± 5 °C. Simultaneously, separate experiments were conducted to monitor the reaction by comparative TLC of the ethylacetate extracts of the aliquots drawn out from the reaction flask at 0.5 h intervals, using petroleum ether – CH_2Cl_2 (9:1, 7:3, and 3:7 v/v, 40–60 °C) as solvent systems. The plates were developed by spraying with Ce(IV) ions and heating at 110 ± 5 °C for 10 min when dark purple spots of the Ce(IV) complexes of 1,2,4,6-tetraaryl-1,4-dihydropyridines and yellow spots of the 1,4-benzodiazepines were observed against a white background. On completion of the reaction (4-5 h)the product mixtures were extracted with hot CHCl₂ in a soxhlet extractor, freed from the solvent, and separated by CC, using petroleum ether – CH₂Cl₂ (40–60 °C) graded solvent systems. Twenty milliliter fractions were collected and TLC identical fractions were pooled. The solvent was distilled and the residue was purified by crystallization from CHCl₃ – petroleum ether (40–60 °C) and CHCl₃–MeOH. This gave 3a-3k as major product and 4a-4k (25) as the minor product (Table 1). In addition to these compounds, minor quantities of aldehydes from which 1a-1k were prepared were also obtained. Compounds 5–11 (Scheme 3) were prepared by reacting 1b (2 \times 10⁻³ mol/L) and 2aminophenol (2b), 3-aminophenol (2c), 4-aminophenol (2d), 2-bromoaniline (2e), 3-bromoaniline (2f), 4-bromoaniline (2g), and 3-nitroaniline (2h) $(1 \times 10^{-3} \text{ mol/L})$, respectively, with Bi(III) nitrate-Al₂O₃ in proportion by weight of the substrates using the previously described procedure. The same procedure was adopted in the reaction of 1b (1 \times 10^{-3} mol/L), **1f** (1 × 10^{-3} mol/L), and Bi(III) nitrate-Al₂O₃ and a mixture of 3b, 3f, 3l, 4b, and 4f were obtained (Scheme 4). The mixture was separated by CC as described earlier. A similar procedure was used in the reaction of 1b $(1 \times 10^{-3} \text{ mol/L})$, *p*-chloroacetophenone $(1 \times 10^{-3} \text{ mol/L})$, and Bi(III) nitrate-Al₂O₃ (Scheme 4) when a mixture of 3b, 31, and 41 was recovered by adopting the previously described procedure for the isolation, separation, and purification of the compounds.

Preparation of 12a and 12b

To a mixture of **1b** (0.238 g, 1×10^{-3} mol/L) and *p*chloroacetophenone (0.15 g, 1×10^{-3} mol/L) dissolved in CHCl₃ (10 mL) was added the reagent Bi(III)nitrate-Al₂O₃ (0.388 g). The mixture was dried in air and heated in a thermostatically controlled hot air oven at 130 ± 5 °C. A separate experiment was simultaneously conducted to monitor the reaction by TLC of the chloroform extract of the aliquots drawn from the reaction mixture at 0.5 h intervals. On completion of the reaction (2.5 h) the products were isolated with chloroform and filtered, and the filtrate was washed with water and dried over anhydr. MgSO₄. TLC (silica gel G, solvent C₆H₆) of the product mixture showed the presence of two products **12a** and **12b**, which were separated by CC (silica gel), using petroleum ether – benzene (1:1) and benzene and were crystalized from chloroform–methanol.

General procedure for microwave irradiation

The solid mixtures of chalcones, anilines, and Bi(III)nitrate- Al_2O_3 in the same proportions as were used during the reactions carried out in a thermostatically controlled hot air oven were heated in a domestic microwave (2450 MHz) using 60% power (540 W) using the procedure of Mukhopadhyay et al. (27), which permits the control of temperature at 130 °C. The reactions were monitored by TLC as described earlier. The reactions were completed within 18– 26 min (Tables 1 and 2). The products were extracted and purified as before and were identified by co-TLC, mp, and mmp as **3a–3k**, **3l**, **4a–4k**, **4l**, **5–11**, **12a**, and **12b**.

1-(2-Aminophenyl)-2,4,6-triphenyl-1,4-dihydropyridine (3a)

Colourless crystals, mp 162 to163 °C. IR (cm⁻¹) v_{max} : 3430, 3036, 3004, 2945–2669 (m), 1611, 1500, 1476, 1454,

1434, 1399, 1371, 1294, 1253, 1178, 1033, 965, 744. ¹H NMR (200 MHz, CDCl₃) δ : 5.32 (t, *J* = 3.9 Hz, 1H), 7.02 (d, *J* = 3.9 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 4H), 7.25 (s br, 2H, NH₂), 7.49 (dd, *J* = 8.4, 3.2 Hz, 6H), 7.70 (m, 7H), 8.10 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (CDCl₃) δ : 54.8, 114.5, 121.6, 122.3, 127.9, 128.4, 129.7, 131.5, 139.4, 151.1. HR EI-MS *m*/*z*: 400.1979 (M⁺, 5) (calcd. for C₂₉H₂₄N₂: 400.1939), 323 ([M⁺ - C₆H₅], 36), 246 (100), 154 (33), 101 (47), 88 (65). Anal. calcd. for C₂₉H₂₄N₂: C 86.95, H 6.05, N 6.99; found: C 87.38, H 5.98, N 6.72.

1-(2-Aminophenyl)-4(4-methoxyphenyl)-2,6-diphenyl-1,4dihydropyridine (3b)

Colourless crystals, mp 183 °C. IR (cm⁻¹) υ_{max} : 3435, 3036, 3004, 2940–2673 (m), 1610, 1500, 1470, 1455, 1435, 1399, 1371, 1294, 1253, 1030, 967. ¹H NMR (DMSO-*d*₆) &contextrinus: 3.84 (s, 3H), 5.35 (t, *J* = 3.8 Hz, 1H), 7.15 (d, *J* = 3.8 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.33 (ddd, *J* = 6.9, 8.4, 3.9 Hz, 6H), 7.35 (s, br, 2H), 7.69 (d, *J* = 8.4 Hz, 6H), 7.80 (d, *J* = 6.9 Hz, 4H). ¹³C NMR (DMSO-*d*₆) δ_{C} : 54.8, 55.3, 114.6, 116.5, 127.6, 127.7, 128.4, 128.6, 131.2, 143.0, 149.1, 158.6. HR EI-MS *m/z*: 430.2015 (20) (calcd. for C₃₀H₂₆N₂O: 430.2045), 416 (35), 353 (40), 246 (100), 154 (45), 101 (53), 88 (71). Anal. calcd. for C₃₀H₂₆N₂O: C 83.68, H 6.09, N 6.50; found: C 83.72, H 6.12, N 6.20.

1-(2-Aminophenyl)-4(4-fluoro)phenyl-2,6-diphenyl-1, 4dihydropyridine (3c)

Colourless crystals, mp 102 °C. IR (cm⁻¹) v_{max} : 3436, 3035, 3004, 2943–2675 (m), 1618, 1500, 1470, 1455, 1430, 1398, 1371, 1294, 1253, 1030, 967. ¹H NMR (DMSO-*d*₆) δ : 5.75 (d, *J* = 3.9 Hz, 1H), 7.09 (t, *J* = 3.9 Hz, 1H), 7.16 (d, *J* = 8.7 Hz, 3H), 7.18 (m, 10H), 7.35 (sbr, 2H), 7.49 (dd, J = 8.7, 3.9 Hz, 4H), 8.10 (d, *J* = 3.9 Hz, 2H). ¹³C NMR (DMSO-*d*₆) δ_{C} : 57.2, 114.3, 115.8, 121.7, 122.6, 124.6, 128.9, 129.8, 130.1, 134.9, 143.7, 151.2, 160.5. HR EI-MS *m/z*: 418.1846 (18) (calcd. for C₂₉H₂₃FN₂: 418.1851), 323 ([M⁺ - C₆H₄F], 46), 246 ([M⁺ - C₆H₄F - C₆H₅], 100), 92 (70), 77 (76). Anal. calcd for C₂₉H₂₃FN₂: C 83.22, H 5.55, N 6.69; found: C 83.35, H 5.42, N 6.20.

1-(2-Aminophenyl)-4(4-chloro)phenyl-2,6-diphenyl-1,4dihydropyridine (3d)

Colourless crystals, mp 189 °C. IR (cm⁻¹) υ_{max} : 3437, 3010, 2945–2669 (m), 1620, 1480, 1456, 1434, 1399, 1370, 1295, 1253, 1178, 1033, 965, 745. ¹H NMR (DMSO-*d*₆) &: 5.37 (d, *J* = 3.9 Hz, 1H), 7.09 (t, *J* = 3.9 Hz, 1H), 7.26 (d, *J* = 8.2 Hz, 4H), 7.46 (m, 13H), 7.37 (s br, 2H), 8.0 (d, *J* = 3.9 Hz, 2H). ¹³C NMR (DMSO-*d*₆) δ_{C} : 55.8, 111.2, 118.7, 121.5, 122.4, 126.3, 128.8, 129.7, 130.0, 134.9, 143.7, 151.1. HR EI-MS *m*/*z*: 436.1535, 434.1540 (M⁺, 6) (calcd. for C₂₉H₂₃ClN₂: 436.1520, 334.1520), 222 ([M⁺ - C₆H₅Cl], 30), 246 ([M⁺ - C₆H₅Cl - C₆H₅], 100), 92 (73), 77 (67). Anal. calcd. for C₂₉H₂₃ClN₂: C 79.79, H 5.34, N 6.45; found: C 80.20, H 4.95, N 5.98.

1-(2-Aminophenyl)-4-(3,4-dichlorophenyl)-2,6-diphenyl-1,4-dihydropyridine (3e)

Colourless crystals, mp 235 °C. IR (cm⁻¹) υ_{max} : 3435, 3050, 2945–2669 (m), 1605, 1550, 1497, 1387, 1350, 1148, 1090, 1018, 970, 730. ¹H NMR (DMSO-*d*₆) &: 5.38 (t, *J* = 3.9 Hz, 1H), 7.17 (d, *J* = 3.9 Hz, 1H), 7.38 (m, 8H), 7.50

(ddd, J = 8.3, 7.9, 2.9 Hz, 2H), 7.55 (s br, 2H), 7.57 (ddd, J = 8.3, 7.9, 2.9 Hz, 3H), 7.64 (ddd, J = 8.3, 7.9, 2.2 Hz, 2H), 7.89 (d, J = 8.3Hz, 1H), 8.02 (dd, J = 8.2, 2.2 Hz, 2H). ¹³C NMR(DMSO- d_6) δ_C : 54.3, 108.9, 111.7, 121.9, 123.0, 123.8, 126.4, 125.3, 128.0, 128.9, 129.8, 130.7, 133.5, 135.6, 143.9,151.1. HR EI-MS m/z: 470, 468.1109 (M⁺, 13) (calc. for C₂₉H₂₂Cl₂N₂, 468.1120), 323 ([M⁺ - C₆H₃Cl₂], 30), 246 ([M⁺ - C₆H₃Cl₂ - C₆H₅], 100), 169 (56), 155 (41), 77 (70). Anal. calcd. for C₂₉H₂₂Cl₂N₂: C 74.34, H 4.74, N 5.98; found: C 75.01, H 4.68, N 6.30.

1-(2-Aminophenyl)-2,6-di(4-chloro)phenyl-4-phenyl-1,4dihydropyridine (3f)

Colourless crystals, mp 202 °C. IR (cm⁻¹) v_{max} : 3456, 3030, 2669–2945 (m), 1610, 1475, 1496, 1387, 1350, 1140, 1090, 1072, 926. ¹H NMR (DMSO- d_6) &: 5.35 (t, J = 3.9 Hz, 1H), 7.06 (d, J = 3.9 Hz, 2H), 7.26 (d, J = 8.2 Hz, 4H), 7.45 (m, 5H), 7.55 (s br, 2H), 7.63 (dd, J = 8.2, 2.2 Hz, 2H), 7.64 (dd, J = 8.2, 2.2 Hz, 4H), 8.02 (dd, J = 8.2, 1.6 Hz, 2H). ¹³C NMR (DMSO- d_6) &: 54.1, 111.3, 118.7, 121.6, 122.5, 126.4, 128.9, 129.8, 130.1, 135.0, 143.7, 151.2. HR EI-MS *m*/*z* (rel. int): 468.1110 (10) (calcd. for C₂₉H₂₂Cl₂N₂: 468.1101), 391 [M⁺- Ph], 280 (100), 188 (57), 169 (46), 77 (62). Anal. calcd. for CHN: not found.

1-(2-Aminophenyl)-4-(4-bromo)phenyl-2,6-diphenyl-1,4dihydropyridine (3g)

Colourless crystals, mp 178 °C. IR (cm⁻¹) v_{max} : 3435, 3050, 1605, 1545, 1490, 1387, 1350, 1150, 1095, 920, 760. ¹H NMR (CDCl₃) & 5.37 (t, *J* = 3.9 Hz, 6H), 7.16 (d, *J* = 3.9 Hz, 2H), 7.26 (m, 4H), 7.36 (s br, 2H), 7.39 (dd, *J* = 8.7, 3.9 Hz, 2H), 7.51 (s, br, 2H), 7.58 (ddd, *J* = 8.3, 2.4, 8.3 Hz, 4H), 7.72 (d, *J* = 8.7 Hz, 2H), 8.28 (ddd, *J* = 8.3, 2.4, 8.3 Hz, 2H). ¹³C NMR (DMSO-*d*₆) δ_{C} : 55.9, 111.6, 118.9, 122.3, 125.6, 128.3, 129.7, 130.1, 131.9, 143.9, 151.1, 160.3. HR EI-MS *m*/*z*: 480.1018(13), 478.1030 (M⁺, 10) (calcd. for C₂₉H₂₃BrN₂: 478.1025), 323 ([M⁺ - C₆H₅Br], 40), 246 (100), 169 (58), 144 (67), 77 (70). Anal. calcd. for C₂₉H₂₃BrN₂: C 72.79, H 4.8, N 5.8; found: C 73.01, H 5.23, N 4.26.

1-(2-Aminophenyl)-4(3,4-dioxymethylene)phenyl-2,6diphenyl-1,4-dihydropyridine (3h)

Colourless crystals, mp 173 °C. IR (cm⁻¹) υ_{max} : 3439, 3165, 3047, 2964–2531 (m), 1590, 1494, 1385, 1350, 1260, 1140, 1096, 920 760. ¹H NMR (CDCl₃) & 5.45 (t, *J* = 3.9 Hz, 1H), 6.02 (s, 2H), 7.10 (d, *J* = 3.9 Hz, 1H), 7.23 (s br, 2H, NH₂), 7.26 (dd, *J* = 8.5, 3.9 Hz, 4H), 7.35 (ddd, *J* = 8.1, 2.2, 8.3 Hz, 6H), 7.50 (ddd, *J* = 8.3, 2.4, 8.3 Hz, 5H), 7.53 (d, *J* = 8.3 Hz, 2H), 8.25 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (DMSO- d_6) δ_C : 55.3, 101.2, 114.5, 118.6, 122.8, 126.7, 128.3, 129.5, 135.5, 135.8, 147.3, 147.9, 149.3, 153.3. HR EI-MS *m/z* (rel.int): 444.1830 (M⁺, 7) (calcd. for C₃₀H₂₄N₂O₂: 444.1839), 414 ([M⁺ – HCHO], 20), 323 (15), 293 (21), 246 (100), 169 (52), 144 (56), 77 (70). Anal. calcd. C 81.04, H 5.44, N 6.30; found: C 82.10, H 5.70, N 5.85.

1-(2-Aminophenyl)-4(4-hydroxy)phenyl-2,6-diphenyl-1,4dihydropyridine (3i)

Colourless crystals, mp 235 °C. IR (cm⁻¹) v_{max} : 3560, 3430, 3265, 3050, 2964–2531 (m), 1605, 1550, 1485, 1380, 1345, 1280, 1140, 1096, 920, 750. ¹H NMR (DMSO- d_6) δ :

2.40 (s br, 1H), 5.10 (t, J = 3.8 Hz, 1H), 6.77 (dd, J = 8.3, 3.8 Hz, 4H), 7.26 (s br, 2H), 7.35 (ddd, J = 8.3, 5.6, 3.9 Hz, 6H), 7.50 (ddd, J = 8.6, 5.6 Hz, 6H), 7.56 (ddd, J = 8.3, 5.6, 8.5 Hz, 2H), 8.25 (d, J = 8.3 Hz, 2H). ¹³C NMR (DMSO- d_6) δ_C : 54.8, 116.1, 122.6, 127.1, 127.2, 128.6, 128.8, 135.1, 135.7, 139.9, 151.8, 160.5. HR EI-MS m/z (rel. int.): 416.1896 (13) (calc. for C₂₉H₂₄N₂O: 416.1889), 323 (30), 246 (100), 169 (55), 144 (43), 77 (60). Anal. calcd. for CHN: not found.

1-(2-Aminophenyl)-4(4-iodo)phenyl-2,6-diphenyl-1, 4dihydropyridine (3j)

Colourless crystals, mp 182 °C. IR (cm⁻¹) υ_{max} : 3453, 3052, 1605, 1549, 1490, 1382, 1357, 1148, 1090, 1018, 927, 730. ¹H NMR (DMSO- d_6) &: 5.09 (t, J = 3.7 Hz, 1H), 6.80 (dd, J = 8.5, 3.7Hz, 4H), 7.20 (s br, 2H), 7.36 (ddd, J = 8.5, 2.4, 8.3 Hz, 4H), 7.52 (ddd, J = 8.6, 2.4, 8.3 Hz, 2H), 7.69 (dd, J = 8.6, 2.4 Hz, 6H), 7.86 (dd, J = 8.3, 8.5 Hz, 2H), 8.17 (d, J = 8.3 Hz, 2H). ¹³C NMR (DMSO- d_6) &: 53.9, 111.10, 116.3, 116.5, 122.8, 127.2, 128.3, 131.1, 135.5, 139.3, 143.2, 152.1. HR EI-MS m/z (rel. int.): 526.1870 (5) (calcd. for C₂₉H₂₃IN₂: 526.1861), 323 (34), 246 (100), 165 (45), 144 (36), 77 (68). Anal. calcd. for CHN: not found.

1-(2-Aminophenyl)-2,6-di(4-bromo)phenyl-4-phenyl-1,4-dihydropyridine (3k)

Colourless crystals, mp 208 °C. IR (cm⁻¹) v_{max} : 3443, 3050, 2967–2953 (m), 1605, 1545, 1487, 1360, 1350,1140, 1090, 1075, 930, 725. ¹H NMR (DMSO- d_6) &: 5.74 (t, J = 3.8 Hz, 1H), 7.00 (d, J = 3.8 Hz, 2H), 7.26 (s br, 2H), 7.40 (5H), 7.52 (ddd, J = 8.8, 2.5, 8.3 Hz, 4H), 7.64 (dd, J = 8.5, 2.4 Hz, 2H), 7.80 (s, 2H), 8.06 (dd, J = 8.7, 1.6 Hz, 2H), 8.25 (d, J = 3.9 Hz, 2H). ¹³C NMR (DMSO- d_6) δ_C : 55.4, 114.1, 116.3, 116.5, 126.8, 127.2, 128.3, 131.0, 139.1, 143.2, 149.7, 151.3, 160.5. HR EI-MS m/z (rel. int.): 556.1020 (5), 558.0123 (M⁺) (calcd. for C₃₀H₂₂N₂Br₂: 556.0109, 558.0109) 481 (5), 479 (10) 222 (9), 323 (100), 218 (40), 126 (60), 77 (71). Anal. calcd. for C₃₀H₂₂N₂Br₂: C 62.36, H 3.9, N 5.01; found: C 63.06, H 4.32, N 4.91.

1-(2-Aminophenyl)-2(4-chloro)phenyl-4(4-methoxy)phenyl-6-phenyl-1,4-dihydropyridine (3l)

Colourless compound, mp 184 °C. IR (cm⁻¹) υ_{max} : 3430, 2966–2576 (m), 1610, 1605, 1540, 1490, 1385, 1350, 1140, 1080, 940. ¹H NMR (DMSO- d_6) & 3.82 (s, 3H), 5.32 (t, J = 3.9 Hz, 1H), 7.06 (dd, J = 8.70, 3.9 Hz, 4H), 7.23 (s br, 2H), 7.28 (d, J = 8.7 Hz, 4H), 7.41 (d, J = 6.5 Hz, 2H), 7.55 (ddd, J = 8.7, 3.7, 2.1 Hz, 2H), 7.75 (dd, J = 8.7, 2.4 Hz, 2H), 7.82 (s, 1H), 8.08 (dd, J = 8.7, 1.6 Hz, 2H), 8.25 (d, J = 3.9 Hz, 2H). ¹³C NMR (DMSO- d_6) δ_C : 55.4, 58.5, 114.4, 116.8, 122.3, 125.6, 128.5, 128.9, 130.1, 139.9, 147.6, 157.8, 160.4. HR EI-MS *m*/*z* (rel. int.): 466.1640, 464.1634 (M⁺, 15) (calcd. for C₃₀H₂₅CIN₂O: 466.1626, 464.1626) 357 (25), 246 (100), 169 (42), 144 (56), 77 (68). Anal. calcd. for C₃₀H₂₅CIN₂O: C 77.58, H 5.38, N 6.03; found: C 78.2, H 4.91, N 5.80.

1-(2-Hydoxyphenyl)-4(methoxyphenyl)-2,6-diphenyl-1,4dihydropyridine (5)

Colourless needles, mp 276 °C. IR (cm⁻¹) v_{max} : 3572, 3056, 3002, 1605, 1540, 1490, 1385, 1350, 1140, 1080, 940, 790. ¹H NMR (DMSO- d_6) & 3.80 (s, 3H), 5.57 (t, J =

3.8 Hz, 1H), 6.67 (d, J = 7.9 Hz, 2H), 6.77 (d, J = 7.9 Hz, 2H), 6.80 (dd, J= 7.9 Hz, 2.9 Hz, 3H), 7.0 (d, J = 3.9 Hz, 2H), 7.20–7.29 (m, 6H), 7.30 (dd, J = 8.2, 2.9 Hz, 2H), 7.32 (dd, J = 8.2, 2.8 Hz, 2H), 8.20 (dd, J = 8.2, 2.8 Hz, 1H), 10.90 (s br, 1H). ¹³C NMR (DMSO- d_6) δ_C : 55.6, 57.9, 113.7, 115.9, 122.5, 128.6, 130.1, 138.2, 138.7, 143.3, 143.7, 151.4. HR EI-MS *m*/*z* (rel. int.): 431.1892 (M⁺, 7) (calcd. for C₃₀H₂₅NO₂: 431.1885), 416 (13), 323 (30), 246 (100), 180 (66), 164 (68), 90 (75). Anal. calcd. for CHN: not found.

1-(3-Hydroxyphenyl)-4(methoxyphenyl)-2,6-diphenyl-1,4dihydropyridine (6)

Colourless needles, mp 230 °C. IR (cm⁻¹) v_{max} : 3570, 3056, 3002, 1610, 1540, 1480, 1376, 1350, 1140, 1085, 945, 790. ¹H NMR (DMSO- d_6) &: 3.81 (s, 3H), 5.37 (t, J = 3.8Hz, 1H), 6.78 (s br, 1H), 6.80 (dd, J = 8.0, 3.8 Hz, 3H), 6.92 (dd, J = 8.0, 2.8Hz, 2H), 7.12 (m, 8H), 7.30 (d, J = 3.8 Hz, 2H), 7.32 (dd, J = 8.2, 2.8 Hz, 3H), 8.00 (d, J = 8.2 Hz, 1H), 10.92 (s, 1H). ¹³C NMR (DMSO- d_6) δ_C : 55.4, 58.1, 104.3, 110.2, 122.6, 131.2, 137.5, 138.2, 143.7, 151.4. HR EI-MS *m*/*z* (rel. int.): 431.1876 (M⁺, 12) (calcd. for C₃₀H₂₅NO₂: 431.1885), 416 (24), 334 (36), 247 (100), 180 (57), 164 (68), 90 (75). Anal. calcd. for CHN: not found.

1-(4-Hydroxyphenyl)-4(methoxyphenyl)-2,6-diphenyl-1,4dihydropyridine (7)

Colourless needles, mp 230 °C. IR (cm⁻¹) v_{max} : 3554, 3050, 3005, 1610, 1540,1480, 1370, 1140, 1085, 940, 790. ¹H NMR (DMSO- d_6) &: 3.85 (s, 3H), 5.56 (t, J = 3.9 Hz, 1H), 6.86 (d, J = 8.2 Hz, 4H), 7.00 (dd, J = 8.2, 3.9 Hz, 3H), 7.25 (m, 7H), 7.30 (dd, J = 3.9, 8.2 Hz, 2H), 7.32 (dd, J = 8.2, 2.9 Hz, 3H), 8.20 (dd, J = 8.5, 3.0 Hz, 1H), 10.76 (s, 1H). ¹³C NMR (DMSO- d_6) δ_C : 55.6, 58.5, 104.6, 111.2, 116.5, 121.8, 122.6, 136.2, 137.1, 138.2, 143.1, 151.4, 156.5. HR EI-MS *m*/*z* (rel. int.): 441.1892 (M⁺, 16) (calcd. for C₃₀H₂₅NO₂: 441.1885), 427 (13), 334 (26), 257 (100), 180 (45), 164 (52), 90 (61), 77 (63). Anal. calcd. for CHN: not done).

1-(2-Bromophenyl)-4(4-methoxy)phenyl-2,6-diphenyl-1,4dihydropyridine (8)

Colourless crystals, mp 162 °C. IR (cm⁻¹) υ_{max} : 3005, 2964–2538 (m), 1605, 1543, 1480, 1370, 1150, 1110, 1085, 940, 790. ¹H NMR (DMSO- d_6) δ_C : 3.86 (s, 3H), 5.37 (t, J = 3.9Hz, 1H), 7.20 (d, J = 3.9 Hz, 2H), 7.27 (m, 8H), 7.37 (dd, J = 8.2, 2.9 Hz, 5H), 7.57 (dd, J = 8.2, 2.9 Hz, 4H), 7.97 (d, J = 8.2 Hz, 1H). ¹³C NMR (DMSO- d_6) & 55.3, 58.2, 113.1, 116.2, 123.2, 123.5, 131.4, 136.9, 137.3, 138.1, 143.5, 151.8. HR EI-MS *m*/*z* (rel. int.): 495, (3), 493.1030 (M⁺, 11) (calcd. for C₃₀H₂₄BrNO: 495.1021, 493.1021), 388 (9), 386 (27), 311 (41), 309 (100), 234 (27), 232 (20), 146 (15), 144 (56), 77 (56). Anal. calcd. for C₃₀H₂₄BrNO: C 73.02, H 4.86, N 2.8; found: C 74.1, H 3.9, N 3.01.

1-(3-Bromophenyl)-4(4-methoxy)phenyl-2,6-diphenyl-1, 4dihydropyridine (9)

Colourless crystals, mp 127 °C. IR (cm⁻¹) υ_{max} : 3000, 2950–2623 (m), 1605, 1543, 1480, 1370, 1150, 1110, 1085, 940, 790. ¹H NMR (DMSO- d_6) δ : 3.81 (s, 3H), 5.35 (t, J = 3.9 Hz, 1H), 7.0 (d, J = 8.2 Hz, 2H), 7.16 (dd, J = 8.2, 3.9 Hz, 4H), 7.26 (d, J = 8.2 Hz, 2H), 7.29 (m, 6H), 7.37 (d, J = 8.2 Hz, 3H), 7.57 (d, J = 8.2 Hz, 2H), 8.00 (s, 1H). ¹³C

1-(4-Bromophenyl-4(4-methoxy)phenyl-2,6-diphenyl-1, 4dihydropyridine (10)

Colourless crystals, mp 148 °C. IR (cm⁻¹) v_{max} : 3010, 2952–2623 (m), 1605, 1543, 1480, 1370, 1150, 1110, 1085, 940, 790. ¹H NMR (DMSO- d_6) &: 3.86 (s, 3H), 5.36 (t, J = 3.9 Hz, 1H), 7.0 (dd, J = 8.2, 3.9 Hz, 2H), 7.20 (m, 5H), 7.31 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 4H), 7.45 (dd, J = 8.2, 2.4 Hz, 6H), 8.02 (d, J = 8.4 Hz, 1H). ¹³C NMR (DMSO- d_6) &: 58.7, 114.3, 116.5, 121.1, 123.7, 128.4, 130.9, 138.1, 143.2, 143.5, 151.3. HR EI-MS m/z (rel. int.): 495(10), 493.103 (M⁺, 31) (calcd. for C₃₀H₂₄BrNO: 493.1021), 388 (27), 386 (36), 311 (10), 309 (100), 234 (29), 232 (15), 146 (15), 144 (67), 77 (63). Anal. calcd. for CHN: not found.

1-(3-Nitrophenyl-4(4-methoxy)phenyl-2,6-diphenyl-1,4dihydropyridine (11)

Pale yellow crystals, mp 121 °C. IR (cm⁻¹) v_{max} : 3020, 2695–2559 (m), 2215, 1605, 1600, 1485, 1415, 1375, 1360, 1150, 1090, 940, 790, 665. ¹H NMR (CDCl₃) &: 3.57 (s, 3H), 5.10 (t, *J* = 3.9 Hz, 1H), 7.10 (dd, *J* = 8.1,3.9 Hz, 4H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.26 (m, 9H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.77 (dd, *J* = 8.1, 2.3 Hz, 2H), 8.09 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (CDCl₃) δ_{C} : 54.8, 55.6, 105.3, 118.6, 122.5, 124.2, 130.1, 131.2, 137.4, 139.1, 146.7, 153.2, 156.4. HR EI-MS *m*/*z* (rel. int.): 460.1792 (M⁺, 10) (calcd. for C₃₀H₂₄N₂O₃: 460.1787), 393 (25), 316 (100), 239 (40), 194 (33), 77 (56). Anal calcd. for C₃₀H₂₄N₂O₃: C 78.26, H 5.21, N 6.08; found: C 78.31, H 4.85, N 5.91.

Hydroxymethyl-(4-methoxyphenyl-3-(4-methoxy)phenyl-1,5-diphenyl-pentan-4-en-5-ol-1-one, (12a)

Colourless crystals, mp 132 °C. IR (cm⁻¹) υ_{max} : 3590, 3423, 3010, 2810, 1700, 1640, 1580, 1410, 1245, 1090, 920, 750. ¹H NMR (200 MHz, CDCl₃) & 2.70 (d, J = 3.3 Hz, 1H), 2.80 (s br, 1H, OH), 3.05 (dd, J = 3.0, 3.6 Hz, 1H), 3.86 (s, 6H), 5.01 (dd, J = 3.0 Hz, 1H), 6.9 (s, 1H), 7.10–7.20 (m, 10H), 7.23 (dd, J = 3.2, 8.9 Hz, 4H), 7.65 (dd, J = 3.2, 8.6 Hz, 4H), 12.9 (s br, 1H). ¹³C NMR (CDCl₃) δ_{C} : 55.6, 64.6, 77.2, 83.2, 114.4, 116.5, 124.9, 127.0, 128.9, 131.2, 138.5, 139.6, 149.5, 159.4, 197.3. HR EI-MS *m/z* (rel. int.): 494.2071 (M⁺, 30) (calcd. for C₃₂H₃₀O₅: 494.2085), 493 (29), 476 (42), 466 (31), 371 (45), 239 (66), 224 (27), 134 (76), 133 (58), 105 (100), 92 (91), 77 (70), 64 (87).

1-(4-Chloro)phenyl-3-(4-methoxy)phenyl-5-phenyl-pentan-4-en-5-ol-1-one, (12b)

Colourless compound, mp 135 °C. IR (cm⁻¹) v_{max} : 3020, 2816, 1715, 1580, 1640, 1420, 1250, 1090, 1075, 925, 780. ¹H NMR (200 MHz, CDCl₃) & 2.69 (d, J = 4.5 Hz, 2H), 3.08 (t, J = 4.5 Hz, 1H), 3.86 (s, 3H) 6.9 (s, 1H), 7.20 (m, 5H), 7.23 (dd, J = 3.2, 8.6 Hz, 2H), 7.41 (d, 2H, J = 6.5 Hz, 2H), 7.55 (d, J = 6.5 Hz, 2H), 7.66 (dd, J = 3.2, 8.6 Hz, 2H), 12.9 (s, 1H). ¹³C NMR (CDCl₃) δ_C : 25.3, 42.6, 556, 114.4,

116.6, 116.8, 124.9, 127.0, 127.3, 128.6, 128.9, 130.1, 131.3, 138.5, 139.9, 149.5, 159.3, 160.4, 197.3. HR EI-MS m/z (rel. int.): 392.1172 (M⁺, 28) (calc. for C₂₄H₂₁O₃Cl: 392.1165), 391 (25), 378 (48), 24 (26), 139 (68), 134 (56), 119 (62), 108 (38), 105 (100), 93 (76), 65 (80).

Acknowledgements

The authors are highly thankful to Professor S. Chanderasekran and Dr. R. G. Bhatt (IISC, Bangalore) and to Mrs. Poornima Wakhlu (RRL, Jammu) for providing spectral facilities.

References

- (a) F.H. Westheimer. Advan. Enzymol. 24, 469 (1962); (b) H. Sund, K. Diekmam, and K. Wallenfels. Advan. Enzymol. 26, 115 (1964); (c) S.P. Colourick, J. Van Eys, and J.H. Park. Compr. Biochem. 14, 1 (1966).
- R.J. Kill and D.A. Widdowson. *In* Biorganic chemistry. Series
 Edited by E.E. Van Tamelen. Academic Press, New York. 1978. pp. 239–75.
- (a) A.A. Qureshi and A.I. Scott. Chem. Commun. (Cambridge), 945 (1968); (b) 947 (1968); (c) 948 (1968); (d) E. Wenkert. Acc. Chem. Res. 1, 78 (1968).
- (a) E. Wenkert, T.D.J. Halls, G. Kunesch, K. Orito, R.L. Stephens, W.A. Temple, J.S. Yadav, J. Am. Chem. Soc. 101, 5370 (1979); (b) E. Wenkert, J. St. Pyerk, S. Uesato, Y.D. Vankar, J. Am. Chem. Soc. 104, 2244 (1982); (c) D. Wenkert, C.J. Chang, H.P.S. Chawla, D.W. Cocharan, E.W. Hagaman, J.C. King, and O. Kazuhiko. J. Am. Chem. Soc. 98, 3645 (1976); (d) M.J. Wanner, G.J. Kamen, and U.K. Pandit. Heterocycles, 15, 377 (1981); (e) D.D. Weller, G.R. Luellen, and D.L. Weller. J. Org. Chem. 48, 3061 (1983); (f) R. Kumar and R. Chandra. Adv. Heterocycl. Chem. 78, 269 (2001).
- (a) K. Akiba, Y. Iseki, and M. Wada. Tetrahedron Lett. 23, 3935 (1982); (b) D.L. Comins and N.B. Mantlo. Tetrahedron Lett. 24, 3683 (1983); (c) K. Reuter and W. Neumann. Tetrahedron Lett. 19, 5235 (1978); (d) A. Gilbert and S. Krestonosich. J. Chem. Soc. Perkin Trans. 1, 2531 (1980); (e) N. Finch and C. Gemenden. J. Org. Chem. 40, 569 (1975); (f) N. Ono, R. Tamura, and A. Kaji. J. Am. Chem. Soc. 102, 2851 (1980).
- 6. (a) D.J. Triggle and D. Rampe. Trends Pharmacol. Sci. 10, 507 (1989); (b) D.J. Triggle. Can. J. Physiol. Pharmacol. 68, 1474 (1990); J. Cardiovasc. Pharmacol. 8, 11 (1991); Am. J. Hypertens. 4, 422 (1991); Chirality, 8, 35 (1996); (c) N. Bandur, A. Rutledge, and D.J. Triggle. J. Med. Chem 36, 3743 (1993); (d) S. Tang, A. Yatani, A. Bahinski, Y. Mori, and A. Schwartz. Neuron, 11, 1013 (1993); (e) B.Z. Peterson, T.N. Tanada, and W.A. Catterall. J. Biol. Chem. 271, 5293 (1996); (f) T. Tamazawa, H. Arima, T. Kojima, Y. Isomura, M. Okada, S. Fujita, T. Furuya, T. Takenaka, O. Inagaki, and M. Terai. J. Med. Chem. 29, 2504 (1986); (g) R. Peri, S. Padmanabhan, A. Rutledge, S. Singh, and D.J. Triggle. J. Med. Chem. 43, 2906 (2000).
- 7. R. Peri, S. Padmanabhan, A. Rutledge, S. Singh, and D.J. Triggle. J. Med. Chem. 43, 2906 (2000).
- 8. E.J. Finkelstein, E.A. Alekseev, and E.J. Kozlov. Zh. Org. Chim. 792 (1980).
- R.I. Goncharova, T.D. Kuzhir, G. Duburs, and J. Uldrikis. Dokl. Akad. Nauk SSSR, 255, 1483 (1980).
- 10. W.J. Malaise and P.C.F. Mathias. Diabetologia, 28, 153 (1985).

- A. Majore, T.N. Kopylova, L. Saldava, G. Duburs, Z. Ogle, and J. Uldrikis. Eksper. Med. 14, 97 (1982).
- 12. D. Gaskell. Chem. Br. 12, 27 (1998).
- R.W. Chapman, G. Danko, and M.I. Siegel. Pharmacology, 29, 282 (1984).
- 14. A. Sausins and G. Duburs. Heterocycles, 27, 269 (1988).
- (*a*) K.V. Honn, J.M. Onodo, C.A. Diglo, M.M. Carufel, and J.D. Taylor. Clin. Exp. Metastasis, **2**, 61 (1984); (*b*) T. Tsuruo, H. Iida, M. Nojiri, S. Tsukagashi, and Y. Sakurai. Cancer Res. **43**, 2905 (1983).
- (a) U. Eisner and J. Kuthan. Chem. Rev. **72**, 1 (1972); (b) J.P. Kutney. Heterocycles, **7**, 593 (1977); (c) D.M. Stout and A.I Meyers. Chem. Rev. **82**, 223 (1982); (d) A. Sausins and G. Duburs. Heterocycles, **27**, 269 (1988); Heterocycles, **27**, 291 (1988); (e) R. Kumar and R. Chandra. Adv. Heterocycl. Chem. **78**, 269 (2001).
- (*a*) I.L. Karle. Acta Crystallogr. **14**, 497 (1961); (*b*) H. Koyama, J.M.M. Robinson, and F. Laves. Nature (London), **50**, 40 (1961).
- K.A. Leonard, M.I. Nelen, T.P. Simard, S.R. Davies, S.O. Gollnick, A.R. Oseroff, S.L. Gibson, R. Hilf, L.B. Chen, M.R. Detty. J. Med. Chem. 42, 3953 (1999).
- (*a*) A. Cornelis, L. Delaude, A. Germans, and P. Laszlo. Tetrahedron Lett. **29**, 5909 (1988); (*b*) H. Suzuki, T. Ikegami, and Y. Matano. Synthesis, **24**9 1977 (1977).
- 20. J. March. Advanced organic chemistry. 4th Ed. John Wiley and Sons, New York. 1999. p. 262.
- (a) C.N. Satterfield. Heterogeneous catalysis in practice. McGraw Hill, New York. 1980. Sect. 4.5; (b) H. Knozinger and P. Ratnasamy. Catal. Rev. Sci. Eng. 17, 31 (1978).
- 22. B.S. Furniss, A.J. Hannaford, and P.W.J. Smith. Vogel's text

book of practical organic chemistry. 5th ed. XXXX. 1989. p. 1034.

- 23. (a) T. Chennat and U. Eisner. J. Chem. Soc. Perkin Trans. 1,
 75, 926 (1975); (b) G.D. Hartman, W. Halezenko, and B.T. Phillips. J. Org. Chem. 50, 2427 (1985); (c) M. Saunder and E.H. Gould. J. Org. Chem. 27, 1439 (1962); (d) H. Diekmann, G. Englert, and K. Wallenfels. Tetrahedron, 20, 281 (1964); (e) N.C. Cook and J.E. Lyons. J. Am. Chem. Soc. 87, 3283 (1965); 88, 3396 (1966); (f) E.M. Kosower and T.S. Sorensen. J. Org. Chem. 27, 3764 (1962).
- (a) B.J.S. Wang and E.R. Thornton. J. Am. Chem. Soc. 90, 1216 (1968); (b) R.E. Lyle and E. White. Tetrahedron Lett. 1871 (1970); J. Org. Chem. 36, 772 (1971).
- 25. (a) M.S. Balakrishna and B. Kaboudine. Tetrahedron Lett. 42, 1127 (2001); (b) P. Stahlofen and W. Reid. Chem. Ber. 90, 815 (1957); (c) J.A. Herbert and L. Suschitzky. J. Chem. Soc. Perkins Trans. 1, 2657 (1974); (d) H.R. Morals and A. Bulbarela. Heterocycles, 24, 135 (1986); (e) D.I. Jung, T.W. Choi, Y.Y. Kim, I.S. Kim, Y.M. Park, Y.g. Lee, D.H. Jug. Synth. Commun. 29, 1941 (1999); (f) M.S. Balakrishna and B. Kaboudin. Tetrahedron Lett. 42, 1127 (2001); (g) B. Kaboudin and B. Navace. Heterocycles, 55, 1443 (2001); (h) J.S. Yadav, B.V.S. Reddy, P.S. Kumar, K. Nagarah, N. Ungauah, and S.P. Sriprasad. Synthesis, 6, 901 (2004).
- 26. (a) J.B. Peri. J. Phys. Chem. 69, 220 (1965); 69, 231 (1965);
 (b) H. Knozinger and P. Ratnasamy. Catal. Rev. Sci. Eng. 17, 31 (1978);
 (c) A.A. Tsgyanenko and P.P. Mardilovich. J. Chem. Soc. Faraday Trans. 92, 4843 (1996).
- 27. C. Mukhopadhyay, F.F. Becker, and B.K. Banik. J. Chem. Res. Synop. 28 (2001), and refs. 10 and 11 therein and footnote 16.
- 28. G.G. Briand and N. Burford. Chem. Rev. 99, 2601 (1999).